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Abstract
Purpose To achieve accurate image segmentation, which is the first critical step in medical image analysis and interventions,
using deep neural networks seems a promising approach provided sufficiently large and diverse annotated data from experts.
However, annotated datasets are often limited because it is prone to variations in acquisition parameters and require high-level
expert’s knowledge, and manually labeling targets by tracing their contour is often laborious. Developing fast, interactive,
and weakly supervised deep learning methods is thus highly desirable.
Methods We propose a new efficient deep learning method to accurately segment targets from images while generating
an annotated dataset for deep learning methods. It involves a generative neural network-based prior-knowledge prediction
from pseudo-contour landmarks. The predicted prior knowledge (i.e., contour proposal) is then refined using a convolutional
neural network that leverages the information from the predicted prior knowledge and the raw input image. Our method was
evaluated on a clinical database of 145 intraoperative ultrasound and 78 postoperative CT images of image-guided prostate
brachytherapy. It was also evaluated on a cardiac multi-structure segmentation from 450 2D echocardiographic images.
Results Experimental results show that our model can segment the prostate clinical target volume in 0.499 s (i.e., 7.79
milliseconds per image) with an average Dice coefficient of 96.9 ± 0.9% and 95.4 ± 0.9%, 3D Hausdorff distance of 4.25
± 4.58 and 5.17 ± 1.41 mm, and volumetric overlap ratio of 93.9 ± 1.80% and 91.3 ± 1.70 from TRUS and CT images,
respectively. It also yielded an average Dice coefficient of 96.3 ± 1.3% on echocardiographic images.
Conclusions We proposed and evaluated a fast, interactive deep learning method for accurate medical image segmentation.
Moreover, our approach has the potential to solve the bottleneck of deep learning methods in adapting to inter-clinical
variations and speed up the annotation processes.

Keywords Weakly supervised segmentation · Domain adaptation · CNN · Generative model · Brachytherapy · Echocardiog-
raphy

Introduction

Accurate and robust medical image segmentation is often
profoundly critical in various clinical applications such as
medical image analysis and interventions. For example, in
radiology, accurate segmentation of structures such as lung,
brain, and prostate has become a requisite [1]. It helps to
measure the area and volume of structures, which can then be
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used for tasks such as radiation treatment planning, interven-
tion visualization in image-guided surgery, and registration
between different or same imaging modalities [2]. Indeed,
clinically analyzing a large population of datasets is often
helpful in improving and evaluating the treatment from the
patient outcomes. It requires a large and diverse dataset.
Although nowadays, there are an increased number of raw
medical datasets, manual analysis of these datasets might
not be easy. In this regard, computer-aided image analysis
has gained interest and also showed promising results [3]. It
can be a fully automatic or semiautomatic method. Semiau-
tomatic methods allow expertise to interact with the methods
at different levels, while fully automatic methods do not.

Recently, for example, advances in supervised convolu-
tional neural network (CNN)-based fully automatic methods
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showed an improvement in computer-assisted diagnostic and
therapeutic procedures [4]. However, CNN-based medical
image analysis often requires large annotated datasets from
different clinical centers and observers with varying acqui-
sition parameters to learn and generalize for any new image
case. Unlike in the real-world datasets for semantic image
segmentation, annotated medical image datasets are often
limited [1]. Data annotation is often prone to variations
in acquisition parameters and requires high-level expertise.
Manually labeling targets by tracing their contour is also a
laborious process. Besides, although the current fully auto-
matic CNN-based approaches have demonstrated promising
performances, they have some common limitations. First,
they are highly likely to fail in image cases where the testing
dataset distribution is different from the annotated training
dataset distribution. For example, trained and developed deep
learning models from a given specific clinical database dis-
tributionmight not performwell on other clinical centers and
even from the same center with a small change in acquisition
parameters. As the neural networkweights are learned to seg-
ment an imagebased on supervision from the training dataset,
it might not be easy to generalize for any other new image
cases where there is a slight difference from the provided
training data distributions. This scenario could be solved by
manually interacting or retraining the CNNmethodwith new
annotated image cases from the new imaging domain. While
the first approach is not possible in most currently avail-
able end-to-end deep learning methods, the second approach
requires considerable time and expert knowledge to get suf-
ficient annotated data, which is often expensive. It is more
complicated in image-guided interventions.

Therefore to address such problems, recently artificial
intelligent researchers have focused on developing semiauto-
matic deep learningmethods that can allow experts to interact
for better accuracy while increasing annotated datasets to
improve the accuracy of fully automatic deep learning meth-
ods [5–9]. These interactive image segmentationmethods can
be categorized into two types. Firstly, the pixel-based anno-
tation approach requires user selection of the target and the
background based on pixel clicks [6,7]. For example, Mani-
nis et al. [6] incorporated pixel-wise clicks as heat maps into
a convolutional neural network-based image segmentation
[10]. Secondly, the polygon annotation approach requires an
annotator to provide a box around the object of interest [5,11–
13]. Castrejon et al. [12] used a recurrent neural network
to generate an outline of instance objects in an image from
bounding boxes. It showed a significant speedup in the anno-
tation process. Motivated by these promising results, Acuna
et al. [11] proposed a reinforcement learning strategy using
graph neural networks [14]. To alleviate the problems of
polygon recurrent-based image annotation and segmentation
methods such as limitations shape, training, and inference
time, Ling et al. [5] introduced a graph neural network to pre-

dict and correct all vertices of the target simultaneously.Most
of these methods were developed for real-world semantic
segmentation such as video annotation [9], robotic RGB-D
datasets [7], and an instance object segmentation [5,11,12].

Meanwhile, a semiautomatic deep learning approach has
been receiving increased attention in the medical domain.
Sakinis et al. [8] proposed a semiautomatic segmentation
method using a fully convolutional neural networks (U-net)
[4]. They have used limited 2D training datasets first to train
the U-net architecture. Then, the system allowsmanual inter-
action to segment any other new image cases. Rajchl et al.
[13] proposed a neural network classifier-based object seg-
mentation from given bounding boxes. They then modified
this approach by considering extreme points on the organ’s
surface [15]. Although these approaches generally showed
promising results in speeding up the annotation process of
new training datasets, they are not free of limitations. Firstly,
most of these methods require several iterations of training
and prediction, which could be time-consuming. Secondly,
they are computationally expensive. Moreover, though these
method’s accuracy could be increased by increasing the user
clicks, they are very dependent on the intensity information
of the raw input images. Consequently, it might not be easy
to use these methods for a new imaging modality application
(i.e., domain adaptation or transfer learning).

Then, developing an accurate and fast automatizedmethod
that requires minimal manual interaction can be beneficial in
solving difficult medical image analysis tasks. To achieve
this, a semiautomatic deep neural network seems a promis-
ing approach which can be used to: 1) increase ground truth
data with minimum expert interaction and knowledge in
a relatively short time. These semiautomatically generated
annotated datasets can, in turn, be used to develop fully
automatic deep learning architectures. This approach can
also allow retraining a developed fully automatic deep learn-
ing method to incorporate or adapt to new medical imaging
domains such as on different clinical centers or acquisition
protocols (domain adaptation) [16]; 2) improve image seg-
mentation accuracy using only a few good contrasted image
pixels by surpassing the need to delineate targets manually
by tracing their full contours. It might also allow reducing the
often large inter- and intraobserver variations in annotating
uncertain image regions.

In this work, we introduce a simple but effective frame-
work to accurately segment predefined structures using a
weakly supervised deep learning method. The proposed
method employs a generative neural network for anatomi-
cal structure prediction from manually selected landmarks,
which is then followed by a convolutional neural network
for pixel classification. In short, our work has the following
main contributions: 1) We developed an efficient interac-
tive method that can be used for accurate automated image
segmentation as well as fast image annotation using deep
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learning. 2) We designed a method that leverages the prior
knowledge of a target and requires fairly small intensity infor-
mation from the raw input image. This design, as we will
show in the experimental result, allows the network to fine-
tune for different imaging modalities. We also artificially
modeled the errors that can be introduced from selecting the
contour landmarks between inter- and intraobservers. 3) We
support our claims by an extensive ablation and experimental
results on prostate clinical target volume segmentation from
TRUS and CT images. Echocardiographic 2D images have
also been used to evaluate our method in multi-structure tar-
get segmentation. The experimental results on real patient’s
datasets using both volume and distance metrics reveal that
ourmethod can generate accurate image segmentation results
in less than 8 milliseconds.

The rest of the paper is organized as follows: we first
describe the materials and our method, we then present the
experimental results, and finally, we draw our conclusions.

Materials andmethods

To evaluate our system, we consider three different appli-
cations: prostate segmentation from transrectal ultrasound
(TRUS) and computed tomography (CT) images, and car-
diac multi-structure segmentation from ultrasound images.

For the prostate segmentation, we collected clinical
databases of intraoperativeTRUS images aswell as postoper-
ative CT images from image-guided prostate brachytherapy.
Both imaging modalities are often used to segment clini-
cally meaningful target volumes in radiotherapy, such as
the prostate gland. Thus, for this study, we used a clinical
database of 78 CT prostate image cases from the anticancer
center of Dijon, France. All patients underwent at least
a primary permanent prostate brachytherapy with 125 I for
localized prostate cancer treatment [2]. The in-plane resolu-
tion of theseCTdata varies from0.4×0.4mm2 to 0.58×0.58
mm2 with a slice thickness between 1.5mm and 2.5mm. The
acquisition protocol was in helical mode, 120 kVp, 172 mm
FOV, and 440 mAs/slice. The TRUS images were acquired
from 145 patients who underwent permanent seed implanta-
tion under TRUS guidance. The pixel size of each transverse
slicewas 0.1038×0.1038mmwith a slice thickness of 1mm.
The prostate was manually delineated on both TRUS and CT
images by an experienced radiation oncologist. Indeed, these
delineation procedures are routinely used in the clinical treat-
ment of image-guided prostate brachytherapy with the help
of VariSeed planning software (Varian Medical Systems Inc,
Palo Alto, CA).

The TRUS and CT images were resized and center
cropped to an image resolution of 256 × 256 × 64, consid-
ering the organ at the center of the cropped image (Fig. 1a).

We resized the TRUS images into 0.25× 0.25× 1mm3 and
CT images into 0.5 × 0.5 × 1.25mm3.

Another application of our method is in cardiac multi-
structure segmentation on 2D echocardiographic images. For
this application, we selected a public dataset [17]. It consists
of 450 raw patient datasets with the heart oriented in long-
axis orientation and corresponding ground truths. Each of
the data has a different image resolution and was resized
into 256 × 256 (there is only one plane). We automatically
extracted the four boundary coordinates from the prepro-
cessed mask for both prostate and cardiac applications (top,
bottom, left, and right extreme points) as contour pseudo-
landmarks. This preprocessing step of the raw input image is
shown in Fig. 1a. For each dataset, all exams were acquired
on the same plane orientation. However, to adapt the method
for any plane orientation, it might require a dataset acquired
from all possible target orientations. Examples of selected
contour pseudo-landmarks are shown as red points on the
input image in Figs. 1b and 2. However, these landmarks
are pixel-wise dependent. Thus, to learn the system for any
variation in selecting these landmarks, we artificially intro-
duced and modeled errors in the extracted points. It was
used to demonstrate the system’s performance according to
the inter- and intraobserver variations while selecting the
pseudo-landmarks. This is further discussed in the “Experi-
mental setup” section.

Proposedmethod

When experts delineate a given target on an image, they
often consider both their prior knowledge of the target and
the intensity distribution of the raw input image simulta-
neously. Similarly, our method involves prior-knowledge
prediction from pseudo-landmarks indicated by the user and
the intensity distribution information from the raw input
image, as shown in Fig. 1b. We model the prior-knowledge
prediction using a deep generative neural network (named
prior-knowledge generator) [18]. For this, we considered
the four pseudo-contour landmarks as an input, i.e., I u =
(xui , y

u
i ), where i = [1, 2, 3, 4] are the pseudo-boundary

coordinates (xi and yi ) of the target in a given image u. More-
over, to classify if the given image is with the target organ or
not, we used an additional input of su . It has a value of either
0 (no organ in a given image) or 1 (presence of the organ
in a given image). Then, the prior-knowledge generator is
trained to predict a labeled model of W × H , whose pixel
v = (x, y) contains a label 1 for the organ and 0 otherwise,
from the 1 × 9 (four pairs of xu and yu along with su for a
given image u) pseudo-landmark coordinates. Here, W and
H are the width and height of the image, respectively.

The predicted prior knowledge is then multiplied with the
raw input image and can be considered as target attention
or region proposal. It is then further merged with the raw
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Fig. 1 Proposed method. a Preprocessing step; b proposed end-to-end
architecture; and c building blocks of the proposed method, where the
top-left bock is for the first layer, and the top-right block is for the rest
of the layers of the prior-knowledge generator. Similarly, the bottom-

left block is for the down-sampling, and the bottom-right bock is for
the up-sampling layers of the segmentation block. The feature channels
and image sizes are shown at the bottom of each layer in B

input image using the concatenation layer and fed to the sec-
ond part of our method, which is a fully convolutional neural
network (segmentation block). It is designed to refine fur-
ther the proposed region from the prior-knowledge generator
by leveraging the low-level information from the raw input
image.

The complete network architecture is illustrated in Fig. 1.
As mentioned before, it consists of two main parts: the prior-
knowledge generator and segmentation block. The prior-
knowledge generator is composed of a fully connected layer,
batch normalization and reshape (Fig. 1c, top-left block),
followed by repeated batch normalization, up-convolution
and convolution layers (Fig. 1c, top-right block) (similar
as in [19]). The fully connected convolutional neural net-
work (segmentation block) is composed of repeated 3 × 3
convolutions with a stride of 1 and 2, respectively, for the
down-sampling (Fig. 1c, bottom-left block). The bottleneck
(third block) and the output layer (last block) are convolution
layers with stride 1 and kernel size 3×3. In the up-sampling,
we used repeated 3x3 deconvolution and convolution lay-

ers (Fig 1 c, bottom-right block). In all layers, including the
prior-knowledge generator, we used exponential linear unit
(ELU) except the last output layers. The last layer’s acti-
vation function for both the generator and the segmentation
blockwas the same. It was sigmoid for prostate segmentation
and softmax for cardiac image segmentation. The number of
feature channels in the segmentation block was 8 in the first
level, which is then doubled and halved, respectively, after
each block of the down-sampling/up-sampling layers. The
number of feature channels was doubled at each layer for the
cardiac image segmentation.

Training loss function

As the proposed method has two outputs (i.e., prior-
knowledgegenerator’s output andfinal segmentation output),
we define a combined loss function as:

Ltotal = 1

2
× (L1 + L2) (1)
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where L1 and L2 are the prior-knowledge generator’s loss
and final output loss, respectively. We used a sum of binary
or categorical cross-entropy andDice coefficient loss for both
L1 and L2 (i.e., Li = Lbinary + Ldice, i = 1, 2). The binary
cross-entropy was for the prostate segmentation, while the
categorical cross-entropywas for the cardiacmulti-label seg-
mentation. Although binary/categorical cross-entropy loss
function alone is often applied in medical image segmenta-
tion, it might not work well for images with small foreground
regions. In such cases, the loss function considers all pixels
equally. Thus, the small region’s information can be sup-
pressed by the larger region’s information. It can be solved
using the Dice coefficient loss. It is a measure of overlap
between predicted segmentation results and reference ground
truths. We calculated the Dice coefficient loss, Ldice, as:

Ldice = 1 −
∑

k∈0,1

2 × ∑
i∈I uki v

k
i∑

i∈I uki + ∑
i∈I vki

(2)

where u is the output of the network, and v is the ground
truth segmentation map. Both u and v have shape I with
i ∈ I being the number of pixels in the training batch and k
being the pixel class. At the output of the prior-knowledge
generator and the segmentation block, we adapted a sigmoid
function for the 1-channel output in prostate segmentation
and a softmax function for the 4-channel output in cardiac
image segmentation.

Training, testing configurations, and
implementation details

The proposed method was trained using Eq. 1 and an ADAM
optimizer. We used a learning rate of 0.0001 and a batch
size of 20 until convergence [20]. An early stop of 30 was
adapted to determine the convergence. It is important tomen-
tion here that we feed the network with 2D, and the predicted
image labels are then stacked to create a 3D volume for the
prostate segmentation.We considered randomly 25%of each
dataset for validation and the remaining 75% for training.
The echocardiographic images were also randomly divided
into 400 patients for the training and 50 patients for the vali-
dation. The proposed network has only 1.5 million trainable
parameters, which is fairly very small compared to 32million
trainable parameters in [8]. It was implemented in Python
on i7 computer with 32-GB RAM and a dedicated GPU
(NVIDIA TITAN X, 12 GB) with Keras API and Tensor-
flow backend.

Experimental setup

To evaluate the proposed method, we considered both vol-
ume and distance metrics (i.e., Dice similarity coefficient

(DSC), percent of volume overlap (VO), accuracy (Acc.),
and Hausdorff distance (HD)). In all evaluation metrics for
the prostate gland segmentation, we consider the 3D volume
of the clinical target volume, i.e., each case has a resolution
of 256 x 256 x 64. Furthermore, to provide a detailed analy-
sis, the prostate was classified along the transverse axis into
40% for mid-gland and 30% each for base and apex, respec-
tively. Similarly, the echocardiographic image segmentation
was evaluated on each structure, such as the left ventricular
cavity, the left atrium and the myocardium, and on the whole
heart.

Ablation study:To investigate the best combination strat-
egy of the prior-knowledge generator and the raw input image
(i.e., merge block in Fig. 1 (B)), we conducted three differ-
ent combination possibilities such as concatenation, addition,
and multiplication. Moreover, we compared the accuracy of
our method for the different numbers of landmarks a user has
to pinpoint, such as using 2, 4, and 6 pseudo-landmarks.

Inter- and intraobservervariation study:Previous stud-
ies reported that the inter- and intraobserver variation in
prostate delineation on TRUS images could be in the range
of 7.59–27.14% and 8.70%, respectively [21]. In our case,
to study the inter- and intraobserver variations that could
come while selecting the pseudo-landmarks, we introduced
the errors artificially at testing time. We added randomly an
error in the range of 1 to 9 mm (i.e., 4- to 36-pixel error) to
the selected pseudo-landmarks. Then, the performance of the
model in segmenting the prostate gland with such pseudo-
landmark error is measured.

Domain adaptation: It is well known that weights of con-
volutional neural networks are often updated according to the
training dataset distribution. However, if the raw input dur-
ing the testing phase differs from the training data, the model
might not work very well. It is because the domain of the
input data is changed, while the task domain remains the
same. This problem is common in medical image analysis.
However, it can be solved using domain adaptation (or trans-
fer learning) [16], in which a trainedmodel on a given dataset
could be applied to different domains but for a similar target.

In this study, we conducted ablation experiments in
prostate gland segmentation from CT and TRUS images to
investigate ourmethod’s usage in domain adaptation between
different imagingmodalities. The shape of the target (i.e., the
prostate gland) is the same on both CT and TRUS images.
We consider the TRUS data as an available dataset and CT
images as the target domain. Then, we performed the two
categories of domain adaptation. First, a trained model from
TRUS images is applied toCT images, wherewe take only 20
CT cases to update the trained model (named weakly super-
vised). Second,we train ourmodelwith theTRUSdataset and
directly apply it to the testing CT images (named unsuper-
vised). Similarly, we trained the model from CT and applied
it to the TRUS images.
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Table 1 Quantitative
segmentation results. Values are
expressed as mean ± std. DSC:
Dice coefficient; HD: 3D
Hausdorff distance (in mm); and
VO: percent of volumetric
overlap; Acc: accuracy; TRUS:
transrectal ultrasound; CT:
computed tomography; US:
echocardiographic ultrasound
image; LV: left ventricle, MYO:
myocardium; LA: left atrium

Image % Metric

DSC (%) HD% (mm) VO (%) Acc (%)

TRUS Total 96.9 ± 0.9 4.25 ± 4.58 93.9 ± 1.80 98.9 ± 0.5

Mid-gland 97.4 ± 0.6 3.28 ± 0.91 94.9 ± 1.13 98.1 ± 0.61

Apex 96.4 ± 1.0 3.19 ± 1.05 93.1 ± 1.87 98.9 ± 0.36

Base 96.5 ± 1.5 4.42 ± 4.63 93.4 ± 2.76 98.0 ± 1.14

CT Total 95.4 ± 0.9 5.17 ± 1.41 91.3 ± 1.70 99.7± 0.11

Mid-gland 95.9 ± 0.9 4.94 ± 1.62 92.18 ± 1.71 99.3 ± 0.27

Apex 94.9 ± 1.8 3.56 ± 1.56 90.3 ± 3.20 99.6 ± 0.15

Base 95.1 ± 1.2 4.92 ± 1.37 90.6 ± 2.21 99.3 ± 0.20

US Total 96.3 ± 1.3 23.0 ± 10.42 93.3 ± 0.02 98.6 ± 0.01

LV 93.2 ± 4.9 14.2 ± 5.70 87.2 ± 7.53 98.8 ± 0.01

LA 91.9 ± 6.6 14.9 ± 5.70 84.9 ± 0.09 99.1 ± 0.01

MYO 89.5 ± 11.9 22.4 ± 21.08 81.0 ± 0.14 98.0 ± 0.02

Results

Thequantitative segmentation results of the proposedmethod
trained and tested from the samemodalities (i.e., trained from
TRUS and tested on TRUS and similarly on CT images)
are shown in Table 1. Although the average Hausdorff dis-
tance of the TRUS image is better than the CT image, we
observed more variations across the base (i.e., with a stan-
dard deviation of 4.63). As shown in Table 1, our method
also yielded promising results in cardiac multi-structure seg-
mentation from ultrasound images. However, it appears to
produce large Hausdorff distance errors in particular at the
level of the epicardial contour of the myocardium. Examples
of image segmentation are shown in Fig. 2.

Ablation study: The experimental results for the com-
bination strategy of the prior-knowledge generator and the
raw input image are shown in Table 2. We observed that
all combination strategies showed a competent segmenta-
tion accuracy. However, althoughmultiplication and addition
combination strategies can produce competitive results with
even smaller parameters, we experimentally observed that
they produce more variation in accuracy and high Hausdorff
distance error across the testing dataset than the concate-
nation layer. It is because the addition and multiplication
layers influence more the intensity distribution of the orig-
inal input image before the main segmentation network is
seeing it (segmentation block in Fig. 1b). If an error is intro-
duced in the prior-knowledge generator, it would have a high
chance to propagate till the end of the network when using
addition and multiplication layers than using the concatena-
tion layer. This further suggests that using the concatenation
layer would tolerate the inevitable inter- and intraobserver
differences in selecting the pseudo-landmarks. Experiments
with a different number of landmarks on TRUS image seg-
mentation yielded an average Dice coefficient of 89.7% and

Fig. 2 Segmentation results. The raw input image, ground truth, and
segmentation results are shown, respectively, in columns 1, 2, and 3. The
four selected pseudo-landmarks are also displayed on the input images
with the red dot. TRUS: transrectal ultrasound images, CT: computed
tomography images, and US: ultrasound echocardiographic images

97.1%, respectively, for 2 and 6 pseudo-landmarks. The pro-
cessing time depends on the number of pseudo-landmarks
because the userwould take time to pinpoint these landmarks.
Thus, the more the landmarks, the more time it takes to pin-
point.Then, considering only four landmarks is an excellent
compromise.

Inter- and intraobserver variation study:We observed
that an error introduced in the user inputs of up to 7 mm does
not influence the system both in Hausdorff distance and Dice
similarity coefficient. However, user input error of more than
8mmappears to influence the performance of the system. It is
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Table 2 Ablation study of the combination strategies (Concat: concate-
nation, Add: addition, and Multi: multiplication) on TRUS images

Metric Concat. Add. Mult.

DSC (%) 96.9 ± 0.90 95.9 ± 0.68 96.8 ± 0.67

HD (mm) 4.25 ± 4.58 15.95 ± 8.65 4.94 ± 3.58

VO (%) 93.9 ± 1.80 92.2 ± 1.25 93.8 ± 1.29

Acc (%) 98.9 ± 0.50 98.6 ± 0.44 98.9 ± 0.37

worst in Hausdorff distance. For example, input user errors
of 8 mm and 9 mm, respectively, produce a reduced Dice
coefficient of 94.2% and 93.8% and an increased Hausdorff
distance error of 4.93 and10.94mm.However, the uniformity
of the introduced errors across the prostate gland’s volume
would affect the performance; for example, distributed errors
among all pseudo-landmarks would be tolerable than a large
error introduced on one of the landmarks.

Domain adaptation: As can be seen from Table 3, the
trained model from TRUS and retraining using only 20 CT
cases can predict the clinical target volume on CT images
comparable with using more datasets such as 58 cases
(Table 1). Similarly, the trained model from CT and retrain-
ing using only 20 TRUS cases yielded a Dice coefficient of
96.5%. It shows that a trainedmethod from a given annotated
dataset can be used for other data to segment the same target
structure. Moreover, using annotated datasets from mag-
netic resonance images (MRI) would have been necessary as
delineation on these datasets mostly produces less inter- and
intraobserver difference. For the unsupervised domain adap-
tation, the multiplication layer yielded better results than the
concatenation layer. It is because, as mentioned in the abla-
tion study section, the prior-knowledge generator suppresses
more the input image intensity difference among the modal-
ities while preserving the imaging modality invariant shape
of the organ.

For a test exam of size 256 × 256 × 64, our method pro-
duces a segmentation result in 0.499 seconds (approximately,
7.79 milliseconds to process an image of size 256× 256). It
was tested on a personal computer of i7 with 32-GB RAM
and GPU (GeForce GTX 1070).

The proposedmethod showed promising results for cross-
trainingwith images fromdifferent imagingmodalities. It can
reduce the need to start from zero each time a new modality
is required. However, studying and modeling of the chal-
lenges and variations in medical imaging acquisitions would
be important. Moreover, our approach has shown promis-
ing results for the delineation of multi-structure targets from
only a few pseudo-landmarks of a particular structure, for
example, for cardiacmulti-structure segmentation using only
four contour landmarks at the level of the myocardium. The
Hausdorff distance error, particularly at the myocardium,
often with a small area and difficult to segment, could be
improved by increasing the depth of the segmentation block.
The pseudo-landmarks used in our system to initialize the
prior-knowledge prediction could be modeled using a vari-
ational auto-encoders or extract automatically from the raw
input images.

The datasets used in our experiments were not challenging
to resize to the same voxel spacing and center crop because
all targetswere at the center of the original input image.How-
ever, as this may not be the same for other medical imaging
domains, it might require high care not to bias the pixel inten-
sity information and not to lose high-level information of the
images while interpolating or cropping.

One of the limitations of ourmethod lies in the target struc-
ture regularity. As the prior-knowledge generator is designed
to learn uniform structures, it would be promising to seg-
ment target with uniform shape and topology (such as heart,
prostate, liver, or lung). In other segmentation tasks involving
irregularly shaped targets such as tumors, it remains unclear
how our approach would perform. It will be investigated in
future work.

Conclusions

In this paper, we presented a fast, interactive deep learn-
ing framework for accurate medical image segmentation and
performed extensive ablation studies to apply the system in
different imaging domains. It yielded promising segmenta-

Table 3 Domain adaptation
study

Training Testing Metric Weakly supervised Unsupervised

Conc. Conc. Mult.

TRUS CT DSC (%) 94.8 ± 1.71 87.8 ± 6.36 89.1 ± 5.03

HD (mm) 5.68 ± 2.14 22.9 ± 28.86 10.1 ± 4.28

VO (%) 90.2 ± 3.03 78.9 ± 9.67 80.7 ± 7.60

Acc (%) 99.6 ± 0.13 99.1 ± 0.57 99.2 ± 0.42

CT TRUS DSC (%) 96.5 ± 0.83 84.7 ± 4.09 84.3 ± 4.02

HD (mm) 5.20 ± 2.94 28.4 ± 7.78 20.7 ± 6.92

VO (%) 93.2 ± 1.54 73.6 ± 6.11 73.1 ± 5.97

Acc (%) 98.8 ± 0.42 95.0 ± 2.00 95.0 ± 1.95
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tion resultswith an averageDice similarity coefficient of 97%
to deliver 3D contours on intraoperative transrectal ultra-
sound images. Similarly, it produced a 95% Dice similarity
coefficient on postoperative computed tomography images
of prostate brachytherapy. Experiments on cardiac multi-
structure segmentation from 2D echocardiographic images
also yielded promising results. Without the assumption of a
few additional seconds to select the landmarks, our method
produces a segmentation result in 0.499 seconds for a test
exam of size 256 x 256 x 64. Thus, the proposed method
is well suited for real-time prostate clinical target volume
segmentation in transrectal ultrasound-based image-guided
prostate brachytherapy. We also demonstrated the applica-
tion of ourmethod for domain adaptation by training on given
annotated dataset distribution and applying it onto different
testing domains. As it is less dependent on the intensity dis-
tribution of the raw input images, it learned to transfer the
knowledge of the target between different imaging modal-
ities. This approach could be used to transfer information
between different computer-assisted radiology tasks such as
in image-guided permanent prostate brachytherapy proce-
dures. We believe that our approach has the potential to
solve the bottleneck of deep learning methods in adapting
to inter-clinical imaging and dataset variations and speed up
the annotation process in weakly supervised-based domain
adaption applications.
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