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Abstract
Purpose A highly accurate and robust computer-aided system based on quantitative high-throughput Breast Imaging Report-
ing and Data System (BI-RADS) features from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can
drive the success of radiomic applications in breast cancer diagnosis. We aim to build a stable systemwith highly reproducible
radiomics features, which can make diagnostic performance independent of datasets bias and segmentation methods.
Method We applied a dataset of 267 patients including 136 malignant and 131 benign tumors from two MRI manufacturers,
where 211 cases from a Philips system and 55 cases from a GE system. First, manual annotations, 3D-Unet and 2D-Unet
were applied as different segmentation methods. Second, we designed and extracted 3172 features from six modalities of
DCE-MRI based on BI-RADS. Third, the feature selection was conducted. Between-class distance was utilized to eliminate
the effect of dataset bias caused by two machines. Concordance correlation coefficient, intraclass correlation coefficient and
deviation were employed to evaluate the influence of three segmentation methods. We further eliminated features redundancy
using genetic algorithm. Finally, three classifiers including support vector machine (SVM), the bagged trees and K-Nearest
Neighbor were evaluated by their performance for diagnosing malignant and benign tumors.
Results A total of 246 features were preserved to have high stability and reproducibility. The final feature set showed the
robust performance under these factors and achieved the area under curve of 0.88, the accuracy of 0.824, the sensitivity
of 0.844, the specificity of 0.807 in differentiating benign and malignant tumors with the SVM classifier using manually
segmentation results.
Conclusion The final selected 246 features are reproducible and show little dependence on segmentation methods and data
perturbation. The high stability and effectiveness of diagnosis across these factors illustrate that the preserved features can be
used for prognostic analysis and help radiologists in the diagnosis of breast cancer.
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Introduction

Breast cancer is the most frequent cancer for women and
the main cause of cancer-related death all over the world. In
2018, about 268,670 new breast cancer cases are expected to
occur globally, accounting for 15.4% of all new cancer cases
(1,735,350) and 41,400 breast cancer deaths, accounting for
6.6% of all cancer deaths (609,640) [1]. Early detection and
diagnosis of cancer are critical so that treatment and prog-
nosis can be implemented to reduce the breast cancer death
rate. An advanced medical imaging technology is a pow-
erful evaluation tool in this field [2]. Many clinical studies
have shown that the dynamic contrast-enhanced magnetic
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resonance imaging (DCE-MRI) is very important for the
diagnosis of benign and malignant breast cancer due to the
dynamic enhancement of breast lesions [3].

The Breast Imaging Reporting and Data System (BI-
RADS)publishedby theAmericanCollege ofRadiology is to
give a comprehensive and standardized description of breast
tumors and offers the guidance for radiologists to categorize
breast lesions [4]. For the DCE-MRI, BI-RADS provides
seven assessment categories and includes four descriptors in
masses, which are the shape, margin, internal enhancement
characteristics and time-signal intensity curve (TIC) descrip-
tion [5]. The diagnoses highly rely on radiologists since they
make subjective predictable assessments based on BI-RADS
characteristics. Thus, a robust computer-aided system based
on BI-RADS is extremely important for widespread use to
help improve radiologists’ diagnosis performance.

However, the stability of a computer-aided system has
been influenced by several factors including the dataset bias
frommachines, segmentation methods, feature sets and clas-
sifiers. First, machines from differentmanufacturers use their
own image acquisition and reconstruction schemes, causing
various gray distributions ofDCE-MR images. Second, since
the breast tumor occurs inmultiple layers ofMRI and borders
are blurred, different radiologists outline incompletely coin-
cident boundaries. Besides, automatic methods may neither
achieve predictable tumor contours. The variability in data
perturbations and segmentation methods may lead to large
uncertainty in BI-RADS features. Thus, the stability and
reproducibility of radiomics features across different scans
and segmentation methods should be investigated before
these features are used in a computer-aided diagnosis sys-
tem.

Our study aims to build a robust computer-aided system
based on radiomics features with high reproducibility, stabil-
ity and classification ability across dataset bias, segmentation
methods and classifiers. The experiments were developed on
3172 high-throughputDCE-MRI features extracted from267
breast cases from two machines (Philips and GE) based on
tumor regions segmented by three different methods (manual
annotations, 3D U-Net, 2D U-Net). The diagnostic perfor-
mances of distinguishing malignant and benign tumors were
evaluated on the final selected stable feature set by three clas-
sifiers [the support vector machine (SVM), the bagged trees
and K-Nearest Neighbor (KNN)].

The innovations of our proposed methods mainly include
four aspects. (1)We use breast MRI BI-RADS to standardize
high-throughput features for a detailed and comprehensive
description of breast tumors in the DCE-MRI. (2) A stable
and reproducible feature set is selected against the dataset
bias frommachines and segmentationmethods. (3) Fourmet-
rics including concordance correlation coefficient (CCC),
intraclass correlation coefficient (ICC), deviation (Dev) and
between-class distance (BD) are applied for features repro-

ducibility and stability evaluation. (4) Experimental results
demonstrate that the selected feature set shows stable and
great performance of distinguishing benign and malignant
tumors by different classifiers.

The proposed method included four parts: image segmen-
tation, radiomics features extraction, features selection and
tumor diagnosis. Figure 1 shows the flow chart of the entire
method.

Materials andmethods

Dataset

A total of 267 patients with breast tumors include 211 cases
from a Philips 3-T system (Achieva or Ingenia; Philips Med-
ical Systems, Best, the Netherlands) and 55 cases from a
GE 3-T system (Signa HDxt; GEMedical Systems, Milwau-
kee, WI, USA) were acquired in Renji Hospital, School of
Medicine, Shanghai Jiao Tong University, Shanghai, China
from Jan. 2018 to June 2019. The datasets summary is present
in Table 1. The dynamic series consisted of five individual
dynamic phases: one was obtained before and four after the
rapid bolus intravenous injection of 0.1 mmol of gadopente-
tate dimeglumine per kilogram of body weight and a 10-mL
saline solutionflush.Eachphasewas imagedbya1-min inter-
val. The image size range is from 384×384×150 to 672×
672×150 mm. The voxel spacing range is from 0.5652×
0.5652×0.99 to 0.8102×0.8102×1 mm. All images are
collectedwith the institutional reviewboard approval, includ-
ing a waiver of informed consent.

Tumor segmentation

Segmentation is an important part of feature extraction since
many features are based on the mass region. The slight dif-
ference of tumor boundaries among segmentation methods
may lead to feature values’ huge varieties. To eliminate the
influence of segmentation methods, we compare the man-
ual result annotated by the high-experienced radiologist and
automatic results by a state-of-the-art deep learning-based
method named no-new-Net (nnU-Net) [6].

For the manual segmentation method, a high-experienced
radiologist annotated the contour of each tumor by the
software Ziosoft (Ziosoft, Inc., Tokyo, Japan), which is con-
sidered as the ground truth.

For automatic segmentation methods, the nnU-Net is
applied including two steps: preprocessing and deep learning
model with the first post-contrast phase of breast DCE-MRI
series as input. Firstly, the preprocessing includes cropping
original images to the region of nonzero values, resam-
pling to the same voxel spacing in three dimensions and
zero-mean (z-score) normalization [7]. Then, to access dif-
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Fig. 1 The workflow of the
proposed radiomics method,
including data input, feature
selection, 3D feature extraction
and diagnosis. The data input
consist of images from two
machines and segmentation
from three methods

3D Feature Extraction
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Table 1 Dataset summary

Machine Benign cases Malignant cases Total

Philips 99 112 211

GE 32 23 55

All 131 136 267

ferent segmentation results, we adopt two deep learning
models that include 3D U-Net and 2D U-Net [8] for the
comparison. These two networks apply the same convolu-
tional encoder–decoder architecture with 3D convolutions
and 2D convolutions, respectively. The shrink path which
is also considered as an encoder captures the image context
which comprises six convolution layers. Thefirst convolution
layer uses two convolutional blocks consisting of convolu-
tion, instance normalization and Leaky rectified linear units
(ReLU). The strided convolutional block is utilized to replace
max pooling in the next four layers. The extended path which
is considered as a decoder is employed for precise position-
ing with the transposed convolution and constructed by five
layers. The first four layers consist of the convolutional block
and the strided convolutional block. The last softmax layer
to classify each pixel includes two convolutional blocks and
one convolution (1×1×1 for 3D U-Net and 1×1 kernel

size for 2D U-Net). The other convolution is with the kernel
size of 3×3×3 for 3D U-Net and 3×3 for 2D U-Net). To
transfer information that may be lost in the encoder path, the
skip connections are utilized in the concatenation of outputs
from the encoder path and the output of subsequent layers.

High-throughput feature extraction

Image phasesWe extract features from six DCE-MRI phases
including one non-contrast phase, four post-contrast phases
and one designed time-intensity signal map. An example of
six phases is shown in Fig. 2.

The designed new MRI modality time-intensity signal
map is inspired by TIC-related characteristic to compre-
hensively reflect the tumor enhancement. The calculation
process is similar to the TIC-related feature but based on
each pixel value rather than only the mass region from five
phases. The specific method is as follows. The enhancement
rate (percentage of signal intensity increase) is qualified by
the formula:

Stic � Spost − Snon
Snon

× 100 (1)
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(a) (b)

(d) (e) (f)

(c)

Fig. 2 An example of breast DCE-MRI showing a strongly enhancing lesion in the under outer quadrant (yellow arrow). a Non-contrast phase from
DCE-MRI; b–e post-contrast phases after enhancement; f the designed Time-signal Intensity Map

where Spost and Snon are the post-contrast and non-contrast
signal intensities, respectively. The estimation applies the
linear regression, where the mean value of the mass region
in Spost is the response data calculated by Eq. (1) and the
image acquisition time is the predictor data. The coefficient
estimation frommultiple linear regression is the value of each
pixel on the time-signal intensity map.

Feature extraction The extracted high-throughput 3D
features are designed based onbreastMRIBI-RADSdescrip-
tion, as illustrated in Table 2. According to MRI breast
BI-RADS descriptors, 528 features are extracted in each
phase separately and four features are calculated by non-
contrast and post-contrast phases. In total, we extracted 3172
radiomic features that are grouped into four main categories
including 18 intensity features, 39 texture features, 15 struc-
tural features, 456wavelet feature and 4TIC features. Table 3
illustrates all breast MRI BI-RADS high-throughput fea-
tures.

Intensity features reflect histogram distributions and gray
levels. The total 18 features are acquired in the mass
region from the original MRI phases. Structural features are
employed to reflect the shape, margin and internal enhance-
ment characteristics as introduced in BI-RADS as shown in
Table 2.

Texture features describe the gray-level variations of
images in detail. Four types of texture features are catego-

Table 2 A brief BI-RADS description of breast tumor in MRI

Focus Category Description

Masses Shape Oval

Round

Irregular

Margin Circumscribed

Not circumscribed
-Irregular -
Spiculated

Internal
enhancement
characteristics

Homogeneous

Heterogeneous

Rim enhancement

Dark internal
septations

Kinetic curve
assessment

Initial phase Slow

Medium

Fast

Delayed phase Persistent

Plateau

Washout

rized to highlight different tumor features that may not be
visible in the original image [9]. Gray-level co-occurrence
matrix (GLCM) [10] texture features reflect the specified
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Table 3 Summary of the quantitative high-throughput features

Type Name Number

Intensity Energy, h-entropy, kurtosis, max, mean absolute deviation, mean, media, min, range, root mean square, skewness, standard
deviation, h-uniformity, variance, h-mean, h-variance, h-skewness, h-kurtosis

18

Texture GLCM(8) Energy, contrast, correlation, homogeneity, variance, sum average, entropy, dissimilarity 39

GLRLM(13) Short run emphasis, long run emphasis, gray-level nonuniformity, run-length nonuniformity, run
percentage, low gray-level run emphasis, high gray-level run emphasis, short run low gray-level
emphasis, short run high gray-level emphasis, long run low gray-level emphasis, long run high gray-level
emphasis, gray-level variance, run-length variance

GLSZM(13) Small zone emphasis, large zone emphasis, gray-level nonuniformity, zone-size nonuniformity, zone
percentage, low gray-level zone emphasis, high gray-level zone emphasis, small zone low gray-level
emphasis, small zone high gray-level emphasis, large zone low gray-level emphasis, large zone high
gray-level emphasis, gray-level variance, zone-size variance

NGTDM(5) coarseness, contrast, busyness, complexity, strength

Structure Compactness, compactness-square, max-length, spherical disproportion, sphericity, superficial-area, surface to volume ratio,
volume, region to bounding-box ratio, max major-length, min -length, eccentricity, orientation, solidity, Fourier-descriptors

15

Wavelet LLL HLL LHL HHL LLH HLH LHH HHH decomposition 456

TIC Initial phase regression, delayed phase regression 4

spatial linear relationships between the frequencies of two
gray levels within a certain range. Gray-level run-length
matrix (GLRLM) [11, 12] checks the runs of a set of con-
secutive collinear image points with the same gray value
in a given direction, which describes the coarseness of the
texture. Gray-level size zone matrix (GLSZM) [13] pro-
vides a statistical representation by estimating a binary
conditional probability density function of image distri-
bution values. Neighborhood gray-tone difference matrix
(NGTDM) measures the gradation of each pixel to its
grayscale difference between adjacent pixels to describe the
spatial changes in the intensity or dynamic range of intensity
[14].

To reflect more detailed information of images, wavelet
decomposition features are introduced to decompose a
two-dimensional image into four components which are
Low pass/Low pass (LL), Low pass/High pass (LH), High
pass/Low pass (HL) and High pass/High pass (HH). Each
component containing 114 features, and there are 456
wavelet features in total [9].

In addition, four features are designed based on the TIC
description in BI-RADS to evaluate the relative enhancement
before and after the injection of gadopentetate dimeglumine.
The kinetic curve assessment includes the initial phase and
delayed phase, which are calculated in the mass region. The
enhancement of the former two post-contrast phases and the
former three post-contrast phases are assessed as the ini-
tial phase enhancement description. The enhancement of the
last three post-contrast phases and all post-contrast phases
are assessed as the delayed phase enhancement descrip-
tion.

Feature selection

Feature selection from dataset bias

The radiomic-based approach ought to be robust against var-
ious machines. However, different machines may cause the
intensity and noise discrepancy. The distribution of each fea-
ture is utilized to eliminate the influence of two frequently
used machines: Philips and GE. The between-class distance
(BD) is the normalized distance between two feature sets and
employed to measure the distribution differences:

BDi �
∣
∣
∣μFmanui

− μFautoi

∣
∣
∣

√

σ 2
Fmanui

+ σ 2
Fautoi

(2)

where μFmanui
和 σ 2

Fmanui
, μFautoi

和 σ 2
Fautoi

are the mean

and standard deviation of the i th feature for Philips and GE
images. In this study, a relatively high BD value means that
features calculated from these two machines are dissimilar
and non-repeatable. Elements with a BD value of less than
0.2 are defined as reproducible features.

Feature selection from segmentation methods

The automatic results acquired by nnU-Net and the manual
segmentation by radiologists are applied to assess the feature
stability. This step is to eliminate the effect of segmentation
methods. Three metrics are calculated to evaluate the fea-
tures’ similarities.
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The first metric is the concordance correlation coefficient
(CCC) [15] tomeasure the agreement between two variables,
defined as:

CCC � 2Sab

S2a + S2b +
(

ā − b̄
)2 (3)

where ā and b̄ are the mean values of variables a and b. S2a
and S2b are the corresponding variances. Sab is a correlation
coefficient between a and b. Elements with a CCC value
of more than 0.9 are defined as a high agreement between
features.

The second metric is deviation (Dev), which demon-
strates the relative differences between manual segmentation
features and automatic segmentation features. The average
deviation of the i th feature Devi is defined as follows:

Devi � 1

N

N
∑

n�1

∣
∣Fmanun,i − Fauton,i

∣
∣

∣
∣Fmanun,i

∣
∣

, i � 1, 2, . . . , I (4)

where Fmanun,i and Fauton,i are the i th feature extracted by
manual segmentation and automatic segmentation for the nth
patient, respectively. N is the number of all cases, which is
267 in our work. I is the feature number, which is 3172.
Elements with a Dev value less than 0.1 are considered as
the low differences between features.

The third metric is the intraclass correlation coefficient
(ICC) [16], which describes how strongly units in the same
group resemble eachother in statistics. The features consist of
N paired data values for manual segmentation and automatic
segmentation. ICC is defined as:

ICCi � 1

Ns2i

N
∑

n�1

(

Fmanun,i − F̄i
)(

Fauton,i − F̄i
)

(5)

where

F̄i � 1

2N

N
∑

n�1

(

Fmanun,i + Fauton,i

)

(6)

s2i � 1

2N

{
N

∑

n�1

(

Fmanun,i − F̄i
)2

+
N

∑

n�1

(

Fauton,i − F̄i
)2

}

(7)

Elements with an ICC value of more than 0.9 are considered
as a high similarity between features.

Redundancy elimination

It is also necessary to eliminate redundancies of high-
throughput features. The genetic algorithm (GA) is a stochas-
tic optimization process of natural selection and genetic
variation during simulating biological evolution. ThemRMR

algorithm is an approximation of the theoretically best depen-
dent feature selection algorithm. It maximizes the mutual
information between the selected feature’s joint distribu-
tion and categorical variables, therefore enabling the genetic
algorithm to operate this function at a very low cost. Here,
we combine the genetic algorithm (GA) method and the
minimal-redundancy-maximal-relevance (mRMR) to reduce
feature redundancy and select a feature set that maximizes
the relevance and minimizes the redundancy [17]. Finally,
a stable and representative feature set for the DCE-MRI is
preserved.

Breast tumor diagnosis

The final selected features were then fed into classifiers to
verify the efficiency of distinguishing benign and malignant
tumors in breast MR images. Features are extracted on three
segmentation results of the samedataset, respectively, to eval-
uate the influence of segmentationmethods on the final stable
feature set. Also, cases from two machines are compared
to access the reproducibility of the final feature set for the
dataset bias. Three classifiers including the support vector
machine (SVM) classifier [18], the bagged trees [19] and K-
Nearest Neighbor (KNN) [20] are employed to eliminate the
influence of classifiers and verify the robust performance for
different situations, as presented in Fig. 1.

Experiments and results

Evaluationmetrics

The Dice score metric is used to evaluate the accuracy of
segmentation results, as defined in Eq. (1).

Dice
(

bwgt, bwseg
) � 2

∣
∣bwgt ∩ bwseg

∣
∣

∣
∣bwgt

∣
∣ +

∣
∣bwseg

∣
∣

(8)

Five metrics are used to evaluate the overall perfor-
mance for these classifiers including the area under the ROC
curve (AUC), accuracy (ACC), sensitivity (SENS), speci-
ficity (SPEC) and precision (PREC):

ACC � TP + TN

TP + TN + FP + FN
, SENS � TP

TP + FN
,

SPEC � TN

TN + FP
, PREC � TP

TP + FP

where TP and FN represent the number of correctly and
incorrectly classified malignant tumors, TN and FP refer
to the number of correctly and incorrectly classified benign
tumors, respectively.

All images processing was performed on MATLAB
R2018b (MathWorks, Inc., Natick, MA, USA).
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Manual 3D U-Net               2D U-Net

Fig. 3 An example of breast DCE-MRI segmentation by three methods: manual annotation by the radiologist, nnU-Net based on 3D U-Net and 2D
U-Net models

Tumor segmentation

We used three segmentation methods including radiologist
annotations, nnU-Net with 3D U-Net and 2D U-Net model.
Figure 3 shows the result comparison for the sameDCE-MRI.
The network used the Adam optimizer, a batch size of 2 and
19 for 3D U-Net and 2D U-Net, respectively, and epochs
of 250 iterations. In addition, the adaptive adjustment strat-
egy was utilized for the learning rate in the training process,
where the initial learning rate was 3×10−4 and was reduced
by a factor of 0.2 if the training loss no longer improved after
30 epochs. The training stopped if there was no improve-
ment in the loss after 50 epochs. During the experiments,
we conducted a variety of data augmentation techniques on
our limited training data, including mirroring, random scal-
ing, gamma correction augmentation, random rotations and
random elastic deformations.

Manual segmentation is regarded as the ground truth,
while the automatic segmentation methods nnU-Net with 3D
U-Net and 2DU-Netmodel achieved the dice score of 0.8 and
0.7, respectively. They were applied to extract features and
compare their diagnostic performance to verify that the diag-
nosis performance of the selected feature set is not affected
by segmentation results.

Feature selection

First, to evaluate the influences of different machines, 211
cases from Philips and 55 cases from GE are employed. The
lower BDs result in more reproducible features under the
effect of machines. A total of 954 features were found to
be reproducible (BD<0.2). The gray-intensity-related fea-
tures are mostly eliminated such as the intensity, texture
and wavelet features. Second, to eliminate the influence of
segmentation methods, features whose CCC>0.9, Dev<0.1,
ICC>0.9 were preserved as reproducible features, resulting

in 967 features remaining. The results show that shape-
related and margin-related features were more likely to be
affected by segmentation boundaries. Then, the intersection
set of above features remained 563 features, which was then
eliminated redundancy by the GA. For GA algorithm, the
number of individuals is set as 50, the maximum genetic
generation is 30, the binary value of variables is 24 and the
generation gap is 0.9. Finally, 246 features were preserved as
illustrated in Table 4, which can comprehensively describe
all BI-RAD categories.

Diagnostic performance

There are three main experimental factors, which can poten-
tially affect the prediction of radiomic-based tumor classi-
fication: segmentation method, dataset bias and classifiers.
The training and testing cases were randomly selected from
all datasets, accounting for 80% and 20% of all patients,
respectively.

The stability comparison of different feature set

The diagnosis performance experiments to compare the sta-
bility of feature set were conducted based on three features
including all 3172 features, 563features before redundancy
elimination by GA and the final selected 246 features. The
classifier applied SVM with Linear kernel. The results are
presented in Table 5.

The influence of segmentation methods and classifiers

The diagnosis performance experiments to classify tumors
into benign and malignant ones were conducted based on
the final selected 246 features. The evaluation of features
reproducibility and stability includes two machines, three
segmentation methods and three classifiers. First, manual
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Table 4 The final stable feature set and the links between the remaining features and BI-RADS descriptors

Descriptors Features Numbers

Shape max major-length, max-length, min-length, orientation, spherical disproportion,
superficial-area, volume

18

Margin Variance of annular region; Annular region SNR; Std of annular region; Variance of annular
region

15

Internal enhancement characteristics Kurtosis, mean, energy, entropy, mean, variance, kurtosis, max, mean absolute deviation,
media, range, root mean square, solidity, standard deviation, variance, GLCM-contrast,
GLCM-correlation, GLCM-dissimilarity, GLCM-entropy, GLCM-homogeneity,
GLCM-sum average, GLCM-variance, GLRLM-GLN, GLRLM-GLV, GLRLM-HGRE,
GLRLM-LRE, GLRLM-LRHGE, GLRLM-LRLGE, GLRLM-RLN, GLRLM-RLN,
GLRLM-SRHGE, GLRLM-SRLEG, GLSZM-LZE, GLSZM-SZE, GLSZM-SZHGE,
GLSZM-ZP, GLSZM-ZSN, GLSZM-ZSV, NGTDM-busyness, NGTDM-coarseness,
NGTDM-complexity, NGTDM-strength

211

Initial phase Regression of the first three phases 1

Delayed phase Regression of the last three phases 1

The same feature names extracted by different phases or wavelets are only listed once
All abbreviations are used by Initials of features in Table 3

Table 5 The diagnostic performance of different feature set with three
segmentation results by the classifier SVM

Classifier Ground truth Segmentation
dice � 0.8

Segmentation
dice � 0.7

3172 features

ACC 0.775 0.749 0.726

SPEC 0.753 0.714 0.674

PREC 0.717 0.648 0.549

563 features

ACC 0.782 0.786 0.782

SPEC 0.763 0.768 0.774

PREC 0.732 0.74 0.755

246 features

ACC 0.824 0.820 0.813

SPEC 0.807 0.810 0.80

PREC 0.786 0.794 0.79

and automatic segmentation results were utilized to extract
features and verify that the diagnosis performance of the
selected feature set is not affected by segmentation results.
Second, three classifiers were utilized to validate the adap-
tation ability of the final feature set to different classifiers.
The kernel function applied in SVM is Linear kernel. For
KNN, the number of neighbors is set as 10, and distance
metric is cosine where the distance weight is equal. The
number of Bagged trees learners is 30. The results are pre-
sented in Table 6. Manual segmentation is regarded as the
ground truth, while the 3D U-Net and 2D U-Net model
achieved the dice score of 0.8 and 0.7. Figure 4 shows the
ROC curve of different classifiers on the same segmentation
results. When applying the same classifier, the diagnostic

Table 6 The comparison results of different segmentation results on
three classifiers

Classifier Ground truth Segmentation
dice � 0.8

Segmentation
dice � 0.7

SVM

AUC 0.88 0.88 0.87

ACC 0.824 0.820 0.813

SENS 0.844 0.832 0.830

SPEC 0.807 0.810 0.80

PREC 0.786 0.794 0.79

Bagged trees

AUC 0.82 0.84 0.85

ACC 0.783 0.771 0.779

SENS 0.783 0.802 0.795

SPEC 0.783 0.748 0.765

PREC 0.771 0.710 0.740

KNN

AUC 0.82 0.82 0.82

ACC 0.760 0.756 0.749

SENS 0.759 0.779 0.754

SPEC 0.761 0.738 0.744

PREC 0.748 0.702 0.725

performances show slight differences among ground truth-
based features and automatic segmentation-based features.
The reproducible features show great and stable discrim-
inations between benign and malignant tumors under the
circumstances of different segmentation results, indicating
that they are effective and robust in breast tumor diagnosis.
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The influence of dataset bias

The performance of DCE-MRI cases from twomachines was
also compared. For a fair comparison, manual segmentation
and SVM classifiers were applied. The experimental results
are presented in Table 7. Our method achieved the AUC of
0.88 and 0.87 for Philips and GE cases. The final feature
set held a similar classification performance on machines of
Philips and GE, which demonstrates that the selected fea-
tures have great reproducibility and stability even with the
influence of dataset perturbations from machines.

Discussion

We conducted the feature selection to eliminate the influence
of dataset bias and segmentation methods and the diagnosis
of malignant and benign tumors to verify the effectiveness
of our selection strategy. For different segmentation methods
experiments, the texture and ROI-based features are of high
repeatability and stability mainly since the calculated area is
mostly related to the mass inside the region. Some GLCM,
GLRLM and GLSZM functions meet the cutoffs, which can
be explained as the gray matrix reflects the intensity change
of the entire tumor area. Apart from them, other features
are easily affected by the segmentation results. Boundary-
related and structural features show low repeatability because
these features reflect the relative differences between the out-
side and inside of tumor boundaries which are sensitive to
contours [9]. From Table 5, all extracted features are not sta-
ble with different segmentation results as input and achieve
unstable diagnostic performance. After feature selection of
eliminating the influence of segmentation methods, the 563
features calculated by different segmentation results achieve
similar diagnostic performance with ACC of 0.78. However,
without redundancy elimination by GA, the performance

Table 7 The comparison diagnostic performance of the same feature
set on different machines applying the manual segmentation and SVM

Machine AUC ACC SENS SPEC PREC

Philips 0.88 0.829 0.835 0.825 0.802

GE 0.87 0.811 0.869 0.767 0.741

All 0.88 0.824 0.844 0.807 0.786

shows relatively low ACC, SPEC and PREC compared with
the final selected feature set as input.

The segmentation method achieved the dice score of 0.8
and 0.7 for uuU-Net with 2DU-Net and 3DU-Net models. It
shows that 3Dmodels perform better than 2Dmodels since in
the 3D network, one case is processed as a single subject and
the continuous information of adjacent slices can be accessed
in a 3D convolution of networks. The diagnosis experiments
illustrate that even the segmentation shows discriminations
which can be seen in Fig. 3, and the final feature set stillmain-
tains the great classification performance.Also, the diagnosis
performanceof different segmentationmethods on three clas-
sifiers experiments presents similar results which show that
the feature set is stable and robust for each classifier. From
Table 6, SVM shows better performance under the situation
of groudtruth contours with the AUC of 0.88 than Bagged
tree and KNN with the same AUC of 0.82. For segmentation
results with the dice score of 0.8, the diagnostic performance
is increased from 0.82, 0.84 to 0.88 by applying different
classifiers of KNN, Bagged Tree and SVM, respectively.

For dataset bias experiments, machines mainly affect gray
intensities of the DCE-MRI. Therefore, the intensity, texture
and wavelet features are the main concerns for eliminat-
ing the influence of machines. The texture features and the
intensity-related features such as the grayscale and histogram
are easily affected by machines and relatively more unrepro-
ducible. Compared with intensity and texture features, the
performance of wavelet features is still poor. The diagnosis

Fig. 4 ROC curves of different classifiers (yellow: SVM; red: Bagged trees; blue: KNN) by the final feature set extracted on segmentation of
a ground truth; b 3D U-Net, dice � 0.8; c 2D U-Net, dice � 0.7
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performance of different machine shows slight discrimina-
tion, illustrating that our final feature set is robust and solves
the problem of dataset bias. The stability of the machine
makes the high-throughput BI-RADS function a possibility
for future classification or prognosis in multicenter clinical
diagnosis.

Conclusion

In this work, we proposed an effective, robust and stable
breast tumor diagnosis system with little dependency on the
segmentation methods and dataset perturbations. To assess
the uncertainty of quantitative imaging features extracted
from the DCE-MRI, we conducted the feature selection
across three segmentation methods, two machines and three
classifiers. The persevered features can give a comprehen-
sive description of breast MRI BI-RADS. In addition, the
classification experiments of malignant and benign tumors
demonstrate that our reproducible features have high sta-
bility and great diagnostic performance. These BI-RADS
features could be used for breast tumor analysis in the
future. Our future work will focus on the reproducible fea-
tures’ application and the combination of deep learning and
radiomic-based methods for breast tumor analysis in the
DCE-MRI. Overall, our variability analysis of reproducible
quantitative BI-RADS features is a step forward toward the
enhancements of radiomic-based clinical predictions.
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