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Abstract
Purpose This scoping review covers needle visualization and localization techniques in ultrasound, where localization-based
approaches mostly aim to compute the needle shaft (and tip) location while potentially enhancing its visibility too.
Methods A literature review is conducted on the state-of-the-art techniques, which could be divided into five categories: (1)
signal and image processing-based techniques to augment the needle, (2) modifications to the needle and insertion to help
with needle-transducer alignment and visibility, (3) changes to ultrasound image formation, (4) motion-based analysis and
(5) machine learning.
Results Advantages, limitations and challenges of representative examples in each of the categories are discussed. Evaluation
techniques performed in ex vivo, phantom and in vivo studies are discussed and summarized.
Conclusion Greatest limitation of the majority of the literature is that they rely on original visibility of the needle in the static
image. Need for additional/improved apparatus is the greatest limitation toward clinical utility in practice.
Significance Ultrasound-guided needle placement is performed in many clinical applications, including biopsies, treatment
injections and anesthesia. Despite the wide range and long history of this technique, an ongoing challenge is needle visibility
in ultrasound. A robust technique to enhance ultrasonic needle visibility, especially for steeply inserted hand-held needles,
and while maintaining clinical utility requirements is needed.

Keywords Needle detection · Ultrasound · Image-guidance · Machine learning · Needle visualization · Image processing

Introduction

Needle insertion is commonly used in various clinical proce-
dures including biopsies, treatment injection and anesthesia.
The success of these procedures often depends on accurate
needle placement to minimize complications and to avoid
damage to neighboring tissue. For this purpose, ultrasound
(US) is used widely to guide needle insertions because it is
safe, real time and low cost [1–4]. The operatorwill adjust the
needle and transducer by observing both needle and target in
the live image to accurately navigate and place the needle to
the target location, hence increasing the safety and success
rate of the procedure.
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However, despite the wide range and long history of
image-guided needle insertions, an ongoing issue is poor
needle visibility [5–8]. Needle visualization is especially
challenging for deep insertions and for insertions with steep
angles relative to the US beam.

Aligning the needle and transducer, and advancing the
needle without being able to properly visualize it, can result
in targeting errors. Needle detection in out-of-plane cases is
even more challenging since only the cross section of the
needle with the US beam can be visualized. 3D imaging has
also been used to enhance needle visualization, since the
additional dimension may give extra information about the
needle location by providing the 3D view [9,10].

A wide variety of attempts have been made to enhance
sonographic needle visualization and localization. To get a
better understanding of this large body of literature, a scoping
review discussing the pros and cons of various techniques is
needed in the field. While methods enhancing needle visu-
alization may not improve needle localization directly, they
can help subsequent localization techniques achieve a better
accuracy. Therefore, in this review, we have included both
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Fig. 1 Gold standard: 20G
echogenic needle extended from
the 17G cannula (Reprinted with
permission from Elsevier
published paper: Beigi et al.
[38])

2 cm

types of research improving needle visualization or localiza-
tion.

The large body of literature on this topic can be divided
into five main categories: (1) signal and image processing-
based techniques to augment the needle, (2) modifications to
the needle and insertion, (3) changes to US image formation,
(4) motion analysis and (5) machine learning. These tech-
niques were described and evaluated in the literature using
different study designs and outcome measures. A summary
table describing the literature based on their corresponding
category is discussed in Table 1. The aim of this table is to
summarize references based on the following important cri-
teria: (1) validation method (in-vivo, ex-vivo or phantom),
(2) whether the technique enhances needle visualization or
localization (3) tip or shaft accuracy evaluation (for those
enhancing localization) and (4) whether a failure rate is
reported. To give more context, these are listed based on the
specific category each reference belongs to.

Validation and gold standards

Validation against a known true location of the needle is
also a challenge since, if the needle is visible enough for
the operator to manually select it, then there is no need
for enhancement. On the other hand, the true location, or
gold standard, is unknown in cases where the needle does
not have clearly visible features in the image for manual
annotation. Such gold standards should also be evaluated
preferably against independent methods, for accuracy and
possible introduction of other errors.

Optical, electromagnetic (EM) tracking and robot-assisted
systems can be used for localization but have their own
limitations and localization errors, as will be discussed in
“Modified needles” section. EM tracking, for example, with
miniaturized sensors placed at the needle tip, has been used
in the literature to verify a gold standard. This approach is
inherently more accurate compared to techniques requiring
the sensor placement at the needle base rather than the tip
due to possible needle bending. The accuracy of the electro-

magnetic sensors is varied for different types of trackers and
depends on the surrounding environment. For example, the
maximum root-mean-square (RMS) accuracy for Medtronic
StealthStation Treon-EM and the NDI Aurora trackers were
found to be up to 1.4mmand 5.1mm, respectively [22].Max-
imum errors for electromagnetic sensors in general though
increases to 5 mm to 119 mm when they are attached to 3D
transducers [50].

In the literature, the gold standard is usually obtained
from the manual annotation of the needle in B-mode images.
This of course requires some assumptions about the ini-
tial visibility of the needle. Whilst some of the researchers,
e.g., [40], assume partial visibility of the needle shaft and
tip, most of the papers rely on generally visible needles.
An echogenic needle threaded within the cannula of the
needle tube detected, and slightly extended beyond the tip
is a relatively new paradigm for creating a gold standard,
see Fig. 1. Initial phantom tests showed an average error
of 0.4 mm in the detected tip against the true tip posi-
tion, identified as a mean of the estimates of three human
observers, although the accuracy depends on the tissue stiff-
ness [38]. The advantage of this gold standard over possible
other ones (CT registration to three-dimensional US (3DUS),
optical tracking and transparent phantoms) is that it indicates
both tip and trajectory in the same US coordinates as the
needle measurements, so error due to coordinate transfor-
mation to common reference system is reduced. In addition,
although fiducials may be controlled in a phantom exper-
imental setup, it is much more challenging to experiment
in vivo.

Due to the variations in gold standard verification in the
literature, and the inherent error in the gold standards them-
selves, direct comparison of accuracy measurements of the
tip/trajectory among different approaches should be taken in
the context of the equipment and methods used. Accuracy as
well as the gold standard are reported in the following sec-
tions. It is also appropriate to compare the combination of
validation approach, gold standard robustness, applicability
for clinical practice and failure rate, which are also described
when available.
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In vivo validation is challenging due to the difficulty of
obtaining a gold standard and that testing a particular tech-
nique may not be practically achievable in an in vivo setting.
A great portion of the state-of-the-art (67%) that we reviewed
here, therefore, validated their techniques ex vivo or on phan-
toms, which only leaves 33% of the them being validated
in vivo.

Signal and image post-processing

Since most needles are thin and made of steel, they ide-
ally show up as a fine bright line in the US B-mode image.
Therefore, signal and image processing methods such as line
detection [11–13], image filtering [40,41] and projection-
based approaches [11,34,35] have been used to enhance
visualization and localization of the needle in the US image.
Most of these types of approaches rely on the visibility of the
needle in the un-processedUS image as a long line-like struc-
ture, and line detection techniques (e.g., Hough, Radon and
Random Sample Consensus (RANSAC)) are usually used
to detect the needle. Visualization and localization often use
edge detection and/or filtering.

Edge detection

Methods in this category rely on the original B-mode US
image to contain the needle as a long line-like visible struc-
ture. The needle is detected by applying edge detection
followed by line detection techniques on the B-mode image.

Draper et al. [14] presented a needle detection method
based on the variance image specifically for visible needles
in the US images. Out of 33 images of a tissue-mimicking
phantom, the validation showed an error of 4◦ in trajectory
angle, 1 mm in trajectory intercept and 1 mm in tip identi-
fication in most cases, and max error of greater than 5 mm,
measured against an observer identified gold standard.

While most of the literature focuses on straight nee-
dles, curved needles have also been investigated. Okazawa
et al. [12] proposed a needle segmentation method based
on Hough transform to identify the needle curvature. The
method uses ray casting, Sobel edge detection, Hough
transform and a coordinate transformation. A coordinate
transformation was used to identify curved needles within
the region of interest (ROI), by extracting slope, intercept
and curvature of the needle, see Fig. 2. Validation was per-
formed on a tissue-mimicking phantom, showing mean error
of 0.2−−0.8mm in needle tip localizationmeasured against
the manually identified needle for 10 US images.

Fig. 2 Edge detection: illustration of an US image, with the approxi-
mate needle axis parallel to the long axis of the box, with perpendicular
rays shown as dashed lines. The projection of point scores along the
approximate needle axis is computed to detect the strongest linear
feature parallel to the axis (Reprinted with permission from Elsevier
published paper: Okazawa et al. [12])

Image filtering

Methods in this category rely on the original B-mode US
image to contain a (partially) visible needle, and usually
the needle is assumed to be straight as well. The needle
is localized by applying filtering followed by line detection
techniques on the B-mode image.

Hacihaliloglu et al. [40] presented a needle detection
method that first extracts the image local phase using Log-
Gabor wavelets, and then uses RANSAC to locate a needle
with mid-steep insertion angle. The method works as long as
the initial portion of the shaft (insertion site) and the nee-
dle tip is visible in the B-mode image. Radon transform
of the phase-based descriptor (constructed from Log-Gabor
filtered image) was used to estimate the initial needle trajec-
tory. Phase-based descriptor was performed on an extended
ROI surrounding the estimated trajectory to detect the nee-
dle (Fig. 3). An average needle tip error of 0.43 mm with
maximum error of 1.19 mm was measured for bovine tissue
ex vivo against a manually segmented needle.

Ding and Fenster [34] used image projections to segment
the needle in 3DUS images in an iterative framework. The
approach assumes that the needle appears as a high inten-
sity cluster of voxels. The method is validated on a turkey
breast phantom, which showed an average error of 0.70 mm
in needle position and 1.2◦ in needle trajectory.

Wu et al. [35] used a phase grouping approach based on
the orientation of the gradient field and intensity variations
followed by least-squares fit and a 3D randomized HT to
segment line coordinates in the volume. A local optimizer
is finally performed by minimizing a distance cost func-
tion to refine the estimated needle axis. Needle endpoint was
identified using intensity tracking along the needle axis. The
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Fig. 3 a Estimated initial trajectory overlaid on the B-mode image. b
Extended ROI trajectory overlaid on the B-mode image. c Local phase
featureswithin theROI.d Final trajectory detection by extracting inliers

using MLESAC (Maximum Likelihood Estimation SAmple Consen-
sus) technique. (Reprinted with permission from Springer GmbH
published paper: Hacihaliloglu et al. [40])

method was validated in vivo, showing an error of 1.43 mm
in needle tip localization.

Modified needles

Additions and modifications to the needle could either be
electronic enhancements, or physical enhancements to the
needle [51]. Sensors and actuators have been adopted widely
to help with needle enhancement [15,16,18–21]. Mechan-
ical needle guides [42,43] as well as robot-assisted nee-
dles [42,48] have also been used. Specific needles were also
designed either to enhance reflective US echo (“echogenic”
needles) [36,37] or to ease the guidance especially in robot-
assisted procedures (“steerable needles”) [11,46,47]. Note
that while needle steering and robot assistance do not directly
improve needle visualization, they may help with controlling
the needle and enhancing its localization.

Sensors, trackers and transducers

An electromagnetic field, generated by an external field gen-
erator, could be used to induce a small current in the sensors
attached to the needle and transducer. The position of the nee-
dle can be estimated from the sensor position with respect to
the magnetic field. Hakime et al. [19] used EM tracking on a
18G stylus to detect a biopsy needle. An error of 2 mm was
reported for needle position tested in vivo. 3D transducers
can deviate error more than 2D transducers (e.g., up to 12
mm); therefore, investigations should be done in advance to
minimize interference [50].

Chiang et al. [52] added an “eye” to the needle by placing
an US transducer crystal (40 MHz) into the hollow chamber
of an epidural needle. The back-scattered A-mode US signal
from the transducer visualizes various locations in the tis-
sue. This technique was tested for epidurals, and analysis of

the A-mode signal could visualize ligamentum flavum and
dura mater surrounding the epidural space in at least 83% of
the cases, accuracy on needle localization however was not
reported.

Perrella et al. [16] designed a miniature receive-only sen-
sor at the tip of the stylet that was displayed as a flashing
point. An electrical signal is transmitted when the US beam
hits the sensor. Experimentation was done in vivo: in 16 out
of 20 in vivo insertions (13 clear shaft visibility), the needle
was localized “precisely,” while no quantitative analysis on
accuracy was performed.

Chan et al.[17] designed a tracking system to localize the
needle with respect to the US transducer. The tracking device
contains a pair of cameras to track the needle position. The
accuracy of the method was evaluated based on the short-
est 3D distance between the actual intersection point of the
inspected needle and the detected trajectory, resulting inmin-
imum average error of 3.1 mm.

Robot assistance

Robots offer the potential for more robust needle and trans-
ducer handling and may ease the procedure by aiding the
operator directly. Programmable steerable needles could also
be used in conjunction with robot assistance to help with
guiding the needle. Flexible needle steering under 3D ultra-
sound guidance was performed using feedback force and
visual servoing [49]. A flexible needle is modeled as a poly-
nomial curve defined by a set of points forming the needle at a
given time. Themethodwas evaluated on a tissue-mimicking
phantom, mainly considering the feasibility and robustness
of technique.

Boctor et al. designed a calibrated robotic system to
manipulate the needle insertion and an imaging system for
reconstruction [48]. To reconstruct a volume from a series
of 2D images, EM tracking (with RMS Accuracy 2.54 mm)
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Straight segments

Fig. 4 A schematic of discretely actuated steerable cannula

was used to track the US transducer and also the needle. The
3D robotic needle insertion was compared against freehand
2D needle insertion ex vivo, and the designed robotic system
was shown to be superior with more than 2mm improvement
in targeting accuracy. Specifically, the tip error of 1.56 mm
and 5.5 mmwas reported for robotic needle insertion ex vivo
and in vivo, respectively.

Steerable needles

Steerable needles that adjust the needle trajectory based on
steering commands have also started to be used for better
insertion accuracy [47].

Ayvali and Desai [11] developed a needle tracking and
localization method based on optical flow. The method took
advantage of the beveled cannula tip for the out-of-plane case
using circular Hough transform, see Fig. 4. Validations were
done ex vivo confirming the method’s ability to detect the
cannula curvature, but no quantitative analysis with respect
to a gold standard on the detection accuracy was reported.

Echogenic needles

Echogenic coatings or dimples created on specialized needles
to improve sonographic needle visibility are another solu-
tion. The machined “Cornerstone” reflectors on the needle
surface usually covering the distal portion of the cannula
enhance the reflective echo from the needle end and thus
improve visibility. Although such echogenic needles have
demonstrated enhanced needle visibility [36], they are typi-
cally more expensive and therefore less likely to be adopted
widely. Most needles for clinical use currently are still made
from smooth stainless steel and come with steel or plastic
styluses (solid removable cores inside the needles).

Modified transmission and image formation

Another approach to enhance needle visibility is by changing
the imaging tools, or modifying the US transmit and receive
beamforming sequences. Moreover, the additional dimen-
sion in 3DUScompared to 2DUSprovides three useful planes
of imaging to visualize the needle.

Spatial compounding

Cheung and Rohling [23] proposed the idea of beam steer-
ing technique for standard needles that adaptively steers the
US beam at an angle perpendicular to the needle, which
enhances the needle shaft visibility because of the strong
reflections created. Needle insertion angle was estimated
using the Hough transform, while slightly jiggling the nee-
dle if needed. The brightened needle in the steered image
was then fused with the original image to form an enhanced
image with a better visualized needle, see Fig. 5. Variations
and extensions of this idea have appeared on commercial US
machines.

Hatt et al. introduced a machine learning-based approach
to segment the needle in beam-steered B-mode images, by
first classifying the pixels as needle or background, and then
using a Radon transform to localizes the needle [24]. How-
ever, theirmethod requires the needle orientation to be known
a priori.

Zhuang et al. [44] used spatial compounding on tensor-
based filtered images to enhance needle visibility for larger
insertion angles. Limitations on maximum steering angle in
these methods, in turn, cause limitations on steep insertions
and the use of curvilinear transducers.

Curvilinear transducers andmodified beamforming

Commercial US systems already have beam-steering solu-
tions to enhance needle visibility with linear array trans-
ducers. However, the issue of needle visibility is even more
challenging for curvilinear transducers, with less research
compared to linear array transducers. Beam steering for
curvilinear transducers remains a challenge due to the strong
side lobe generated from large steering angles which may
degrade the image quality due to the resulting shadows [44].

Daoudet al. [45] introduced aneedle localization approach
in curvilinear US for the needle trajectory. The method was
validated on an agar phantom and ex-vivo tissue samples
and resulted in maximum error of 1 mm and 3◦ in needle
trajectory estimation in the radial and azimuthal coordinates,
respectively.

Motion analysis

Motion analysis was also explored to help with needle visi-
bility and localization; although the focus of Doppler-based
techniques was on visible needles for validation, motion-
based techniques could especially benefit cases where the
needle is invisible in the static image [27,38,53,54].
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Fig. 5 Beam steering enhancing
needle visibility: a original and
b fused beam-steered image of a
needle. (Reprinted with
permission from Elsevier
published paper: Cheung and
Rohling [23])

Doppler

Harmat et al. presented a technique that augments a vibrating
needle using power Doppler by moving the stylus inside the
cannula [25]. They used power Doppler imaging to detect the
tissue oscillations caused by rotating a slightly bent stylus
inside a stationary cannula (Fig. 6). The method’s perfor-
mance is mostly independent of insertion angle, depth and
stylus curvature, however strongly dependent on tissue stiff-
ness and needle visibility in the US image. The localization
error tested ex vivo was reported as 2 mm.

Armstrong et al. [26] used colorDoppler imaging to detect
high-frequency (> 1000 Hz) low magnitude (max: 15 µm)
vibrations in the needle produced by ColorMark (EchoCath,
Inc, Princeton, NJ). Color Doppler gain settings have to be
adjusted properly to reduce artifacts. Validations on phan-
toms and patients undergoing pericardiocentesis showed
excellent needle tip localization.

Micro-motion

Color and power Doppler can detect velocities only within a
certain range, as it is not sensitive enough to velocities that
are too small, and it may suffer from artifacts for veloci-
ties that are too large. The minimum detectable frequency
by Doppler is inversely proportional to the transducer’s fre-
quency, and higher Doppler shift occurs when the direction
of motion is parallel to the beam direction (shallow insertion
angles). High velocity mainly occurs due to high-frequency
or high-amplitude vibrations. To provide the former, addi-
tional apparatus is required such as specific actuators, and
the latter would increase the risks to tissue around the inser-
tion. Therefore, instead of using an external tool to induce
vibration, manual motion on the needle could be used as an
alternative to create intensity variations. The small veloc-
ity and displacements, also called micro-motion, could be
detected only by software-based techniques.

Stylus motion could therefore be done similar to a well-
known ad hoc technique of jiggling the needle and looking

for changes in theUSdisplay.Maximum intensity projection,
Hough transform and polynomial fit were used to localize a
needle from a sequence of 3D images captured of a needle
with manual stylus oscillations [38].

Vibrations caused by the natural tremor of the operator’s
hand were also used to localize a needle by detecting regions
moving at tremor frequency range. Optical flow [11,30,39],
phase-based analysis [29,30] and learning-based techniques
could be used to enhance the needle localization. Tip local-
ization results of 1–2 mm was reported, validated ex vivo
and in vivo on porcine models. The needle localization using
these techniques does not rely on initial needle visibility in
theUS image; however, the transducermotion should bemin-
imized for a successful localization based on motion pattern.

Machine learning

Machine learning has gained interest in needle visualiza-
tion enhancement and localization very recently [24,28–30].
Machine learning-based approaches could be applied to all
four categories of needle enhancement. As examples of sig-
nal and image post-processing enhancement, Hatt et al. [24]
used a segmentation method using AdaBoost for statistical
boosting of Log-Gabor features, to segment the needle on
beam-steered B-mode images. Localization evaluation was
reported based on the difference in the detected needle tra-
jectory and the gold standard position relative to the center
of the image, with up to 0.5 mm error.

Pourtaherian et al. [28] used convolutional neural net-
works to detect a needle in 3DUS volume. Convolutional
neural networks were used to classify a voxel based on the
voxels values at three orthogonal local cross sections. Valida-
tion was performed on 20 ex-vivo samples for 17G and 22G
needles, resulting in up to 0.7 mm error in the localization.

Arif et al. [31] used a convolutional neural network to
detect needle candidates, followed by a final tracking step
to determine the needle position. Performance of the method
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Fig. 6 a Schematic views of the bent stylus inside a straight cannula, and needle tip detection using power Doppler at different insertion depths: b
2 cm and c 10 cm. (Reprinted with permission from Elsevier published paper: Harmat et al. [25])

was evaluated in phantoms and in vivo, with mean errors of 1
mm and 2◦ in the tip and trajectory orientation, respectively.

Lee et al. [32] used LinkNet as the baseline network for
needle segmentation followed by a Squeeze-and-Excitation
module to obtain spatial information. Model was trained on
794 images and tested on 202 images. They were captured
from kidney biopsy clips from 8 patients, with RMS orien-
tation error of 13.3◦.

Mwikirize et al. [33] used a digital subtraction scheme
for enhancement of low-level intensity changes caused by
needle tip movement as well as a deep learning scheme for
tip detection. Themodel was trained and evaluated ex vivo on
bovine, porcine and chicken phantoms. The framework was
evaluated on 700 images from 20 sequences and achieved a
tip localization error of 0.72 ± 0.04 mm.

As an example of motion-based enhancement, Beigi et
al. [29] proposed a machine learning framework based on a
probabilistic support vectormachine (SVM) to classify pixels
according to micro motion phase features (also in “Micro-
motion” section). This method was extended using an online
learning framework [55] and spatiotemporal feature selec-
tion [30], enabling needle trackingwithmitigated effect from
the tremor motion on the transducer. Evaluations were per-
formed on in vivo porcine subjects with reported average
error of 1.28◦ and 0.82 mm in trajectory orientation and the
tip.

Discussion

In this paper, we conducted a literature survey for tech-
niques aiding needle enhancement in US-guided procedures.
Specular reflection of the needle surface reduces needle
echogenicity and thus degrades its visibility. Higher nee-
dle insertion angles result in further degradation in needle
visibility. Due to speckle, signal fallout, shadowing and
reverberation artifacts, standard signal and image process-
ing methods often fail in localizing the needle. Most of the

state-of-the-art techniques, however, rely on original visibil-
ity of the needle in the US image. In reality, the needle might
not show up as a high intensity line of pixels and the chal-
lenge of identifying the needle when it is invisible or nearly
visible still remains.

Correct localization and visualization of the needle is cru-
cial in ultrasound-guided procedures. Some of the studies
reported only the needle trajectory or only the tip, while the
identification of the entire needle is left to the operator. Most
of the approaches that report tip accuracy use the “drop of
signal intensity” as an indicator of the tip location; they there-
fore rely on clear visibility of the needle shaft. Needle shaft
visibility, however, is often challenging especially in appli-
cations where sensors are added to the tip of the needle or
in cases where steep insertion angle is preferred. Based on
our analysis shown in Table I, the literature that focused on
sensors, actuators or trackers lacked the shaft localization
in 50% of the cases, and only 25% of the state-of-the-art in
this category reported the accuracy for both the tip and the
shaft. The same pattern is observed for robot-assisted cate-
gory, where 55% of the cases lacked the shaft localization
and only 30% of the cases reported the accuracy for both the
tip and the shaft.

Studies mainly reported the performance using localiza-
tion accuracy metrics such as the needle shaft or its tip, and
rarely report a “failure” rate. Based on Table I, only a small
proportion of the literature (22%) included the percentage of
failed trials. Robustness is a significant factor in a clinical
setting, and the percentage of cases for which the method
fails would be an important metric to report in addition to
other visualization or localization metrics.

Linear-array transducers were mainly the choice in the
literature, whereas curvilinear transducers may bring more
challenges. 3DUS remains a minor portion of the literature,
perhaps because 2DUS is prominent as the faster grow-
ing point of care market. Beam steering is a promising
approach in terms of clinical utility, however, steering to
large angles remains a challenge, especially for curvilinear
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array transducers. Combining various techniques could be
further researched to enhance needle localization accuracy
in US-guided interventions. For example, combined ultra-
sound and fluoroscopy was used to enhance dosimetry for
prostate brachytherapy by enhancing needle positioning [56].
Motion-based techniques and possibly robot assistance are
seen as key future research directions.

Current clinical demand is inclined toward standard nee-
dles and apparatus, which makes customized apparatus
harder to be adopted clinically.Machine learning-based tech-
niques have recently come to play a role in needle detection
in US. It is therefore predicted to see a trend for learning-
based needle detection approaches in parallel with advances
of machine learning.

Note that the inconsistency in validation approaches
makes it challenging to interpret and compare different stud-
ies. From the large body of literature that we studied here,
only 33% of them validated their results in vivo.

In addition, in evaluation of a newneedle guidance system,
a large-scale human study is preferred. We suggest in vivo
animal experimentation as the closest alternative in these
cases. Application-specific validation could also be useful
as well, as studying the factors affecting the visualization
and localization and the potential effects of the particular
application could lead to key insights.
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