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Abstract

Purpose Management of vestibular schwannoma (VS) is based on tumour size as observed on T1 MRI scans with contrast
agent injection. The current clinical practice is to measure the diameter of the tumour in its largest dimension. It has been
shown that volumetric measurement is more accurate and more reliable as a measure of VS size. The reference approach to
achieve such volumetry is to manually segment the tumour, which is a time intensive task. We suggest that semi-automated
segmentation may be a clinically applicable solution to this problem and that it could replace linear measurements as the
clinical standard.

Methods Using high-quality software available for academic purposes, we ran a comparative study of manual versus semi-
automated segmentation of VS on MRI with 5 clinicians and scientists. We gathered both quantitative and qualitative data to
compare the two approaches; including segmentation time, segmentation effort and segmentation accuracy.

Results We found that the selected semi-automated segmentation approach is significantly faster (167s vs 479s, p <
0.001), less temporally and physically demanding and has approximately equal performance when compared with manual
segmentation, with some improvements in accuracy. There were some limitations, including algorithmic unpredictability and
error, which produced more frustration and increased mental effort in comparison with manual segmentation.

Conclusion We suggest that semi-automated segmentation could be applied clinically for volumetric measurement of VS on
MRI. In future, the generic software could be refined for use specifically for VS segmentation, thereby improving accuracy.
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Introduction

Vestibular schwannoma (VS) is a benign tumour of the
vestibulocochlear nerve arising within the cerebellopontine
angle, deep inside the cranium. It accounts for approximately
6—8% of all intracranial neoplasms and has a prevalence of
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around 0.02% of the population [21]. Patients may present
with a variety of symptoms including hearing loss, balance
problems, vertigo, dizziness and headache among others
[29]. Diagnosis is usually made on a Magnetic Resonance
Imaging (MRI) scan with intravenous contrast demonstrat-
ing a homogeneously enhancing lesion within the internal
acoustic canal that may also extend into the intracranial
cavity [28]. Grading of tumours is performed according to
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radiographic characteristics indicating tumour extent and
size and is used to guide treatment [19]. Patients with small
or asymptomatic tumours are usually managed conserva-
tively with serial surveillance scans. Small- or medium-sized
tumours deemed suitable for treatment can be treated effec-
tively and safely with stereotactic radiosurgery (SRS) [22],
but larger tumours are usually managed with surgery.

Measuring the size of a VS on MRI is important in
guiding treatment or monitoring growth patterns. There are
several methods for measuring tumour size, but the most
common technique is to measure diameter at the tumour’s
widest point [16,31,43]. However, this approach is prone
to measurement inaccuracies. Volumetric measurement is a
solution to this problem [37]. Volumetric analysis offers a
more accurate representation of the tumour [38] and could
significantly aid the management of these patients. Segmen-
tation (contouring) is already used in the planning of gamma
knife SRS treatment. Segmentation also provides a means
of performing volumetric measurement of the tumour. Com-
pared with two-dimensional measurements, it may be used
more accurately for the active surveillance of VS. Volu-
metric measurement has been used to predict recurrence in
patients with residual tumours following surgical interven-
tion [35], to measure change in tumour size following SRS
treatment [44] and to predict hearing preservation follow-
ing SRS treatment [11]. There are three main methods of
volumetric analysis: manual segmentation, semi-automated
segmentation and automated segmentation. Manual segmen-
tation involves comprehensively labelling the 3D structure in
each 2D slice. It is a time-intensive task with relatively low
inter- and intra-individual reliability and has not been widely
employed in clinical practice.

Automated segmentation has been applied successfully
to MR imaging for a wide range of brain tumours [46].
Automated segmentation may be accurate in the assessment
of tumour progression and in overall survival prediction
in glioma [1,26] as well as for the clinical assessment of
biomarkers in glioma [4]. For VS imaging, automated seg-
mentation has been applied with positive results [32,40] and
there is growing interest in the field [10]. An automated seg-
mentation tool could also improve clinical workflow and
operational efficiency during the planning of stereotactic
radiosurgery (SRS) by using the tool as an initialisation
step in the process. However, automated approaches are,
for the most part, not fully validated and are confined to
academic use. Furthermore, some tumours display hetero-
geneous enhancement including the 4% of VS tumours that
may be cystic, which can lead to inaccurate segmentation
when automated methods are applied [25].

Semi-automated segmentation has been shown to be
a more reliable option for the analysis of VS on MRI
scans [24]. However, there has been no previous analysis
of cognitive load or user experience of VS segmentation.
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When using semi-automated methods, segmentation time
and repeatability may be improved when compared with
manual segmentation [2,6,39,41]. Compared with fully auto-
matic segmentation, results may be more accurate [1] and are
more acceptable to clinicians due to increased transparency
in the segmentation process [12]. Currently proposed meth-
ods require user input for one or more of the following steps:
segmentation parameters, feedback or evaluation, including
refinement and validation of the segmentation. There is little
material in the literature regarding user experience of inter-
active segmentation in brain imaging, despite the intention
to pursue clinical translation in the field [18,33].

A number of software packages are academically available
for medical image segmentation spanning a variety of dif-
ferent methods. For manual segmentation, ITK-SNAP! [45]
is a widely used open-source software library with manual,
semi-automated and automated segmentation offerings. 3D
slicer? has the standard offerings of image viewing and anal-
ysis tools, along with a variety of downloadable packages for
semi-automated and automated segmentation [8]. MRIcron®
is a package of image viewing and manual segmentation
tools. For semi-automated segmentation, ImFusion Labels
(ImFusion, Munich, Germany) is a recent commercial-grade
package with academic licensing options.

We present the findings of a proof of concept study using
combined quantitative and qualitative analysis, comparing
manual segmentation with semi-automated segmentation of
VS on MRI. We hypothesise that semi-automated segmen-
tation is faster than manual segmentation with a comparable
performance. In this study, we also compare the user experi-
ence of two software suites, including that of clinicians and
senior researchers.

Materials and method

We selected four tumours from our database for the study
(see Table 1). All four patients had previously under-
gone Gamma Knife SRS treatment [3]. The images were
representative of a variety of tumour sizes and shapes encoun-
tered in clinical practice. We selected two small and two
moderate-sized tumours (see Table 1). The ground truth
measurements were made prior to the study by the treat-
ing skull base neurosurgeon and stereotactic radiosurgery
physicist using Gamma Knife planning software (Leksell
GammaPlan, Elekta, Sweden). The images used in this
study were all contrast-enhanced T1-weighted scans with
0.4mm x 0.4mm in-plane resolution, in-plane matrix of
512 x 512 and 1.5 mm slice thickness. All cases included

! http://www.itksnap.org.
2 http://www.slicer.org.

3 https://people.cas.sc.edu/rorden/mricron/.
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Table 1 Tumour characteristics according to commonly used criteria
for representing tumour size and extent

Tumour identifier Volume (mm?) Largest diameter (mm)

VS_1 623 15.1
VS_2 1050 20.5
VS_3 3590 25
VS_4 975 17

an extracanalicular (intracranial) component, and none of
the tumours had a cystic component. Patients with multiple
tumours were excluded.

We selected ITK-SNAP for manual segmentation since
this offered the most intuitive user interface. In our group,
it was also the most widely used library for manual seg-
mentation. We selected ImFusion Labels for semi-automated
segmentation since this was a recent software with a good
selection of machine learning tools and a high-quality user
interface. It was made available to our group through an aca-
demic license.

Five observers, including two medical students, two
biomedical engineers and one neurosurgeon, performed man-
ual and semi-automated segmentation on each of the four
scans. The participants had a variety of experience with
segmentation. Three participants were inexperienced seg-
menters (with no or limited previous experience), and two
were experts in medical image segmentation, with multiple
years experience of medical image segmentation. Three had
previous experience using ITK-SNAP, one of whom had lim-
ited experience of using ImFusion Labels.

Study design

A training period was included for each study participant at
the start of the study and for each software library, using
a training data set which was not part of the study. This
training period was standardised to 10min for each partic-
ipant and included an initial demonstration from the study
lead followed by a trial run for each participant. During the
training period, participants were free to ask questions relat-
ing to the segmentation. The trial runs were not included in
the results or the analysis. Participants were advised on the
optimal tools to use in each software library. This training
period was adapted based on the needs and previous experi-
ence of the participant, such that no demonstration was given
for those participants well-versed in the use of the software
library.

In ITK-SNAP, participants used the polygon drawing tool
to outline tumour boundaries in each slice and fill in the
tumour volume (see Fig. 1). The paintbrush tool was used to
make small alterations as needed. A time limit of ten minutes

per segmentation was provided in order to standardise the
process according to arbitrary mock-clinical parameters.

InImFusion Labels, participants used the ‘Interactive Seg-
mentation’” module (see Fig. 2). They were advised to first
draw background labels which included structures of a vari-
ety of intensities (e.g. bone, dura, healthy brain). After the
first iteration of the segmentation, participants were advised
to only undertake two alterations in the segmentation. This
was determined to produce optimum results while creating
an incentive to complete the task in a time-pressured manner.

A document containing participant instructions is included
as Online Resource 1. A video depicting segmentation in
ITK-SNAP is included as Online Resource 2. A video depict-
ing segmentation in ImFusion Labels is provided as Online
Resource 3.

Qualitative data collection

The NASA Task Load Index (TLX) [14] questionnaire was
performed at the end of the study to quantify user effort
for each method of segmentation. The TLX scores different
aspects of atask on a graded scale from 1-21, including effort,
frustration and performance. It can be found as “Table 2 in
the Appendix”. The TLX was used as a relative compara-
tor of the libraries, rather than as an absolute scale. For data
analysis, we processed the raw TLX data. This may be a
more reliable use of the TLX compared with using part two
to calculate an overall weight-adjusted score [5].

We performed short post-segmentation interviews to
explore the participants’ experiences of the different tool-
boxes. The questions were based around themes, which
included ‘segmentation experience’, ‘toolbox’ and ‘study
design’. “Table 3 in the Appendix” details the questions
asked of each participant. Participants were asked about each
software library separately. Data were collected in short-
hand form by the study lead during the interview and then
expanded following the interview.

Quantitative data collection and analysis

The time taken to perform the segmentation was measured
from the time of launching the software to the time of closing
the software following the segmentation. A paired #-test was
performed on this data to calculate the p-value as well as the
confidence intervals. We quantified segmentation accuracy
by comparing the segmentations in each software with the
ground truth data in order to establish a comparative analy-
sis. We calculated the Dice coefficient (Dice) since this is a
standard comparative measure of radiological data [26,27].
We also calculated relative volume error (RVE) and average
symmetric surface distance (ASSD) for each segmentation.
We performed subgroup analysis on both the time and accu-
racy data. We took the two more experienced segmenters and
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Fig. 1 Example of a tumour, pre- and post-segmentation, represented in ITK-SNAP. This was tumour *VS_1’, classed as a small tumour with

limited extracanalicular extension

Fig.2 Segmentation in
ImFusion Labels using
background labels (blue) and
foreground labels (red) to
demarcate tumour and
non-tumour tissue

compared results from these individuals against the three less
experienced segmenters.

Results

Segmentation time was significantly faster in ImFusion
Labels. In terms of TLX data, ITK-SNAP was more time
demanding and physically demanding, whereas ImFusion
was more mentally demanding and frustrating. The perfor-
mance, in terms of accuracy, and overall effort of the libraries
were comparable. Qualitatively, participants preferred the

@ Springer

control that ITK-SNAP offered; however, some did not like
the time demand. ImFusion was a good tool for rapidly
estimating tumour volume, but there were frustrating errors
produced in complex tumour segmentation.

Time

Between the two libraries, segmentation in ImFusion Labels
was significantly faster than ITK-SNAP. The mean segmen-
tation time (ST) in ITK-SNAP was 479s (95% CI 439-519),
while the mean ST in ImFusion Labels was 168s (95% CI
168-249), with a p value of < 0.001 (see Fig. 3a). There
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Fig. 3 a Comparison of segmentation time between the two software
libraries; b spread of Dice scores in ITK-SNAP as compared to ImFu-
sion Labels. The “ITK-SNAP Correlated” plot only takes into account

ITK-SNAP

was no observed difference in segmentation time between
the less experienced individuals and the more experienced
individuals.

Accuracy

The user-generated segmentation dataset was compromised
during the study, resulting in half of the ImFusion data being
unavailable for analysis of segmentation accuracy. On the
remaining data “Table 4 in the Appendix”, we observed com-
parable accuracy between the two libraries, with a Dice score
range of 0.848-0.964 for ImFusion compared with a range of
0.867-0.943 for ITK-SNAP. Compared with segmentations
in ITK-SNAP, segmentations in ImFusion Labels were more
similar to the ground truth data in terms of Dice (0.913 vs
0.902, p = 0.301), RVE (0.0723 vs 0.124, p = 0.245) and
ASSD (0.381 vs 0.419, p = 0.349) as illustrated in Fig. 3b.
In our subgroup analysis, the two cohorts achieved similar
levels of accuracy for manual segmentation in ITK-SNAP.
The experienced cohort achieved more accurate Dice scores
(0.901 vs 0.899, p = 0.533), and RVD scores (0.155 vs
0.104, p = 0.312), while the inexperienced cohort achieved
more accurate ASSD scores (0.417 vs 0.420, p = 0.936)
when compared with ground truth data. However, none of
these differences were statistically significant.

0.96

0.94 1

0.92 1

0.90 -

Dice coefficient

0.88
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ITK-SNAP Correlated  ImFusion Labels

Dataset

(b)

the data which corresponds to the one from ImFusion labels that we
still had access to (after data loss had occurred)

ITK-SNAP

NASA TLX score

The TLX scores showed a trend towards ITK-SNAP being
the more physically and temporally demanding approach (+6
and +3.4-point scores on average, respectively), while ImFu-
sion tended to be more mentally demanding and worse in
terms of perceived performance (—7.8 and —2.4 points on
average, respectively). All participants graded ImFusion as
being more frustrating, with a +7.4-point greater score on
average. All participants also graded ImFusion as being more
mentally demanding, with a 7.8 greater score on average.
ITK-SNAP was graded as being more physically demanding
by all but one participant. Less experienced raters tended to
score the segmentation performance of ImFusion higher than
more experienced raters. Overall effort was slightly greater
(+2.4 points on average) in ImFusion (Fig. 4).

Interview data

ITK-SNAP was the preferred choice for highly accurate
segmentation, while one participant recommended ImFu-
sion as a ‘rough volumetric estimate’. All participants cited
the improved performance of the ImFusion algorithm with
‘simple’ tumours, i.e. those which were highly contrast-
enhancing, homogeneous with well-defined boundaries and
no or minimal adjacent high contrast structures, such as blood

@ Springer
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Fig.4 Relative NASA TLX
spread data. The ImFusion score
was subtracted from the
ITK-SNAP score for each
participant and combined for
each index to show spread of
data across participants. Positive
values represent a greater score
for ITK-SNAP, while negative
values were greater for
ImFusion. The scores at the top
indicate the median value, while
the colours represent the
software which the mean value
favoured. Blue indicates a mean
which favoured ImFusion labels,
while red indicates a mean value
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vessels or dura. However, for complex tumours the algorithm
often made small, but frustrating, errors in segmentation—
“[the algorithm] threw up errors which required a complete
restart”. Occasionally, non-tumour areas were included, and
tumour areas were not included. There was generally no
way to fix this using the tool. One participant complained
that in these more challenging cases, the algorithm was “a
one-trick pony...if you make alterations to the initial seg-
mentation you may worsen it”. Participants commented on
the ‘unpredictability’ of the algorithm and the lack of trans-
parency as being a significant problem in solving these issues.
In ITK-SNAP, the majority of participants cited the need to
compromise between thoroughness and timing of segmenta-
tion. One stated “I am a perfectionist...if we were not timed,
[the segmentation] would take me much longer”. In terms
of study design, participants found the instructions clear and
found it “helpful to have someone here to explain and provide
feedback [during the training period]”. A full breakdown of
the qualitative data taken from interviews is provided in the
appendix (see “Table 5 in the Appendix”).

Discussion

In this paper, we sought to compare manual segmentation
to semi-automated segmentation on several variables, both
quantitative and qualitative, for segmentation of VS. It is
widely published that semi-automated segmentation may
reduce the time taken to perform segmentation [9,23,30]. We
showed that semi-automated segmentation is significantly
faster and has comparable performance when compared with
manual segmentation for volumetric analysis of VS. This
would suggest good viability for this approach in clinical
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practice, where time constraints may restrict which methods
are used. However, this study does have some limitations.

In terms of performance, both semi-automated and man-
ual segmentation were highly accurate when compared with
ground truth data and there was no statistically significant
difference between the two methods. In terms of clinical
applicability, any differences between the two may also be
clinically insignificant, thereby making semi-automated seg-
mentation a desirable option. The involvement of inexperi-
enced segmenters may reduce the validity of the conclusions
we can draw. However, we observed a high degree of simi-
larity in accuracy data for the experienced segmenters when
compared with the inexperienced segmenters, suggesting that
there was no compromise on data quality due to the inclusion
of less-experienced participants.

In interview, some participants suggested that the segmen-
tation in ImFusion produced significant errors in complex
tumours. The Dice scores, however, indicated a high degree
of accuracy in these segmentations. One explanation for this
inconsistency in perception versus result may be attributable
to a finer margin for error applied to the analysis of segmen-
tations in ImFusion. Participants spent, on average, 479 s on
each segmentation in ITK-SNAP, compared with 168s in
ImFusion. This time discrepancy may have led to a higher
acceptance threshold for the segmentation in ImFusion, and
small mistakes may have been picked up more readily.

In terms of effort measures, the NASA TLX was a use-
ful tool. However, one limitation is that the system was used
as a relative measure of effort between the different soft-
ware libraries used for the study. Therefore, the absolute
values offered by participants may not be an accurate mea-
sure of absolute effort and would therefore provide unreliable
data for inter-rater comparison. We compared the inter-rater
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scores by subtracting the ImFusion scores from the ITK data
for each participant. We would therefore suggest the use of
the full TLX as opposed to the Raw TLX to overcome these
issues.

We chose to state the segmentation goal as what would
be clinically, or personally, acceptable to the participants.
In this way, we felt that participants would apply the same
requirements to both libraries. In some cases, the opposite
was true. A very thorough approach was employed by some
participants in ITK-SNAP, but in ImFusion Labels they used
a crude approach. This difference in perceived goals may
have introduced bias in the time and effort of segmentation.
This challenge could be avoided in future by clearly stating
the goals of the segmentation, whether targeting accuracy or
speed.

One constraint on semi-automated segmentation lies in
usability of the tools. In this study, a common point of
feedback was that the algorithm was inconsistent and unpre-
dictable in its segmentation. Some users found this tedious
and had to restart when the algorithm produced errors. In the
literature, a commonly cited limitation in clinical application
is algorithmic transparency [17]. Users did not understand
what the algorithm did and why. ImFusion Labels is a generic
library and has wide applicability in medical imaging. A solu-
tion to this issue may be to refine an algorithm specifically
for VS segmentation.

There is very little qualitative data in the literature on the
use of segmentation tools. Qualitative data are particularly
important given the current interest in clinical translation
of Al tools, which must be robust, easy to use and accu-
rate [17]. As far as we can see, this is the first paper to
use a mixed quantitative and qualitative format to compare
semi-automated segmentation with manual segmentation in
medical imaging. The small sample size of this study, in terms
of participants and scans segmented, may limit the validity
of the conclusions we can draw. One further challenge was
in data representation for qualitative analysis, since none of
the research team had previous experience of handling inter-
view data. It may be useful to recruit this expertise in future
studies.

In terms of applicability to the current clinical workflow,
semi-automated segmentation may assist in monitoring VS
growth, especially in those patients with small tumours being
managed conservatively with serial imaging [13,15,31]. It
has been established that volumetric measurement is superior
to single-dimension diametric measurements for quantifying
growth [24,36]. Manual segmentation is not feasible in rou-
tine clinical practice due to the time-demanding nature of
the task. Thresholding is an additional tool that may help
an experienced user to segment VS and could make for an
interesting comparator in future work. When compared with
manual segmentation, we showed that semi-automated seg-

mentation is less time-demanding, less physically demanding
and of comparable performance.

In the future, it is hoped that further algorithmic develop-
ments could support the practice of radiology among other
specialities [34]. Deep learning is a sub-type of artificial intel-
ligence that utilises multiple layers of analysis to process an
image. A variety of applications of deep learning are postu-
lated [7,20,42], and one study has shown this to be a useful
approach in automated VS segmentation [32] in terms of
both time and accuracy. Despite the accuracy of automated
approaches, interactive corrections may continue to play a
role even with deep learning due to the lack of adaptability
of automated methods to the specific imaging sequences and
protocols used clinically [39]. The next steps are to further
analyse this methodology and work towards clinical transla-
tion.

The findings of this study may also be applied more widely
to semi-automated segmentation of other neuroimaging data.
Some participants felt that manual segmentation could not
be matched in terms of performance if plenty of time was
spent. The participants did not have specific expertise in
the diagnosis or management of VS, aside from the neu-
rosurgeon. We would expect that similar results, in terms of
qualitative findings, may be present in other applications;
for instance tumour segmentation for glioma. We would
recommend that semi-automated segmentation is used as
a supportive measure to other standard approaches in neu-
roimaging segmentation.

Conclusion

Gains are being made in the machine learning and medi-
cal imaging fields. Machine learning applications are now
performing comparably with their manual counterparts.
However, a finding of this study was that even the state-
of-the-art machine learning tools may not yet be fully ready
for clinical roll out in segmentation of vestibular schwan-
noma. Users found the tools to be fast and accurate, but at
times unpredictable and frustrating to use. There were limita-
tions in the study, including the small sample size in terms of
participants, particularly those with experience in segmen-
tation, and in the number of scans segmented. This makes
conclusions difficult to draw. The strengths of this study lie
in the joint use of both qualitative and quantitative methods,
which were employed to address the clinical applicability
of algorithms. Unpredictability of algorithm behaviour and
lack of transparency with algorithmic methods are cited as
being key issues. To remedy this, developers should focus on
involving groups with a variety of backgrounds and expertise
in the development process, to ensure clinical and research
applicability.
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Appendix

See Tables 2, 3, 4 and 5.

Table2 NASA Task Load

Index. Hart and Staveland’s How mentally demanding was the

NASA Task Load Index (TLX) task?
method assesses work load on How physically demanding was
five 7-point scales. Increments the task?

of high, medium and low
estimates for each point result in
21 gradations on the scales

How hurried or rushed was the
pace of the task?

How successful were you in
accomplishing what you were
asked to do?

How hard did you have to work to
accomplish your level of
performance?

How insecure, discouraged,
irritated, stressed, and annoyed
were you?

@ Springer

Table 3 Interview questions for
qualitative comparison of the
two software libraries

Was the segmentation in each
software to your satisfaction?

Overall, how did you find each
software?

‘What would you add or remove
from each software to improve
them?

How did you find the study?

Table 4 Mean segmentation accuracy values for each scan in ITK-
SNAP and ImFusion

Tumour identifier ITK-SNAP ImFusion

Dice RVE ASSD Dice RVE ASSD
VS_1 0.882 0.094 0.457 0.885 0.114 0.424
VS_2 0.893 0.110 0.398 0.890 0.043 0.422
VS_3 0.929 0.115 0.441 0.945 0.085 0.357
VS_4 0.903 0.178 0.379 0.925 0.056 0.311
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Table 5 Interview answers grouped by theme

Theme Software Quotes Prevalence

Performance ImFusion ‘Very good for clear-cut, simple tumours... [those which All five
discrepancy were] highly contrast enhancing, homogeneous, with participants
across tumours well-defined boundaries and minimal adjacent blood (100%)

vessels.
‘Complex tumours threw up errors which required a
complete restart.’

Compromise ITK-SNAP ‘I am a perfectionist... if we weren’t timed it would take me Four out of five
between much longer.’ (80%)
thoroughness
and timing

‘I made lots of small mistakes... but it would have taken too
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‘It was very fiddly.’

Unpredictable ImFusion ‘a one-trick pony...if you make alterations to the initial Three out of five
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