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Abstract
Purpose Fetal brain abnormalities are some of the most common congenital malformations that may associated with syn-
dromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal
detection of brain abnormalities is essential for informing clinical management pathways and consulting for parents. The
purpose of this research is to develop computer-aided diagnosis algorithms for five common fetal brain abnormalities, which
may provide assistance to doctors for brain abnormalities detection in antenatal neurosonographic assessment.
Methods We applied a classifier to classify images of fetal brain standard planes (transventricular and transcerebellar) as
normal or abnormal. The classifier was trained by image-level labeled images. In the first step, craniocerebral regions were
segmented from the ultrasound images. Then, these segmentations were classified into four categories. Last, the lesions in
the abnormal images were localized by class activation mapping.
Results We evaluated our algorithms on real-world clinical datasets of fetal brain ultrasound images. We observed that the
proposed method achieved a Dice score of 0.942 on craniocerebral region segmentation, an average F1-score of 0.96 on
classification and an average mean IOU of 0.497 on lesion localization.
Conclusion We present computer-aided diagnosis algorithms for fetal brain ultrasound images based on deep convolutional
neural networks. Our algorithms could be potentially applied in diagnosis assistance and are expected to help junior doctors
in making clinical decision and reducing false negatives of fetal brain abnormalities.

Keywords Fetal brain abnormalities ·Deep convolutional neural network · Craniocerebral segmentation · Prenatal ultrasound
images · Computer-aided diagnosis

Introduction

Fetal brain abnormalities are some of the most common
congenital malformations. Long-term follow-up studies sug-
gest that the incidence of intracranial abnormalities may be
as high as one in 100 births [1]. As a non-invasive, non-
radiative, convenient and dynamic observation approach,

Baihong Xie and Ting Lei have contributed equally to this work.

B Hongning Xie
hongning_x@126.com

1 South China University of Technology, Guangzhou, China

2 Department of Ultrasonic Medicine, Fetal Medical Center,
First Affiliated Hospital of Sun Yat-sen University,
Zhongshan Er Road 58, Guangzhou 510080, Guangdong,
China

3 Guangzhou Aiyunji Information Technology Co., Ltd.,
Guangzhou, China

transabdominal sonography is the first choice for diagnosing
fetal brain diseases. To assess the anatomic integrity of the
brain, two standard axial neurosonographic planes (SANPs),
transventricular (TV) and transcerebellar (TC), that allow for
visualization of cerebral structures are considered [2].

Ultrasound has a long history of detecting fetal brain
abnormalities. The detection rate is impaired by doctors’
lack of experience in complex brain anatomy and pathology
mostly [3,4], as well as outdated equipment, inappropriate
fetal head position, early or late gestational age, maternal
obesity. Doctors need long-time practice to be experts. How-
ever, even in expert hands some types of anomalies may be
difficult to diagnose in ultrasound [1]. The development of
methods that assist in prenatal sonographic diagnosis has
been lacking. We think that automatic methods for diagnos-
ing fetal congenital diseases could ease theprevalent situation
of expert shortage in underdeveloped areas and could have
an important clinical value.
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Fig. 1 Overview of the
proposed algorithms: a the
craniocerebral regions are
segmented out from 2D fetal
ultrasound images by fully
convolutional network (as long
as the images contain a circular
skull shape); b the segmented
images are processed by the
convolutional neural networks
to diagnose the plane as normal
or abnormal (in this case, the
abnormal transcerebellar (TC)
plane is diagnosed); c if an
abnormal plane is predicted, the
lesions are localized by fetching
class activation mapping (CAM)
from the networks

(a)

(b)

(c)

In recent years, deep learning has emerged as a promis-
ing technique. Several studies on recognition [5,6], detection
[3,7,8] and localization [3,8] of fetal sonographic standard
planes have been reported. However, these studies did not
consider abnormal cases as we do in our research. In this
paper, we chosen fetal brain abnormalities as the focus of
automatic diagnosis due to their high rate of occurrence.

Contributions

We introduce deep learning algorithms for computer-aided
diagnosis of fetal brain abnormalities. The algorithms robustly
segment the craniocerebral regions, accurately classify fetal
brain images of SANPs as normal or abnormal and locate
the lesions to provide visualized evidence for the diagnosis.
An overview of the proposed methods is shown in Fig. 1. To
the best of our knowledge, our study is the first attempt to
develop algorithms that determinewhether fetal brain images
of SANPs are normal or abnormal.

Related studies

Standard planes studiesSeveral reported studies are based on
extracting Haar-like features from the data and training clas-

sifiers such as AdaBoost or random forests [9,10]. Recently,
the trend of using convolutional neural networks (CNNs)
to analyze ultrasound images has gradually emerged due to
advances in the field of computer vision. The most related
studies are from Yaqub [6] and Baumgartner [3]. Yaqub [6]
designed networks with four convolutional layers and one
fully connected (FC) layer to detect cavum septi pellucidi
(CSP) structure on the TV planes. Baumgartner [3] trained
networks based on VGG-net [11] to detect 13 kinds of stan-
dard planes including the TV and TC planes. Both studies
report that the images of SANPs could be recognized by
CNN-based networks.

Craniocerebral region segmentationFetal head segmentation
methods have been investigated for automatic head-related
measurement, which is related to gestational age estimation
[12]. In early studies, segmentation is achieved by using
classic image processing techniques [13–15] or traditional
machine learning methods [16–18]. Until recently, some
studies indicate that the craniocerebral regions could be eas-
ily segmented by using CNN-based networks. Yaqub [6]
designed a CNN classifier that used a transformation from
ImageNet to segment the fetal brain regions, with a 0.969
Dice coefficient. Van den Heuvel [19] achieved an accuracy
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Fig. 2 Examples of five
diseases. The first row shows
Blake pouch cyst (a),
Dandy–Walker malformation
(b) and cerebellar vermis
hypoplasia (c) that occur around
the cerebellum in the
transcerebellar planes. The
second row shows
ventriculomegaly (d) and
hydrocephalus (e) that occur
around the lateral ventricles in
the transventricular planes

of 0.97 in determining which pixel belonged to the outer
edge of a fetal head using U-net-based [20] networks. Based
on these studies, we introduced U-net [20] to segment cran-
iocerebral regions, allowing the classification networks to
focus on the fetal brain regions.

Weakly supervised localizationA visualized interpretation is
particularly important in medical tasks. According to [21],
a model that can visualize the reasoning process underlying
the diagnosis contribute to identifying failure modes [22],
building users’ trust and assisting doctors in making better
decisions [23]. Several studies develop visualization meth-
ods by identifying the pixel that has the most impact on
the prediction. Exploring the modifications of CNN struc-
tures, Zhou [24] proposed class activation mapping (CAM)
to obtain class-specific feature maps. Subsequently, Ram-
prasaath R. [21] introduced a new way of combining feature
maps using gradient signals that did not require any modifi-
cation of the network architecture. For our task, we localized
the lesion using CAM for the abnormal cases to provide visu-
alized evidence for the diagnosis.

Methods

Data

We obtained our image dataset from a recently reported orig-
inal dataset [25], which consisted of a total of 92,748 women
with singleton or twin pregnancies with gestational ages
between 18 and 32 weeks who underwent prenatal examina-
tions at the 1st Affiliated Hospital of Sun Yat-sen University
in China between March 2010 and February 2018. All of
the examinations were acquired and diagnosed during rou-
tine screenings by a team of 15 doctors with 3–22years

of experience in O&G ultrasound. Ten different ultrasound
machines provided by six different manufacturers (GE Volu-
son 730 Expert/E6/E8/E10, ALOKA SSD-a10, SIEMENS
Acuson S2000, TOSHIBA XARIO 200 TUS-X200, SAM-
SUNGUGEOWS80A and PHILIPS EPIQ7C)were used for
data acquisition. The maternal BMI was 24± 2.5. The mean
gestational age was 22+ 4 weeks and 26+ 3 weeks for nor-
mal and abnormal cases, respectively. There were three types
of images: single-view freezing image saved by the doctors
during the exam, split-view freezing image saved during the
exam but segmented into individual subimages and video-
frame images converted from videos that were exported from
3D volume data [25].

We obtained two separate image datasets from the orig-
inal dataset for the segmentation and classification task.
For segmentation, based on random selection, we obtained
3500, 9850 and 2500 single-view, split-view and video-frame
images, respectively. For classification, four categories of
fetal brain images were included: normal TV planes, normal
TC planes, abnormal TVplanes and abnormal TC planes. For
normal cases, eligible TV and TC planes followed guide-
lines set out in the International Society of Ultrasound in
Obstetrics andGynecology (ISUOG) [1,4]. For the abnormal
cases, TV planes contained occurrences of ventriculomegaly
and hydrocephalus and TC planes contained occurrences
of Blake pouch cyst (BPC), Dandy–Walker malformations
(DWM) and cerebellar vermis hypoplasia (CVH), which
are five kinds of common brain malformations. (Examples
are shown in Fig. 2.) Additionally, according to the previ-
ous study [25], image inclusion and exclusion criteria for
the classification were strict and consisted of the follow-
ing: images without color Doppler or measurement caliper
overlays, images where an integrated skull occupied 1/2-2/3
of the screen and images without too many acoustic shad-

123



1306 International Journal of Computer Assisted Radiology and Surgery (2020) 15:1303–1312

Table 1 Details of image counts in the segmentation dataset

Single-view Split-view Video-frame Total

Training 2000 6000 1500 9500

Validation 750 1850 500 3100

Test 750 2000 500 3250

Total 3500 9850 2500 15,850

ows, where doctors could still recognize the image as one
of the SANPs. Note that we obtained all abnormal images
of the five diseases. However, in the interest of having bal-
anced data, normal images were randomly selected from the
original dataset. As a result, we received 3365, 3595, 2884
and 1801 images of normal TV, normal TC, abnormal TV
and abnormal TC planes, respectively. Details are shown in
Tables 1 and 2. The study protocol was approved by the Insti-
tutional Review Board of the First Affiliated Hospital of Sun
Yat-sen University.

Data annotation and division

The ground truth of the craniocerebral region was manually
labeled by doctors with an open source ellipse labeling soft-
ware to construct continuous ellipses along the outer edge of
the skull. The dataset was divided into three parts: a train-
ing set that was used to train the network, a validation set
that was used to select the best model with the smallest loss
value and a test set that was used to evaluate the network; all
images were randomly assigned to the three sets at the image
level with a ratio of approximately 3:1:1. Details are shown
in Table 1.

The true label of the images in the classification dataset
corresponded to the diagnosis of the cases. The abnormal
cases were confirmed by neonatal ultrasound, follow-up
examination, or autopsy. The classification dataset was ran-
domly divided into training/validation/test set with a ratio of
approximately 3:1:1, on case level rather than image level.
Details are shown in Table 2.

The images used to evaluate the lesion localization were
randomly selected from the test set of the classification
dataset. An expert with 22 years of experience in O&G ultra-
sound reviewed abnormal images and used an open source
rectangle labeling software to construct the bounding box
along the lesion area.

Network architectures

Craniocerebral region segmentation

We introduced a fully convolutional network to perform the
segmentation task. Specifically, we used the U-net network

[20] due to its simple structure and good image process-
ing performance. The architecture of the U-net network is
shown in Fig. 3. In the downsampling path, the feature maps
were processed by two repeated convolution operations with
the ReLU activation function and max-pooling to reduce
the resolution. Symmetric structures were obtained in the
extension path. After each upsampling operation performed
by deconvolution, two repeated convolution operations were
performed. The number of channels doubled after max-
pooling and halved after deconvolution. The skip connection
concatenated the feature maps at the same resolution to
reduce the information loss.

In the last layer, a 1 × 1 convolution was used to map all
feature map vectors and to output the prediction mask. The
sigmoid function was used to generate a one-channel feature
map. We used the Dice loss during training, which is defined
as

Dice loss = 1 − 2 × ∑
(y × y′) + σ

∑
y + ∑

y′ + σ
(1)

where y and y′ are the ground truth and the predicted proba-
bility of the image, respectively, and σ is a smoothing factor
with the default value of 1. Data augmentation is usually used
to prevent overfitting issue [26].We randomly rotated images
within (− 45◦, 45◦) and considered the horizontal or vertical
reflections of images. Inspired by [27], we adopted a strategy
that used similar quantities of data for the three formats in a
batch. Specifically, we used 12 split-view images and 10 of
both video-frame and single-view images per batch.

The ellipse annotations were used to generate binarymask
images as the ground truth during training. All ultrasound
images and the corresponding mask images were converted
to grayscale and resized to 256 × 256. In addition, the input
images were normalized to a standard distribution by sub-
tracting the mean value and subsequently dividing by the
standard deviation, both of which were calculated for the
entire training dataset.

Classification of normal and abnormal brain scans

Deep convolutional neural networks (DCNNs) have power-
ful feature extraction capabilities [11,26]. Our model shared
the basic structure of the VGG-net [11]. Specifically, we had
sixteen convolutional layers with a kernel size of 3 × 3, five
max-pooling layers and three FC layers.Moreover, a dropout
layer was added after the first two FC layers to reduce over-
fitting (Table 3).

It has been proven that knowledge transfer is an effi-
cient way of training a high-performance model [28,29].
Despite large differences between natural and ultrasound
images, low-level features can bemutually transferred in both
domains [7,30,31]. Following the idea in [31], we transferred
all parameters frommodel pretrained on ImageNet to convo-
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Table 2 Details of image and
case counts (image/case) in the
classification dataset

Normal TV Normal TC Abnormal TV Abnormal TC Total

Training 2039/2039 2168/2168 1873/216 1082/148 7162/4571

Validation 667/667 717/717 493/74 367/49 2244/1507

Test 659/659 710/710 518/74 352/49 2239/1492

Total 3365/3365 3595/3595 2884/364 1801/246 11,645/7570

Fig. 3 Overview of the classic
U-net network architecture. The
rectangles denote the feature
maps. The numbers next to and
above each feature map
represent its resolution and the
number of channels,
respectively. The full network
contains a downsampling path,
an upsampling path and the skip
connection structure

Table 3 Detailed configuration of our deep convolutional neural net-
work for classification

Input (224 × 224 RGB image)

Layer Parameter

Conv. layers 1–2 3 × 3, 64, stride = 1, padding = 1

Max-pooling 2 × 2, stride = 2

Conv. layers 3–4 3 × 3, 128, stride = 1, padding = 1

Max-pooling 2 × 2, stride = 2

Conv. layers 5–8 3 × 3, 256, stride = 1, padding = 1

Max-pooling 2 × 2, stride = 2

Conv. layers 9–12 3 × 3, 512, stride = 1, padding = 1

Max-pooling 2 × 2, stride = 2

Conv. layers 13–16 3 × 3, 512, stride = 1, padding = 1

Max-pooling 2 × 2, stride = 2

FC1,1 × 1,1024

Dropout

FC2,1 × 1,1024

Dropout

FC3,1 × 1,4

Softmax

lutional layers except the last three FC layers. The FC layers
were randomly initialized using Gaussian distribution. Con-
sidering the distinct differences between our dataset and the

ImageNet dataset, we fine-tuned the pretrained network on
our dataset. Specifically, we first fixed all the convolutional
layers to train on 10 echoes. Then we adjusted all parameters
of model to train on other 20 echoes.

The craniocerebral region images were obtained by a
segmentation network. We randomly rotated the images
within (− 45◦, 45◦) and considered their horizontal or verti-
cal reflections. Considering the imbalance between various
categories, the strategy mentioned in “Craniocerebral region
segmentation” section was used. Specifically, we used 8
images for each category per batch. Finally, the three chan-
nel input images were resized to 224 × 224 and normalized
to the range (− 1, 1) by dividing by 127.5 and subsequently
subtracting 1.

The weak supervision localization of lesions

Asimple classification result is entirely unconvincing; hence,
our model should have the ability to substantiate the diagno-
sis. In fact, the regions of interest (ROI) corresponding to the
identified category can be localized in those feature maps.
We believe that the lesions are likely to be associated with
the ROI, so the localization of the lesions could be solved by
searching the ROI. To identify the regions that significantly
affect the final score, we used the gradient-weighted class
activation mapping (Grad-CAM) [21] method to produce a
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(a) (b) (c) (d)

Fig. 4 Examples of the localization with bounding boxes in abnormal transventricular (TV) and transcerebellar (TC) planes. a Two input images,
b class activation mapping (CAM) for the two images, c the resulting binary images and d localization of lesions

Table 4 Segmentation scores for the U-net network

Network Dice IOU Precision Recall OR UR

U-net 0.942 0.909 0.943 0.944 0.047 0.045

CAMand relied on themap to localize the lesions of the input
ultrasound images. The core idea of the CAM is to calculate
the weight αc

k that indicates how much the feature map Fk

contributes to the final score yc for a particular class c, which
is defined as

αc
k = 1

Z

∑

i

∑

j

∂ yc

∂Fk
i j

(2)

where Fk
i j is the pixel value at location (i, j) of the feature

map and Z is the total number of pixels in feature map Fk .
Then, we used a weighted combination of the last convolu-
tional feature maps followed by a ReLU function to obtain
CAM Lc

heatmap corresponding to category c, which is defined
as

Lc
heatmap = ReLU

(
∑

k

αc
k F

k

)

(3)

We took the absolute value of the CAM for the abnor-
mal TV and TC planes and converted them to binary values
by subjecting them to a threshold of M% of the maximum
intensity. The hyperparameter M was empirically set to 25.
We considered the largest connected area of the binary image
and fitted the minimum rectangular bounding box around it.
Some examples are shown in Fig. 4.

Experimental results

Evaluation of the craniocerebral region
segmentation

The ground truth masks were generated from the ellipse
annotation made by doctors. The predicted craniocerebral
regionmasks for the 3250 test ultrasound images were gener-
ated by theU-net network.We compared the predictedmasks
with the ground truth masks. The results of six common
evaluated indices are shown in Table 4. This performance
is sufficient for segmentation of the craniocerebral region,
and some examples are shown in Fig. 5.

Evaluation of classification for normal and abnormal
brain scans

We compared the network predicted labels with the true
labels for 2239 test ultrasound images. The precision, recall
and F1-score were calculated as shown in Table 5. Addition-
ally, the class confusion matrix obtained with the network
is shown in Fig. 6. Both normal and abnormal SANPs are
detected with F1-scores above 0.9; thus, most of test images
could be correctly classified.

Evaluation of the weak supervision localization of
lesions

The ground truth boxes were annotated by experts, and
the predicted boxes were generated by fitting the ROI of
the network in the abnormal ultrasound images. We com-
pared the network predicted lesion localization boxes with
the ground truth boxes for 729 test abnormal ultrasound
images. Themean and standard of the intersection over union
(IOU) metric were calculated as shown in Table 6. The result
demonstrates the ability of the algorithms to localize lesions.
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(a) (b) (c) (d)

Fig. 5 Examples of craniocerebral region segmentation obtained by the U-net model

Table 5 Classification scores for the DCNN architecture

Class Precision Recall F1-score

Normal TC 0.978 0.955 0.966

Normal TV 0.989 0.967 0.978

Abnormal TV 0.955 0.988 0.972

Abnormal TC 0.915 0.952 0.934

Fig. 6 Class confusion matrix for classification

However, improvement is needed to more precisely deter-
mine the lesion edges. In Fig. 7, we show examples of the
bounding boxes for each of the diseases. These examples
prove that our proposed model is able to focus on the lesions
that are subject to significant deviations from the normal
standard plane. The first three columns illustrate the strong
relationship between lesions localization and ground truth
with IOU above 0.5, and the last column shows the lower
correlation (IOU < 0.5) cases.

Table 6 Evaluation scores and counts for five diseases

Disease Mean IOU Std. of IOU No. images

BPC 0.467 0.153 167

CVH 0.458 0.120 90

DWM 0.451 0.135 95

Hydrocephalus 0.566 0.111 200

Ventriculomegaly 0.541 0.114 177

Average 0.497 0.126 N/A

Discussion

Lower classification accuracies were obtained for the two
abnormal planes. As shown in Fig. 8, in the first line, the
normal TC planes (the left two images) and the normal TV
planes (the right two images) are incorrectly classified as
abnormal. We thought that the acoustic shadows appearing
in the images could possibly lead to adverse results. If a part
of the cerebellum and skull was shaded, the network was
likely to classify the images as abnormal.

We observed that the network failed for some abnormal
images. This failure may occur for a couple of reasons: the
poor quality of the images with more blur and the fewer
data with the abnormal planes. Moreover, some anomalies
are associated with only subtle findings [1]. As shown in
Fig. 8, in the second line, the left two images show the failed
abnormal TCplanes, and the right two images show the failed
abnormal TV planes. The shape of the key structure did not
have much deviations from the normal planes.

Note that the network worked on the 2D ultrasound
images, data form different machines and types (single-view,
split-view and video-frame) were mixed in dataset. The per-
formance of the network is not failed in cases of images from
a particular ultrasound machine/type.
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Fig. 7 The first three columns for each disease show correct bounding
boxes in green (IOU ≥ 0.5), and the last column shows an example of
an incorrect box in red (IOU < 0.5). The ground truth bounding boxes

are shown in white. a Hydrocephalus, b ventriculomegaly, c BPC, d
DWM and e CVH

In the localization task, some abnormal cases had lower
correlations (IOU < 0.5), as shown in Fig. 7, but we
observed that the identified localization never completely
omitted the lesions. The classifier was expected to learn the
symmetric structure of the fetal brain SANPs. In some cases,
the localization lost this symmetry and covered only one side
of the brain. Some examples were the cases of the posterior
fossa anomaly. In other cases, the outlines of the lesions were
ambiguous due to severe anomalies, which caused the net-
work to focus on multiple areas and draw larger bounding
boxes. Some examples of this issue were cases of hydro-
cephalus and ventriculomegaly disease.

Limitations

We demonstrated the ability of the algorithms to focus on
the lesions and the possibility of obtaining accurate localiza-
tion. The localization of lesions was currently based purely
on the CAM as shown in Fig. 4 and bounding box related
to an empirical parameter. Although such method high-
lighted potential lesions, the IOU of predicted lesion regions
by weak supervision was too low. More accurate methods
like object detection techniques [32,33] and more principled
back-propagated approaches as used in [3] should be consid-
ered to improve lesion localization.

Another limitation was the data used in our paper, which
were from the same center. More cases from different insti-
tutions should be considered for better robustness.
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Fig. 8 Examples of incorrectly classified images. The fail normal TC
(a, b) and normal TV (c, d) planes are incorrectly classified as abnormal
due to acoustic shadows (highlighted with arrows). The fail abnormal

TC (e, f) and abnormal TV (g, h) planes are incorrectly classified as
normal due to the difficult detection of subtle malformations

Additionally, the network only diagnosed images of fetal
brain transverse standard planes as normal or abnormal for
now. In clinical practice, sagittal and coronal planes are also
used by doctors in fetal neurosonographic assessment to
make a specific diagnosis, e.g., BPC, DWM and ventricu-
lomegaly, rather than normal or abnormal. We need further
researches to support more planes.

Last but not least, we removed the images with too much
acoustic shadows in this study. However, acoustic shadows
are likely lead to adverse results and often appear in real
ultrasonic images. Therefore, we shall evaluate the influence
in further researches.

Conclusion

In this paper, we developed the first algorithms for fetal brain
diseases diagnosis in prenatal ultrasound. Our algorithms
exploitedU-net [20] to segment the craniocerebral region and
VGG-net [11] network to distinguish the normal and abnor-
mal ultrasound images in TV and TC planes. The diagnosis
tasks performed well. Additionally, visualized evidence was
provided by the localization of the lesions. We believe our
algorithms could be potentially applied in diagnosis assis-
tance, and expected to help junior doctors in making clinical
decision and reducing false negatives of fetal brain abnor-
malities.
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