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Abstract

Purpose Real-time, two (2D) and three-dimensional (3D) ultrasound (US) has been investigated as a potential alternative to
fluoroscopy imaging in various surgical and non-surgical orthopedic procedures. However, low signal to noise ratio, imaging
artifacts and bone surfaces appearing several millimeters (mm) in thickness have hindered the wide spread adaptation of
this safe imaging modality. Limited field of view and manual data collection cause additional problems during US-based
orthopedic procedures. In order to overcome these limitations various bone segmentation and registration methods have been
developed. Acoustic bone shadow is an important image artifact used to identify the presence of bone boundaries in the
collected US data. Information about bone shadow region can be used (1) to guide the orthopedic surgeon or clinician to
a standardized diagnostic viewing plane with minimal artifacts, (2) as a prior feature to improve bone segmentation and
registration.

Method In this work, we propose a computational method, based on a novel generative adversarial network (GAN) architec-
ture, to segment bone shadow images from in vivo US scans in real-time. We also show how these segmented shadow images
can be incorporated, as a proxy, to a multi-feature guided convolutional neural network (CNN) architecture for real-time and
accurate bone surface segmentation. Quantitative and qualitative evaluation studies are performed on 1235 scans collected
from 27 subjects using two different US machines. Finally, we provide qualitative and quantitative comparison results against
state-of-the-art GANS.

Results We have obtained mean dice coefficient (4 standard deviation) of 93% (4 0.02) for bone shadow segmentation,
showing that the method is in close range with manual expert annotation. Statistical significant improvements against state-
of-the-art GAN methods (paired ¢-test p < 0.05) is also obtained. Using the segmented bone shadow features average bone
localization accuracy of 0.11 mm (4 0.16) was achieved.

Conclusions Reported accurate and robust results make the proposed method promising for various orthopedic procedures.
Although we did not investigate in this work, the segmented bone shadow images could also be used as an additional feature
to improve accuracy of US-based registration methods. Further extensive validations are required in order to fully understand
the clinical utility of the proposed method.
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surgery, lumbar neuraxial anesthesia, and epidural analgesia
[25]. Current practice during these procedures relies on intra-
procedure 2D fluoroscopy as the main imaging modality for
localization and visualization of bones, fractures, implants,
and surgical tool positions. However, with such projection
imaging, surgeons and clinicians typically face consider-
able difficulties in accurately localizing bone fragments in
3D space and assessing the adequacy and accuracy of the
procedure. This problem has been overcome with 3D fluo-
roscopy units, however, they are twice as expensive and not
widely available as standard 2D units. Finally, fluoroscopy
involves significant radiation exposure [25]. The limits to
exposure to ionizing radiation should be kept at minimal in
order to avoid potential long-term complications. In order
to overcome some of these limitations and provide a safe
alternative, 2D/3D US has emerged as a safe alternative
while remaining relatively cheap and widely available [8].
US image data, however, is typically characterized by high
levels of speckle noise, reverberation, anisotropy and sig-
nal dropout which introduce significant difficulties during
interpretation of captured data. Limited field-of-view and
being a user dependent imaging modality causes additional
difficulties during data collection since a single-degree devi-
ation angle by the operator can reduce the signal strength by
50% [8]. In order to overcome these difficulties automatic
bone segmentation [8] and registration [21] methods have
been developed. Most recently, methods based on deep learn-
ing have achieved successful results for segmenting bone
surfaces [1,2,22,23]. However, these methods require large
amounts of training data and accuracy decreases if the quality
of the testing data is low or if testing data comes from a dif-
ferent vendor machine. In the context of bone imaging using
US, high quality data represents high intensity bone surface
followed by a low intensity region referred to as shadow
region. Difficulties in acquiring high quality US images is an
ongoing limitation of current US guided orthopedic proce-
dures.

Acoustic shadows occur at the interfaces where there is
a high impedance difference such as air-tissue, tissue-bone,
and tissue-lesion. Bone shadow information can aid in the
interpretation of the collected data and has been incorpo-
rated as an additional feature to improve the segmentation
of bone surfaces from US data [3,5,8,23]. Real-time feed-
back of bone shadow information can also be used to guide
the clinician to a standardized diagnostic viewing plane with
minimal artifacts. Finally, shadow information can also be
used as an additional feature for registering CT, MRI or sta-
tistical shape models (SSM) to US data [21]. However, poor
transducer contact or wrong orientation of the transducer
with respect to the imaged anatomy can lead to poor shadow
appearance and resulting in misinterpretation of anatomy and
failure of the computational method using the shadow feature
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(Fig. 1). Therefore, the enhancement of shadow regions has
been investigated and practical solutions have been offered.

Several groups have proposed computational methods to
improve the appearance of shadow regions from US data.
Karamalis etal. [ 14] have proposed a random-walk geometric
technique, based on image intensity, that models the propa-
gation path of an US signal along the scanline. The generated
images were termed confidence map (CM) images. Shadow
regions were extracted from the CM images by intensity
thresholding. This approach was later extended for process-
ing radio-frequency US data [15]. In [10], shadow images
of the brain were extracted by entropy analysis along the
scanline. Pixels with low entropy would be selected to form
the shadow image[10]. The method was later incorporated
into a spinous process segmentation framework [3]. In [11],
statistics of B-mode and radio frequency (RF) US data were
investigated and used for shadow detection. Mean dice sim-
ilarity coefficient (DSC) of 0.90 and 0.87 were obtained for
the RF and B-mode algorithms. Processing time was not
reported. Although promising results in these earlier works
were achieved, intensity-based approaches are not robust to
typical imaging artifacts and affected by intensity variations.
Changing the US machine acquisition settings, sub-optimal
orientation of the transducer concerning the imaged anatomy,
imaging complex shape anatomy (such as spine), or scanning
patients with different body mass index results in the collec-
tion of low quality US data (Fig. 1) and decrease the success
of intensity-based approaches. RF-based shadow detection
overcomes some of the difficulties of intensity approaches,
however, they require special hardware, or software, to access
RF signal domain which is not available in most clinical US
machines. In order to provide an intensity invariant alter-
native, methods based on local phase image information
have been proposed for the enhancement of bone shadow
region [8]. The method proposed in [8] uses local phase
image features as an input to a L1 norm-based contextual
regularization method which emphasizes uncertainty in the
shadow regions. Quantitative analysis, performed on a man-
ually selected region of interest (ROI) achieved a mean DSC
of 0.88. The mean computation time was 9.3 seconds making
the method not suitable for real-time applications. In [17] a
weakly supervised method for acoustic confidence estima-
tion for shadow regions from fetal US data was proposed.
In particular, a shadow-seg module to extract generalized
shadow features for a large range of shadow types in fetal
US images under limited weak manual annotations was pre-
sented. Both a classification and a segmentation networks
with attention layer mechanism were used. The reported
average DSC, Recall, and Precision were 0.71, 0.72, 0.73
respectively.

In this paper, we propose a conditional GAN(cGAN)-
based method for accurate real-time segmentation of bone
shadow regions from in vivo US scans. Our specific con-
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Fig. 1 Top row: From left to right in vivo B-mode US image of dis-
tal radius, femur, knee, and spine, respectively. Yellow arrows point to
high intensity bone features. Red arrows point to the problematic low
intensity bone features due to misalignment of the transducer or com-
plex shape of the anatomy. Green arrow quads show the shadow region.

tributions include: (1) A novel GAN architecture designed
to perform accurate, robust and real-time segmentation of
bone shadow images from in vivo US data. (2) We show how
the segmented bone shadow regions can be used as an addi-
tional proxy to improve bone surface segmentation results of
a multi-feature guided (CNN) architecture [1]. The signifi-
cance of using shadow features-based segmentation is that
they can be generated in real time as opposed to local phase
image-based methods [1] which takes around one second. (3)
We evaluate the proposed method on extensive in vivo data
obtained from 27 volunteers using two different US imaging
systems. We provide quantitative evaluation results against
state-of-the-art GAN architectures.

Methods

Data acquisition

Upon obtaining the approval of the institutional review board
(IRB), two imaging devices were used to collect data from 27

healthy subjects. Depth settings and image resolutions varied
between 3-8 cm, and 0.12-0.19 mm, respectively:

1. Sonix-Touch US machine (Analogic Corporation, Peabody,

MA, USA) with a2D C5-2/60 curvilinear probe and L14-
5 linear probe. Using this device we have collected 1000
scans from 23 subjects.

Bottom row:Manually segmented gold standard shadow images corre-
sponding to B-mode data shown in the top row. In all the images blue
color coded region is the shadow region and red color coded region is
the soft tissue interface

2. Clarius C3 hand-held wireless ultrasound probe (Clar-
ius Mobile Health Corporation, BC, Canada). Using this
device we have collected 235 scans from 4 subjects.

All the collected scans were scaled to a standardized size
of 256 x 256. The bone surfaces were manually segmented
by an expert ultrasonographer. Gold standard bone shadow
images were constructed automatically by investigating the
intensity values from the manually segmented bone surfaces
in the scanline direction. Region below the manually seg-
mented bone surface is identified as shadow region. In total,
we had 1235 B-mode US images categorized into four groups
of bone structures: radius, femur, spine and tibia. We have
performed fivefold cross validation on the Sonix-Touch data.
No scans from one patient appeared in more than onefold.
Training of the network architectures was performed using
the Sonix-Touch data only. All the data, 235 scans in total,
obtained from the Clarius C3 probe were used as test data.

Network architecture

Our architecture is based on the common GAN layout con-
sisting of two co-existing neural networks; a generator G that
attempts to generate synthetic samples and a discriminator D
that tries to discriminate between generated synthetic sam-
ples and real ones [6]. In this work, we adopt the conditional
aspect presented by [12] with our generator G and dis-
criminator D both incorporating additional information into
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account. Our proposed cGAN-based bone shadow segmen-
tation and bone surface segmentation network architecture is
shown in Fig. 2. The training of our proposed cGAN archi-
tecture follows the typical optimization problem [12] such
that the discriminator D is trying to maximize and the gen-
erator G is trying to minimize the following objective G:

g = arg rnGin I’Il[E)lX EBMm.Gs [log D(BM, GS)]

+Egwm,: [log (1 — D(BM, G (BM, 2)))]
+ AEgm,cs,: [IGS — G (BM, 2)|I;]

in which GS represents gold standard shadow images, z rep-
resents Gaussian noise in initial training but was applied as
dropout on some layers in the convolution blocks, BS rep-
resents the segmented bone shadow image, GS represents
the gold standard bone shadow image, and BM represents
the B-mode US image. Different from a traditional GAN
architecture, our actual generator G model was conditioned
on the in vivo B-mode US image, BM, and is additionally
tasked to generate BS images that are as close as possible to
the GS images with the introduction of the L1-distance term
as shown in the equation above. Our generator architecture
is based on the common contractive-expansive design where
the encoder maps the input image into a low-dimensional
latent space, and the decoder maps the latent representa-
tion into the original space. It is trained to generate bone
shadow, BS, images. However, unlike [12] where the gener-
ator was based on [20], we employ a different structure for
the generator. Similar to [1], the input is processed through
convolutional blocks, with each block consisting of sev-
eral convolutional layers (Fig. 3). We incorporated skip
connection and projection blocks similar to [16]. Our skip
connection blocks, denoted as S, consist of a 1 x 1 convolu-
tion, a 3 x 3 convolution, and another 1 x 1 convolution with
each convolution operation followed by batch normaliza-
tion and leaky rectified linear unit (Leaky ReLLU) activation.
This process reduces and restores channel dimensions. In our
design Leaky ReLU was used in the encoder and decoder.
In [24], it has been shown that the Leaky ReLU achieves
lower training and test errors compared to ReLU. Further-
more, Leaky ReLU attempts to overcome the ’dying ReLU
(vanishing gradient)’ problem by maintaining a small slope
in the negative portion while training the piecewise constant
gradient, making the network converge faster during training.
This informed our choice of Leaky ReLU. A concatenated
input and the aforementioned convolutions produce the out-
put. As for our projection blocks, denoted as P, we add a
1 x 1 convolution to the projected input, and the rest is simi-
lar to the skip connection blocks. In the decoder, we replace
all convolution operations by transposed-convolutions. We
also use a stride of 2 transposed convolutions to upsam-
ple the feature maps. Therefore, these skip and projection
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blocks with transposed-convolutions are denoted as S’and
P’, respectively. Additionally, one difference in the decoder
is that the batch normalization is followed by a dropout layer
with a dropout rate of 50%. The architecture of the generator
can be summarized as:

— Encoder: S32 §32 P32 - S64 S64 P64 - S128 S128
P128 - §256 §256 P256 - §512 S512 P512

— Decoder: S$'512 §’512 P'512 - §'256 §'256 P'256 -
S’128 S'128 P'128 - S'64 §'64 P'64 - §'32 §'32 P'32

In our discriminator model a two-input N x N PatchGAN-
like discriminator [12] was used to essentially classify N x N
patches of the input image as real or synthetic. Like the afore-
mentioned generator, our discriminator architecture consists
of five convolutional blocks, where a final convolution is
applied to the last layer to map the 1-dimensional output
before applying a Sigmoid function. Each batch normaliza-
tion was followed by 0.2-slope Leaky ReLU. An Adam solver
with a 0.0002 learning rate was used and the structure of the
discriminator can be expressed as follows:

— Discriminator: S32 S32 P32 - S64 S64 P64 - S128
S§128 P128 - §256 §256 P256 - §512 S512 P512

While our proposed cGAN architecture was used to
segment bone shadow regions BS, our bone surface seg-
mentation network with its dual input proposed in [1] was
used in our model to localize bone structures. The B-mode
US image BM, and the segmented bone shadow image BS
were used as input to our multi-feature CNN architecture.
Feature maps extracted from both images are fused in a
fusion layer at early (pixel level), mid (feature level) and
late (classifier level) stages. Concatenation fusion was used
as the fusion operation [1], which does not define any cor-
respondence as it stacks feature maps at the same spatial
locations across the feature channels.The multi-feature CNN
architecture was trained separately from our proposed cGAN
architecture using cross-entropy loss.

Quantitative evaluation

Bone shadow segmentation: The performance of our pro-
posed design was compared against state-of-the-art GAN
networks proposed in [12] and [18]. The depths of the net-
works were increased to a scale close to our proposed design.
The bone shadow regions were also segmented, from the
test data, using the local phase image-based bone shadow
enhancement method proposed in [7]. In order to show the
effectiveness of discriminator network we have obtained
bone shadow segmentation results by only training our pro-
posed generator network. Finally, to show the improvements
achieved using a cGAN architecture over a traditional CNN
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Fig. 3 An overview of our proposed cGAN architecture with its a
generator’s encoder consisting of ten skip connection blocks (blue),
in addition to five projection blocks (yellow) and b generator’s decoder
consisting of ten transposed skip connection blocks (orange), in addition

architecture we trained the U-net network, proposed in [20],
using B-mode US image features and gold standard bone
shadow images. Based on [4,7,13,19], four error metrics
were calculated in our testing set: Dice, Rand error, Ham-
ming Loss, as well as the intersection over union (IoU). The

HEpHEE

d2 d2|

to five transposed projection blocks (green). Depths of each convolu-
tional layer are indicated in each block by d; and d;. ¢ Our proposed
patchGAN:-like discriminator

evaluation metrics are computed on the estimated probability
maps, with grayscale color maps, and compared to the gold
standard bone shadow images.

Bone surface segmentation: Bone shadow images seg-
mented using our proposed design, [12] and [18], were used
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as an additional feature to our multi-feature CNN architec-
ture [1] for bone surface segmentation. Our method utilizes
fusion of feature maps obtained from B-mode US data and
bone shadow images. During the evaluation studies we inves-
tigate different fusion architectures: early, mid and late fusion
[1]. We also investigate bone surface segmentation results
if gold standard bone shadow images are used as an addi-
tional feature. The bone segmentation networks were trained
to minimize the cross-entropy loss. We have used Adam Opti-
mizer with batch size of 8 and a learning rate of 0.0002 for
36,000 iterations. In addition to the previously error met-
rics explained in this section, we also evaluate the average
Euclidean distance (AED) error for the task of bone seg-
mentation. AED was calculated between the automatically
segmented bone surfaces and the manual expert segmenta-
tion [1].

Results

Our experiments were conducted using the Keras frame-
work and Tensorflow as backend with an Intel Xeon CPU at
3.00GHz and an Nvidia Titan-X GPU with 8GB of memory.
Our network converged in about 8 hours during the training
process. Testing on average took 54 milliseconds in total for
bone shadow and bone surface segmentation.

Quantitative results

Bone shadow segmentation: Table 1 shows the perfor-
mance difference of bone shadow segmentation methods
investigated. Overall our method outperforms previous state-
of-the-art GAN architectures and the local phase-based bone
shadow enhancement method [7]. The local phase image-
based method proposed in [7] achieved the lowest DSC value
(0.28). However, we would like to mention that in the original
work of [7] aROI, covering a bone interface spanning the full
width of the image, was selected during quantitative evalua-
tion. During our analysis we did not select a ROI and rather
used the full B-mode US image. Our generator network, with-
out the discriminator, achieved average dice value or 0.67.
While adding the discriminator resulted in 39% improvement
in Dice value. Our proposed cGAN architecture achieves 8%
and 3% improvement, in DSC value, over the state-of-the-
art GAN architectures proposed in [12,18] respectively. A
paired z-test, for IoU, DSC and AED results at a %5 signifi-
cance level, between our proposed network and the networks
in [12,18] achieved p values less than 0.05 indicating that the
improvements of our method are statistically significant. The
improvement over the U-net architecture [20] was 46% for
DSC value. We have also observed that our generator net-
work, without discriminator, outperforms U-net [20] by 6%
in Dice value.
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Bone surface segmentation: Quantitative results for bone
surface segmentation are presented in Table 2. The average
numerical error calculations show that that the late-fusion
design had the lowest errors, and the highest average IoU
and Dice (Table 2) (Note: In all tables, the results of the
method that outperformed other methods were indicated in
bold). A paired #-test, for IoU, DSC and AED results at a %5
significance level, between our proposed network and the net-
works in [12,18] achieved p values less than 0.05 indicating
that the improvements of our method are statistically signif-
icant. There was no statistical significance when using gold
standard bone shadow images and the bone shadow images
generated using the proposed design for late fusion design.
When using local phase image features as an additional fea-
ture for our multi-feature CNN architecture [1] the AED error
was 0.30 mm compared to 0.11 mm when using the generated
bone shadow images.

Qualitative results

Qualitative results of our proposed model are shown in Fig. 4.
We demonstrate five examples of in vivo US B-mode images
bone types, namely: femur, tibia, radius, knee, and spine,
where red pixels indicate high prediction scores while blue
pixels indicate low prediction scores for the prediction. Gold
standard bone shadow images obtained by an expert are dis-
played followed by generated bone shadow results obtained
using the convolutional network presented by Ronneberger
et al. [20] and generative networks in [12,18] and our pro-
posed model, as shown in Fig. 4d through g. In Fig. 4c,
we demonstrate shadow results obtained using local phase-
based ultrasound transmission maps method presented in [7].
Investigating the qualitative results we can conclude that our
proposed method segments bone shadow images with mini-
mal artifacts.

Discussion and conclusions

A method, based on a novel GAN, for real-time and accu-
rate segmentation of bone shadow regions from in vivo US
scans was proposed. Our model has two main networks: (1)
a cGAN to generate bone shadow images and (2) a segmen-
tation network that will take the generated bone shadow data
in conjunction with B-mode US data for localization of bone
surfaces. Our integral component of building the generator
and discriminator was the skip and projection blocks. To the
best of our knowledge, this was not previously investigated
in the community. We also would like to mention that this is
the first work proposing a novel cGAN architecture for the
task of bone shadow segmentation. The projection blocks
allow semantic information to be more efficiently passed
forward in the network while progressively increasing fea-



International Journal of Computer Assisted Radiology and Surgery (2020) 15:1477-1485 1483
-sr:;rlr?e:ltaltgigrrlleei?(?rd;\grics Method IoU % Dice Rand Hamming
Dataset I - Sonix-Touch US machine
LP-based transmission maps [7] 0.2350 0.2186 0.9993 0.8722
Ronneberger et al. [20] 0.5242 0.6504 0.9897 0.5649
Generator network only 0.5927 0.6839 0.9867 0.4019
Radford et al. [18] 0.8015 0.8972 0.6371 0.1951
Isola et al. [12] 0.8628 0.9404 0.6364 0.1501
Ours 0.9277 0.9603 0.4841 0.0873
Dataset II - Clarius C3 US probe
LP-based transmission maps [7] 0.2670 0.2802 0.9983 0.8722
Ronneberger et al. [20] 0.4726 0.6374 0.9857 0.5272
Generator network only 0.5157 0.6755 0.9831 0.4848
Radford et al. [18] 0.7965 0.8620 0.6685 0.2034
Isola et al. [12] 0.8424 0.9015 0.6730 0.1575
Ours 0.9023 0.9354 0.5990 0.0976
Table 2 Bone segmentation error metrics
Method ToU % Dice Rand Hamming AED (mm)
Dataset I - Sonix-Touch US machine
Radford et al. [18] BM & BS early fusion 0.8511 0.9368 0.7507 0.1003 0.5863
Radford et al. [18] BM & BS mid fusion 0.8735 0.9166 0.6201 0.1297 0.3972
Radford et al. [18] BM & BS late fusion 0.8834 0.9223 0.5961 0.1165 0.3258
Isola et al. [12] BM & BS early fusion 0.8877 0.9248 0.5847 0.1122 0.3105
Isola et al. [12] BM & BS mid fusion 0.8958 0.9294 0.5646 0.1041 0.2976
Isola et al. [12] BM & BS late fusion 0.9076 0.9368 0.5430 0.0923 0.1776
Ours BM & LP late fusion 0.8892 0.9354 0.8290 0.1107 0.3059
Ours BM & GS late fusion 0.9779 0.9826 0.3062 0.0220 0.1059
Ours BM & BS early fusion 0.9670 0.9746 0.5775 0.0329 0.1164
Ours BM & BS mid fusion 0.9694 0.9770 0.4668 0.03054 0.1089
Ours BM & BS late fusion 0.9803 0.9833 0.3644 0.0196 0.1032
Dataset II - Clarius C3 US probe
Radford et al. [18] BM & BS early fusion 0.8388 0.8995 0.6782 0.1611 0.8542
Radford et al. [18] BM & BS mid fusion 0.8513 0.9369 0.7512 0.1001 0.6753
Radford et al. [18] BM & BS late fusion 0.8731 0.9356 0.7474 0.1029 0.4227
Isola et al. [12] BM & BS early fusion 0.8655 0.9361 0.7496 0.1019 0.3814
Isola et al. [12] BM & BS mid fusion 0.8986 0.9409 0.8105 0.1013 0.2669
Isola et al. [12] BM & BS late fusion 0.9146 0.9442 0.5543 0.0853 0.1973
Ours BM & LP late fusion 0.8730 0.9250 0.8390 0.1269 0.4215
Ours BM & GS late fusion 0.9695 0.9781 0.4353 0.0304 0.1106
Ours BM & BS early fusion 0.9315 0.9555 0.5347 0.06843 0.1655
Ours BM & BS mid fusion 0.9526 0.9692 0.5081 0.0473 0.1306
Ours BM & BS late fusion 0.9625 0.9752 0.4908 0.0374 0.1129

BM B-mode US image, BS bone shadow image, LP local phase image, GS gold standard image

ture map sizes, compared to simple convolutions which is
used in many designs including in [20]. By implementing
these projection blocks, we allow to have more comprehen-

sive feature maps that improve the bone shadow generation.
We have also extended the depth of the discriminator used
in the state-of-the-art [12]. This is one of the reasons why

@ Springer



1484 International Journal of Computer Assisted Radiology and Surgery (2020) 15:1477-1485

(b)

Fig. 4 Qualitative results for bone shadow segmentation. a In vivo
B-mode US images of femur, tibia, radius, knee, and spine. b Gold
standard bone shadow images. ¢ Bone shadow results obtained using
local phase-based ultrasound transmission maps method presented in

our cGAN outperformed other state-of-the-art networks on
this testing data set. Based on these results, we can conclude
that having a cGAN with prior information can significantly
improve the results for the task at hand. In this study we
have also shown the importance of adverserial training. The
success of well trained CNN architectures is effected if the
architecture is deployed on test data coming from different
centers, vendors, or changing acquisition parameters. For US
data, even when the machine is from the same vendor the
image acquisition settings can be adjusted from one scan-
ning procedure to the next. BMI of the patient, orientation of
the transducer with respect to the imaged anatomy will also
change the appearance of the collected data drastically. We
have shown that GAN are more robust to these conditions. We
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[7]. d Bone shadow results obtained using Ronneberger et al. [20] e
Bone shadow results obtained using Radford et al. [18] f Bone shadow
results obtained using Isola et al. [12]. g Bone shadow results obtained
using our proposed cGAN

have also investigated how to combine information from bone
shadow and B-mode US data by analyzing different fusion
strategies. Our results demonstrate that for the task of bone
segmentation fusing B-mode US and bone shadow features
at a later stage outperforms early and mid fusion, specifically
for the dataset obtained from Clarius C3 US probe. One of
the advantages of the proposed work is that bone shadow fea-
tures are obtained instantaneously making the computational
time required suitable for real-time applications. Our future
work will involve (1) extensive clinical validation of the pro-
posed GAN-based method on data obtained from subjects
who have differing pathology in their bone such as fracture
or bone deformity such as scoliosis. We will also extend our
network architecture to process volumetric US data [9].
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