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Abstract
Purpose Precise localization of cystic bone lesions is crucial for osteolytic bone tumor surgery. Recently, there is a move
toward ultrasound imaging over plain radiographs (X-rays) for intra-operative navigation due to the radiation-free and cost-
effectiveness of the modality. In this process, the intra-operative bone model reconstructed from the segmented ultrasound
image is registered with the pre-operative bone model. Deep learning approaches have recently shown remarkable success in
bone surface segmentation from ultrasound images. However, to train deep learning models effectively with limited dataset
size, data augmentation is essential. This study investigates the applicability of the generative approach for data augmentation
as well as identifies standard data augmentation approaches for bone surface segmentation from ultrasound images.
Methods The generative approach we used in our work is based on Pix2Pix image-to-image translation network. We have
proposed a multiple-snapshot approach, which mitigates the uni-modal deterministic output issue in the Pix2Pix network
without using any complex architecture and training process. We also identified standard data augmentation approaches
necessary for ultrasound bone surface segmentation through experiments.
Results We have evaluated our networks using 800 ultrasound images from trained regions (humerus bone) and 1200 ultra-
sound images from untrained regions (tibia and femur bones) using four different augmentation approaches. The results
show that the generative augmentation approach has a positive impact on accuracy in both trained (+ 4.88%) and untrained
regions (+ 25.84%) compared to using only standard augmentations. Moreover, compared to standard augmentation
approaches, the addition of the generative augmentation approach also showed a similar trend in both trained (+ 8.74%)
and untrained (+ 11.55%) regions.
Conclusion Generative approaches are very beneficial for data augmentation, where limited dataset size is prevalent, such as
ultrasound bone segmentation. The proposed multiple-snapshot Pix2Pix approach has the potential to generate multimodal
images, which enlarges the dataset considerably.

Keywords Ultrasound bone segmentation · Deep learning · GAN · Pix2Pix · Augmentation · Osteolytic bone tumor surgery ·
Cystic bone lesion

Introduction

Surgery for osteolytic bone tumors requires precise local-
ization of cystic bone lesions. The localization process is
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performed by registering the intra-operative bone surface to
a pre-operative 3D bone model using magnetic resonance
imaging (MRI) images. X-ray imaging has been commonly
used to extract intraoperative bone surfaces [1]. However,
recent studies have proposed the use of ultrasound images to
eliminate the risk of radiation overdosing, especially where
real-time navigation is required [2]. Ultrasound imaging has
gained considerable interest as an intra-operative modal-
ity due to its cost-effective, non-invasive, and radiation-free
nature. The bone surfaces segmented fromultrasound images
can be used to reconstruct the intra-operative bone model in
real-time for registration with pre-operative MRI 3D bone
models. Because the MRI 3D bone model includes cystic
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bone lesions, this approach can localize the lesion in intra-
operative settings without the use of X-ray imaging.

However, bone surface segmentation from ultrasound
images is challengingdue to speckle noise, shadownoise, low
contrast, and the presence of imaging artifacts. Numerous
approaches have been reported to address these challenges,
including dynamic programming [3], random forest [4], local
phase feature [5], and others [6]. Recently, deep learning-
based methods have shown remarkable success [7]. The
success of any deep learning approach greatly depends on
the availability of a quality training dataset with a large num-
ber of samples. Nevertheless, it is difficult to obtain a large,
publicly available dataset for ultrasound images for bone seg-
mentation due to patient information security, data privacy,
and lackof data sharingpractices among institutes, etc.More-
over, most medical imaging datasets require domain experts
for data labeling. Therefore, appropriate data augmentation
is essential in the training of a discriminative deep learning
model for a small training dataset.

Data augmentation has long been used for training deep
learning algorithms [8], mostly to encourage generaliza-
tion of the trained network to unseen data and to improve
the results obtained from a smaller training dataset. Since
then, rotation, reflection, translation, scaling, and cropping
are some of the most prominent data augmentation tech-
niques that have been used to train deep learning algorithms.
However, the choice of data augmentation operation is very
context-specific, and it is crucial to determinewhichdata aug-
mentation operations are required for the given problem at
hand. In addition to standard augmentation practices, genera-
tive adversarial networks (GAN) [9] have recently joined data
augmentation [10, 11] approaches because of their ability to
find inherent data distributions to produce realistic synthetic
samples. Recently, Shin et al. [12] reported the use of GAN
to produce synthetic brain MRI slices, which gave improved
segmentation results. Moreover, Frid-Adar et al. [13] used
GAN-based augmentation for classifying liver lesions,which
showed improvedperformancewhenused togetherwith stan-
dard augmentation techniques.

In ultrasound imaging for bone surface segmentation,
and for medical imaging in general, patient-specific non-
dominant anatomical features can cause the trained model
to produce inaccurate results, as standard data augmenta-
tion approaches very rarely account for these differences.
However, generative approaches can come off improved per-
formance in this regard through their ability to tweak these
types of non-dominant features to produce realistic samples.
These approaches are often described as image-to-image
translation networks [14] and mostly use conditional GANs
[15].

However, in image-to-image translation networks, the
generated output is very deterministic, producing only one
variation of a synthetic sample from one input image, which

restricts the diversity of the augmented data. In contrast, tra-
ditional augmentation operations can produce vast numbers
of augmented samples. Although some very successful archi-
tectures, such as BicycleGAN [16], have been proposed that
can offer partial solutions to the issue, the complexity of their
architecture and substantial expensive training process rep-
resent barriers for their usefulness in our case.

The primary objective of this study is to investigate the
applicability of the generative approach for training-data aug-
mentation in deep learning-based ultrasound bone surface
segmentation. Moreover, we sought to identify the standard
augmentation techniques required for ultrasound imaging of
bone surfaces.

Our main contribution is that we adopted a generative
approach for data augmentation for ultrasound bone sur-
face segmentation and evaluated the performance gain in
the context of various augmentation approaches. Besides,
we propose a straightforward approach to solve uni-modal
deterministic output issues for image-to-image translation
architecture used in our case. We also empirically deter-
mine the standard data augmentation approaches necessary
for ultrasound imaging for bone surface segmentation.

Methods

Deep learning architecture for ultrasound bone
segmentation

Data

We acquired 10,165 ultrasound images from 25 healthy vol-
unteers (2 females and 23 males) from humerus, femur,
and tibia regions with approval from the institutional review
board (IRB) [KNUH2018-08-015]. In-house domain experts
performed the labeling for all acquired ultrasound images.
For this work, we trained our networks with 3104 slices of
humerus ultrasound images from 17 volunteers. Architec-
ture validation was then performed on 560 slices of humerus
ultrasound images from three volunteers, and 870 slices of
humerus ultrasound images from the remaining five volun-
teers were used to evaluate the network performance. We
also used 1200 slices of tibia and femur ultrasound images
from the same five volunteers to evaluate the performance in
untrained ultrasound imaging regions.

CNN architecture for segmentation

Image segmentation is a process where each pixel of an
image is provided with a class label, generating the same-
sized output image. In this work, we used a standard U-Net
architecture [17], where the input image is passed through
several contracting layers followed by several expanding lay-
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Fig. 1 U-Net architecture block diagram. In our implementation, N is set to 16, and 3×3 kernels for convolution is extensively used throughout
the network

ers to provide an output image of the same size, as shown
in Fig. 1. In addition to supplying information to the next
layer, the contracting layer-group also provides information
to subsequent layers in the expanding layer-group through
long skip-connections.

Each frameof the ultrasound sequencewas cropped and/or
padded to a size of 512× 512 for training. Each pixel of the
ultrasound images was labeled as a bone/non-bone pixel. We
used binary cross-entropy as the loss function for optimiza-
tion with the Adam optimizer [18] with a batch size of 8 and
an initial learning rate of 1e−4 for 100 epochs.

Standard approaches for data augmentation

In the case of the ultrasound bone segmentation problem,
we carefully experimented to determine the types of aug-
mentation required, which we have observed in real-world
contexts. Althoughmost of the observationsweremade using
the Philips HD11 XE Ultrasound system, they are valid for
almost all off-the-shelf ultrasound systems used for bone
imaging.

Time gain compensation

Time gain compensation (TGC) is the most-used feature for
ultrasound bone imaging and is used to overcome the ultra-

sound attenuation caused by the echo traveling back from the
deeper layers. Using the TGC, weaker signals from deeper
layers are compensated by boosting their gain. In our exper-
iment, the TGC control demonstrated changes in brightness
and/or contrast in the ultrasound images, as shown in Fig. 2,
which could be augmented in the deep learning training pro-
cess by random brightness and/or contrast enhancement of
the ultrasound images without affecting the related ground
truth labels.

Depth control

Bones in ultrasound images show small changes in shape
and depth from the top due to the depth control parameter in
the ultrasound system. The phenomenon is shown in Fig. 3,
where the white dotted window represents the final ultra-
sound image after cropping and/or zero-padding the image
to a pixel size of 512 × 512. Moreover, a small change in
brightness and/or contrast can also be observed, where the
shallower images tend to be brighter than the deeper images.
A small degree of shearing can be randomly introduced
during the training to augment the shape change behavior.
The change in depth of the bone from the top can be aug-
mented either by random cropping or random translation
of the image. The shearing, random cropping, and random
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Fig. 2 Effect of TGC control on ultrasound images, which shows a
change in brightness and contrast. TGC line represents the amount of
gain compensation used in different depth levels. a The line is set to

low for the whole image, b the line is set to high on the upper half of
the image, and c the line is set to high for almost the whole image

Fig. 3 Effect of depth change on
one ultrasound image from 4 to
8 cm, which shows small change
in bone shape and depth. The
dotted white window represents
the final cropped and/or zero
padded image at a pixel size of
512×512

translation should also be applied to the related ground truth
labels.

Roll and pitch motion of the ultrasound probe w.r.t. bone
surface

Roll motion of the ultrasound probe w.r.t. longitudinal bone
surface direction produces a rotated bone surface response in
the output, as shown in Fig. 4. Random rotation of the image
to a certain degree can represent the roll motion adequately
for our purpose.

The pitch motion of the ultrasound probe w.r.t. bone sur-
face longitudinal direction produces a thicker and softer bone
response in the output, as shown in Fig. 5. In the inclined

position, the bone surface from adjacent regions w.r.t. the
ultrasound probe center plane is also registered in the probe
while showing different levels of signal attenuation due to
varying depth of signals traveling back to the probe. This
effect produces a softer and thicker bone response, whereas
in the probes’ perpendicular position registers a thinner and
sharper bone response. As discussed in [6], ultrasound scan-
ning in the elevational direction also produces a similar effect
on the bone response. The effect of the pitch motion and ele-
vational directional scanning can be augmented by adding
a Gaussian blurring effect on the ultrasound images without
affecting the related ground truth labels.
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Fig. 4 Effect of Ultrasound probe roll motion w.r.t. bone surface longitudinal direction, which demonstrates rotated bone response w.r.t. ultrasound
image center plane. Image a, b, and c can be observed from ultrasound probe position (a), (b), and (c) respectively w.r.t. the bone surface

Fig. 5 Effect of Ultrasound probe pitch motion w.r.t. bone surface longitudinal direction, which demonstrates thicker and softer bone response when
the transducer is in an inclined position

Generative approach for data augmentation

Generative adversarial network [9] (GAN) is a deep learn-
ing approach to identify the inherent distribution of a dataset
and leveraging that to generate realistic synthetic samples.
GANs have long been used for data augmentation [10, 11].
Recently, GANs have also been used for data augmenta-
tion for deep learning algorithms in the medical imaging
domain [12, 13] to solve image-to-image translation prob-
lems. Although many approaches have been reported for
image-to-image translation, the Pix2Pix architecture [14] is
one of the most popular choices due to its simplicity. We
used this architecture for the generative data augmentation
approach.

Pix2Pix architecture

While GANs generate an output image y from a random
noise vector z,G : z → y, in Pix2Pix architecture, the output
image y is generated from input image x in addition to the
noise vector z,G : {x, z} → y. However, the authors of
Pix2Pix architecture argued that the noise vector z does not
contribute to the diversity of the output image and is usually
ignored by the network [14]. Therefore, the noise vector z
should be discarded from the equation, leading toG : x → y.
The loss function of the network becomes-

(1)

LcGAN (G, D) � Ex,y
[
log D (x, y)

]

+ Ex
[
log(1 − D (x,G (x))

]
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Fig. 6 The process of multiple snapshot Pix2Pix approach

where the discriminator D tries to maximize the log-
likelihood between real image-label pair and minimize the
log-likelihood between fake image-label pair. The authors
of Pix2Pix architecture also added L1 distance between the
generated fake image and the real image—

LL1(G) � Ex,y
[‖y − G(x)‖1

]
(2)

The final objective of the whole network becomes—

G∗ � argmin
G

max
D

LcGAN (G, D) + λLL1(G) (3)

where λ is the weighting factor between adversarial loss
LcGAN (G, D) and pixel loss LL1(G). In our implementa-
tion, we set it to a value of 1, so that both losses can influence
the network on their own.

The generator G of the network uses a standard U-Net
architecture [17], which proved very effective for medical
image segmentation with its long skip connections between
contracting and expanding layers. The discriminator D is a
PatchGAN discriminator architecture introduced by Pix2Pix
architecture [14], where the discriminator D tries to classify
whether each of the (N × N ) patches of the image are real
or fake and then averages the outcome to produce the final
D score.

Multiple snapshot Pix2Pix

Pix2Pix networks are known to produce deterministic output
images from the input images, thus providing only one out-
put ultrasound image from one segmented label image [14].
However, the primary reason for using data augmentation is
to augment small datasets. While the Pix2Pix network can
augment an original dataset by only two-fold, classic data
augmentation approaches can provide virtually unlimited
augmentation when done on the fly by using different combi-
nations of random flip, brightness and contrast enhancement,
rotation, and blurring. Although BicycleGAN proposed by
Zhu et al. [16] can be used to generate more than one output
image from the same input image, its architecture complexity

and expensive training process render it a very unattractive
option.

In this work, we proposed to use a multiple snapshot
Pix2Pix approach based on the standard Pix2Pix network.
In this approach, after training the network for one epoch,
we visually inspected the quality of the rendered ultrasound
images from the input labels. If the rendered ultrasound
images are visually realistic, we stored the network weights
as snapshots. The process is then repeated for a prede-
termined number of training epochs, and this process is
illustrated in Fig. 6. Because each of the handpicked Pix2Pix
snapshots have different network weights and parameters,
they produce different ultrasound images from a single
labeled image, thus providing an effectivemultimodal image-
to-image translation capability without the use of complex
GAN architecture or an expensive training routine.

The result of themultiple snapshot Pix2Pixmethod can be
visualized in Fig. 7, where eight handpicked snapshots from
the training process were used to generate eight different
ultrasound images from the same label. It is noteworthy that,
even though theoverall structure is very similar, there are very
minute changes among the generated images, which demon-
strates that generative approaches can model patient-specific
non-dominant anatomical features, a challenging task using
standard data augmentation approaches.

Semi-automatic snapshot selection

Visual inspection of each and every snapshot performance
can be a daunting task, especially when the number of
training epochs to the number of manually selected snap-
shots ratio is very low. Mode collapse in some training
epochs renders the problemworse. Therefore, we proposed a
semi-automatic approach where each snapshot is assigned a
snapshot-selectability-score (SSS), which is the average dis-
tance score between periodically generated images and their
ground-truth counterpart.

SSS � 1

N

N∑

i�1

D(Ri ,Gi ) (4)

123



International Journal of Computer Assisted Radiology and Surgery (2020) 15:931–941 937

Fig. 7 Using the multiple-snapshot Pix2Pix approach to generate multiple ultrasound images from a single input image; a reference ultrasound
image, b input segmentation label, c–j generated ultrasound images from different snapshots

Fig. 8 Semi-automatic snapshot selection process. We have used mutual information as the distance metric and set a threshold of 2.25

where D is the selected distance metric, Ri is the GAN-
rendered image and Gi is the associated ground truth image.
After the score assignment, the potential snapshots are
selected based on the SSS score and then go through visual
inspection for final selection. Any image similarity algorithm
could be used as the distance metric; however, the mutual
information between the two images used best for our case.
The results are shown in Fig. 8.

It is notable that, using the semi-automatic approach, we
were able to minimize the number of visual inspection of
snapshots from 80 to 20. Although the approach still requires
human intervention, it has the potential to greatly reduce the
amount of said intervention.
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Table 1 Different augmentation approaches used for evaluation of the
networks

Approach Augmentation

NO AUG No augmentation approach applied

GAN + NO AUG NO AUG with GAN generated images

CLASSIC Contrast enhancement (0.5–1.5)
Brightness enhancement (0.5–1.5)
Gaussian blur (σ � 3)
Horizontal flip
Rotation (0°–15°)

GAN + CLASSIC CLASSIC with GAN generated images

Experimental results

To train the GAN Pix2Pix network, the 25 available vol-
unteers were divided into training (n � 17), validation (n
� 3), and testing (n � 5) subsections. For the training,
we used only humerus ultrasound images. For testing, we
used ultrasound images from both the trained region (i.e.,
humerus bone region) and untrained regions (i.e., tibia and
femur regions). According to our multiple-snapshot Pix2Pix
approach, as described in “Multiple snapshot Pix2Pix” sec-
tion, we handpicked 15 snapshots based on their realistic
ultrasound image generation capability after training the net-
work for 100 epochs. During the U-Net training process,
we used four different data-augmentation approaches, as
described in Table 1.

After training the U-Net network on the humerus ultra-
sound images with different augmentation approaches, we
tested the network performance on the humerus ultrasound
test set with 870 slices. We also tested the network with 1200
tibia and femur ultrasound image slices from the same vol-
unteers from the test set, which was used to demonstrate
how the trained networks perform on ultrasound images from
unknown regions. We have used the dice similarity score to
evaluate the performance of the networks. Figure 9 shows the
performance analysis of the data augmentation approaches
applied to our test set data.We performed our statistical anal-
ysis using SPSS (version 25.0, IBM, Chicago, IL, USA).
ANOVAwas used to analyze the data difference between the
four groups. Afterward, we used the post hoc test (Tukey)
to find out which group showed a significant difference
(p ≤ 0.05).

For evaluating the usability of the multiple-snapshot
Pix2Pix approach, we trained one network for each of the
handpicked snapshots using the GAN + CLASSIC augmen-
tation approach. Each of the snapshots was handpicked for
their ability to render visually realistic ultrasound images
from labels. Each of the trained networks was then tested on
both trained and untrained regions. Figure 10 illustrates the
performance of different snapshots on the test set both from
the trained region and untrained regions.

Discussion

From our experiments, it is evident that the accuracy of the
trained model increases when GAN-generated images are
used. We observed a performance gain of +8.7% over the
trained region and +11.55% over the untrained region when
the GAN augmented images were used in addition to the
standard augmentation approaches.Moreover, when only the
GAN augmented images were used without applying any
other augmentation, the performance was very similar to
using conventional augmentation approaches in both trained
and untrained regions. Compared to NO AUG approach
where only the networks were trained without using any data
augmentation approach, the GAN + NO AUG approach is
4.88% and 25.83% more effective in trained and untrained
regions respectively. Statistical analysis confirms that there
is a significant difference betweenGAN+CLASSIC and any
of the three other approaches, which supports our hypothe-
ses. Moreover, CLASSIC and NO AUG + GAN showed no
significant difference in our analysis, which suggests that
using only GAN as the augmentation approach has simi-
lar effect of using standard augmentation approaches. The
analysis showed similar trend in both trained and untrained
regions.

Besides, the effect of GAN augmentation is more promi-
nent in untrained regions. The anatomical features of the
humerus region, on which the network was trained, are quite
different from the tibia and femur regions, which can make
non-dominant anatomical features in the ultrasound image
very distinct. We believe that the non-dominant anatomical
features played a major role in reduced accuracy for all of
the networks. However, GAN-augmented networks have a
slight advantage in this regard because theGANarchitectures
encourage minute changes in non-dominant image features.

The multiple-snapshot Pix2Pix approach showed that the
performance is very stable over different snapshots, which
demonstrates that each of the snapshots can produce realistic
synthetic ultrasound samples for use as augmented train-
ing samples. Therefore, the multiple snapshot approach can
be used as multi-modal image-to-image translation architec-
ture. The simplicity of the architecture and training process
makes it a desirable option compared to other state-of-the-art
multimodal image-to-image translation approaches, primar-
ily where the image-to-image translation approach is used
as the data augmentation scheme. Moreover, the proposed
semi-automatic snapshot selection approach greatly reduce
the amount of human intervention in the whole process.

In our experiments to determine the standard augmenta-
tions necessary for ultrasound bone imaging, we encountered
some common issues that the segmentation algorithm could
face in the real world. We have found that most of the vari-
ations can be augmented using simple operations such as
contrast and brightness enhancement, rotation, translation,

123



International Journal of Computer Assisted Radiology and Surgery (2020) 15:931–941 939

Fig. 9 Test performance for the
different augmentation
approaches over both trained
and untrained regions

Fig. 10 Performance analysis of the multiple snapshot approach for different handpicked snapshots over both trained and untrained regions

and Gaussian blur, etc. Although we did not suggest hori-
zontal flip operation, since the bone ultrasound images are
not symmetric, we have added horizontal flip operation in
our standard augmentation approaches.

Conclusion

In this work, we have shown that images generated using
GAN-based image-to-image translation architecture can be
used as an additional source of augmented data for the train-

ing of deep learning algorithms, especially for ultrasound
image segmentation purposes, where a limited dataset size
is typical. Moreover, GAN-based architectures can generate
ultrasound images with very minute changes in patient-
specific non-dominant anatomical features, which otherwise
can be very difficult to achieve using standard data aug-
mentation approaches. The experimental results show that
the GAN-augmented training dataset has an overall posi-
tive effect on the performance of the network. It has been
previously proven that a larger training dataset always has a
positive impact on the generalizability of deep learning algo-

123



940 International Journal of Computer Assisted Radiology and Surgery (2020) 15:931–941

rithms [19]. Because the addition ofGAN-augmented images
offers the same advantage as the addition of more training
images, it is expected to have a positive effect on network
performance.

In addition, we have proposed a multiple snapshot
approach for the Pix2Pix architecture used for image-to-
image translation. This approach is useful for generating
realistic multi-modal ultrasound images from a single input
image without using an overly complicated architecture or
expensive training procedure. This approach has the potential
to minimize the deterministic output issue for image-to-
image translation architectures. This approach can also be
applied to many other similar situations. Our evaluation of
the multiple snapshot approach demonstrates that the perfor-
mance is very stable for different snapshots. It is possible to
use the augmented datasets from each of the single snapshots
differently, or multiple snapshots can be stacked together in
different ratios to build a larger augmenteddataset. Thewhole
process is entirely subject-specific and should be determined
by the user. The augmentation approaches we suggested are
based on our observation of the ultrasound bone imaging
process. Therefore, the suggested augmentation approaches
could be regarded as the baseline standard augmentations
for medical imaging applications where ultrasound imaging
is used.

However, although our system is able to generalize over
untrained bone region, since our dataset only contained ultra-
sound images from one specific ultrasound imaging system
(Philips HD11 XE Ultrasound system), we could not show
its generalization capability over different ultrasound imag-
ing system. Our future goal would be to acquire more data
using a range of imaging systems and evaluate our approach.
Moreover, we would like to compare our multiple-snapshot
approach tomore sophisticatedBicycleGANapproachwhich
can produce similar effect as ours.
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