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Abstract
Purpose The registration of a preoperative 3D model, reconstructed, for example, from MRI, to intraoperative laparoscopy
2D images, is the main challenge to achieve augmented reality in laparoscopy. The current systems have a major limitation:
they require that the surgeon manually marks the occluding contours during surgery. This requires the surgeon to fully
comprehend the non-trivial concept of occluding contours and surgeon time, directly impacting acceptance and usability.
To overcome this limitation, we propose a complete framework for object-class occluding contour detection (OC2D), with
application to uterus surgery.
Methods Our first contribution is a new distance-based evaluation score complying with all the relevant performance criteria.
Our second contribution is a loss function combining cross-entropy and two new penalties designed to boost 1-pixel thickness
responses. This allows us to train a U-Net end to end, outperforming all competing methods, which tends to produce thick
responses. Our third contribution is a dataset of 3818 carefully labelled laparoscopy images of the uterus, which was used to
train and evaluate our detector.
Results Evaluation shows that the proposed detector has a similar false false-negative rate to existingmethods but substantially
reduces both false-positive rate and response thickness. Finally, we ran a user study to evaluate the impact of OC2D against
manuallymarked occluding contours in augmented laparoscopy.We used 10 recorded gynecologic laparoscopies and involved
5 surgeons. Using OC2D led to a reduction of 3 min and 53 s in surgeon time without sacrificing registration accuracy.
Conclusions We provide a new set of criteria and a distance-based measure to evaluate an OC2D method. We propose an
OC2D method which outperforms the state-of-the-art methods. The results obtained from the user study indicate that fully
automatic augmented laparoscopy is feasible.

Keywords Edge detection · Distance-based score · Edge detector evaluation · Convolutional neural network · Deep learning ·
Laparoscopy · Augmented reality

Introduction

Augmented monocular laparoscopy requires the registration
of a preoperative 3Dmodel to laparoscopy images. As shown
in Fig. 1, the state-of-the-art registration systems [2,4,10]
rely on visual cues extracted from laparoscopy images, espe-
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cially the organ’s occluding contours. For a given imaged
object, an occluding contour refers to any boundary frag-
ment where the object is an occluder, and is thus part of
the object’s silhouette. The occluding contours are essential
to constrain the registration of a deformable biomechanical
model, as shown for the uterus [4] and the liver [2,10]. These
systems are well advanced in terms of registration computa-
tion.However, they require the surgeon tomark the occluding
contours manually on laparoscopy images during surgery.
This significantly reduces the acceptance and usability of
augmented laparoscopy because the concept of occluding
contour is non-trivial and marking them requires surgeon
time. We propose to detect the organ’s occluding contours
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Fig. 1 (Left) In augmented laparoscopy, the preoperative 3D model is
registered by fitting the occluding contours of the organ in laparoscopy
images. The current systems require the surgeon to mark these contours
manually during surgery. (Right) An occluding contour arises at an
organ boundary where the organ occludes another structure, as opposed

to an occlusion boundary where the organ is occluded by another struc-
ture. The set of occluding contours is the silhouette. OC2D is the task of
detecting the occluding contours for a specific object, here the uterus.
It forms a task of semantic detection far more challenging than organ
segmentation

automatically in order to build the critically missing compo-
nent needed to automatise the existing systems.We tackle the
general problem, which we refer to as object-class occluding
contour detection (OC2D) and specialise our detector to the
uterus.

OC2D is an open problem, closely related to semantic
edge detection and occlusion boundary detection. Seman-
tic edge detection finds the boundary of objects and is
somehow dual to semantic segmentation. The early meth-
ods relied on edges, located on abrupt brightness changes
[3,8,15]. However, object boundaries do not always lie on
edges, especiallywhen the object and background colours are
similar. Recent CNN-based approaches thus combine higher-
level features with learnt shape and appearance object priors
[12,24,26]. Occlusion boundary detection finds the boundary
of all objects and classifies them according to their occlusion
relationship. This classification makes the task more difficult
than semantic edge detection. CNN-based approaches have
shown to perform well over a large number of object classes
in natural images. OC2D combines the difficulty of a specific
object class and of the occlusion relationship. Its application
to the uterus in laparoscopy images increases the difficulty
as the colours are clearly not discriminative. The literature
lacks a specific solution method for OC2D, as well as several
critical parts which we discuss in the next paragraphs.

The first missing part for OC2D is an evaluation score
complying with all the relevant performance criteria. Three
performance criteria were defined by Canny in 1986 for edge
detection in his seminal work [3]: C1, true contours should
not be missed and responses not spurious; C2, responses
should be close to true contours, and C3, each true con-
tour should only produce a single response. As discussed
in [13,14], the evaluation scores used in the literature fail
one or several of Canny’s criteria. Most of them are derived
from classification frameworks and rely on precision-recall
measures at the pixel level. They fail C2 as they equally
penalise mislocalised responses irrespective of their distance

to true contours. The use of a tolerance region allowing one
to consider slightly mislocalised responses as true responses
is used in [8,15]. Yet, their score fails C2 as the response-
to-true contour distance is not considered. They also fail C3
as several responses can match a true contour within the tol-
erance region. In contrast, we propose an evaluation score
complying with all of Canny’s criteria and with two other
proposed criteria. These, named C4 and C5, ensure that the
score is left invariant by changing object deformation, cam-
era intrinsics and pose. They are important because we want
the occluding contours to equally constrain registration over
the set of images. Specifically, for a given object and amount
of occlusion, we have that the score should be invariant to:
C4, image resolution and C5, the amount of true contours.
We compare the proposed score to existing ones [13–15] on
synthetic contours.

The second missing part for OC2D is the detector itself,
specifically the loss to train a CNN end to end. Using a CNN
is a natural approach, as in related tasks [1,5,16,22,23,25,26].
These methods do not address OC2D specifically but reveal
the important potential problem of thick responses [1,5,25].
These approaches require complex learning pipelines and a
large body of training data. In contrast, we propose an end-
to-end OC2D method which encourages 1-pixel thickness
responses. We use a U-Net, and our contribution lies in a loss
combining cross-entropy with two new penalties we call BiP
and TiP for binarising the outputs and thinning the contours.
We propose training strategies with these penalties.

The thirdmissingpart forOC2D is adataset, specifically in
laparoscopy. Existing datasets [11,18,20,21] do not comprise
labels for anatomical structures and the type of occlusion.
We propose a dataset of 3818 carefully labelled laparoscopy
images of the uterus meant to address gynecologic surgery.
The labels are as in Fig. 1, the occluding contours, the occlu-
sion boundaries and the connection contours of the uterus.

We evaluated our detector on randomly chosen test images
from the proposed dataset.We usedU-Net trainedwith cross-
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entropy as baseline. We also compared with CASENet [26],
which we specialised to OC2D for the uterus. All three
methods show similar FN (false-negative) rates, but ours is
substantially better in terms of FP (false-positive) rate and
thickness of response fragments.

Lastly, we conducted a user study to evaluate the gain of
using OC2D in augmented laparoscopy in an existing sys-
tem [4], against manual marking by the surgeon. The user
study was performed on 9 recorded laparoscopy videos and
involved 5 surgeons. Intraoperative surgeon time was sub-
stantially reduced, registration accuracy was preserved, and
the system became usable by any surgeon, without the need
to understand the concept of occluding contour. This con-
firmed the crucial importance of automation in augmented
laparoscopy.

Related work

Evaluation score The principle of the score from [8,15] is
widely used in semantic edge detection [1,25,26]. The score
is based on precision-recall obtained by matching responses
and true edges. It also uses a tolerance region to deal with
spurious responses. Unfortunately, the matching requires to
solve the minimum flow over a bipartite graph, which is
in practice only solvable approximately. Also recall that
the score fails C2. An exhaustive list of scores for edge
detection is given in [13], following three categories: local,
statistical and distance-based. Strong arguments in favour
of distance-based scores are given in [14], which gives a
thorough comparison and proposes a distance-based score
integrating the number of FP and FN. These are, however,
unequally weighted, causing the score to be overly sensitive
to spurious responses, failing C3–C5. In contrast, the score
we propose shares the same desirable features but gracefully
copes with spurious responses.

Detection methods and loss OC2D has not been specifically
addressed in the literature, but semantic edge detection and
occlusion boundary detection are closely related tasks. For
both, the best results are currently obtained with CNNs. In
semantic edge detection, the task is to detect the boundary
of multiple specific objects [1,5,12,25,26]. Weighted cross-
entropy is commonly used to compensate the imbalanced
distribution between the edge and non-edge classes over the
image. This weighting, however, has the negative effect to
favour response fragments thicker than the true edges. How-
ever, [1,25] suggest that these may be due to the imperfect
labelled contours and adjust them during training to address
this problem, while [1,5] propose a specific loss based on the
reciprocal Dice coefficient.

In occlusion boundary detection, the task is to detect all
occlusion boundaries in the image. Existing methods use a

two-stage approach, where the object boundaries are first
detected and then ordered depthwise. Some methods use a
shared encoder and multiple decoders. SharpNet [16] uses
a U-Net with three decoders to predict depthmaps, occlud-
ing contours and normals. Other methods [7,22,23] combine
two parallel streams estimating boundary location and occlu-
sion orientation. In [22], a specific loss is proposed to boost
detection nearby class-agnostic object boundaries once the
cross-entropy loss stalls.

Our proposed detector designed for OC2D takes inspira-
tion from these related tasks. We use a U-Net and weighted
cross-entropy as most methods. Similarly to [22], we boost
the detection oncemere cross-entropy stalls by adding penal-
ties. The penalties we propose are, however, radically new.
Our binarising penalty favours binary responses of the net-
work to encourage sharp contour maps, and our thinning
penalty favours well-localised responses to encourage thin
contours.

Datasets There exist datasets of labelled laparoscopy images
for supervised learning-based detection of surgical actions
[11], surgical phases [18,21] and anatomical structures [11].
These datasets are procedure specific, namely cholecys-
tectomy [11,18,21] and fibroid resection [11,20]. There
exist datasets for semantic segmentation of robotic surgi-
cal instruments, stereo correspondence and reconstruction in
endoscopy [9]. However, there do not exist public datasets
of laparoscopy images labelled for semantic segmentation of
the anatomical structures. The proposed dataset is thus the
first of its kind. It includes advanced organ boundary infor-
mation, namely the occlusion boundary, occluding contour
and connection contour, carefully labelled on 3818 images
extracted from various procedures.

Evaluation score

We propose a contour evaluation score complying with the
five performance criteria C1–C5. We then compare it with
existing scores.

Formulation and compliance with the five
performance criteria

Formulation Let I be the set of all image pixels coordi-
nates, C ⊂ I the true contours and R ⊂ I the responses
of a contour detector. We use a tolerance distance dmax such
that a missed contour is defined as a true contour with no
response located at a distance lower than dmax from it and a
spurious response is a response located at a distance greater
than dmax from true contours. In practice, dmax is chosen
as 2% of the image diagonal [8]. A missed contour and
a spurious response are considered as FN and FP, respec-

123



1180 International Journal of Computer Assisted Radiology and Surgery (2020) 15:1177–1186

Fig. 2 (top row) The six types
of contour perturbation P1–P6
with TP in green, FP in red, FN
in blue and TN in white.
(Bottom row) The evaluation
scores rescaled to fit the graphs

tively, in the sequel. The responses in the tolerance region
T = {r ∈ I | d(r ,C) < dmax} are then TP (true positives)
and the responses outside T are FP.

The proposed score S(R,C) combines dmax with the dis-
tance between true contours and responses for the first time.
It combines the following three terms:

STP = 1

2

⎛
⎝ 1

|C |
∑

r∈R∩T
d(r ,C\FN) + 1

|C |
∑

c∈C\FN
d(c, R ∩ T )

⎞
⎠ ,

SFP = dmax

|I | − 2|C |dmax
|FP| and

SFN = dmax

|C | |FN|.

Specifically, S(R,C) sums the three terms and normalises
by dmax:

S(R,C) = 1

dmax
(STP + SFP + SFN)

= 1

2|C |dmax

⎛
⎝ ∑

r∈R∩T
d(r ,C\FN) +

∑
c∈C\FN

d(c, R ∩ T )

⎞
⎠

+ |FP|
|I | − 2|C |dmax

+ |FN|
|C | .

CompliancewithC1,C2 STP is a symmetric distance between
the true contours and responses.

It thus encourages C2, namely responses close to true
contours. SFP and SFN are the normalised FP and FN,
respectively, each counting for dmax. They thus encourage
C1, namely no spurious responses and no missed contours,
respectively, while equally penalising spurious responses
irrespective of their distance to true contours.

Compliance with C3 The difficulty in complying with C3
arises from the distance in STP which uses the nearest true
contour to each response, which possibly associates the same
true contour to multiple responses. We handle this by penal-
ising deviation between the number of true contours and
responses within the tolerance region, using normalisation
by |C |, whilst previous work use |R ∩ T | [6].
Compliance with C4, C5 A high FN rate tends to have lower
impact than a high FP rate and requires proper weighting
[14]. We assume that the probability of having a spurious
response is (1) uniform within the tolerance region and (2)
similar to the probability ofmissing a true contour. In order to
equally penalise FP and FN inside and outside the tolerance
region, our weighting is to normalise SFP and SFN by their
spatial extent, specifically ||I|−2|C |dmax| pixels, considered
a good approximation of the number of pixels outside the
tolerance region, for SFP, and |C | pixels for SFN. In summary,
all three terms are normalised according to the number of true
contours |C | while the second term also integrates the image
resolution to satisfy C4 and C5.

Evaluation

As shown in Fig. 2, we simulated six types of perturba-
tion, P1–P6, between true contours and responses, some
borrowed from [13], to test C1–C5. P1: adding FP, 1 (C1
and C3): an increasing number of random false responses
are added. P2: adding FP, 2 (C3): an increasing number of
false responses are added by dilating true contours to sim-
ulate thick responses within dmax. P3: adding FN (C1): an
increasing amount of random true responses is deleted. P4:
locations (C2): the location of true responses are indepen-
dently randomlyperturbedwith an increasingmagnitude.P5:
downsampling (C4): the image is increasingly downscaled
with constant FN rate. P6: downscaling (C5): the contours
are downscaled with constant FN rate. Importantly, a score
verifying C1–C5 is expected to increase for P1–P4 and to
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Fig. 3 a Binarising penalty in the amplitude strategy, BiPα, with α ∈ [0, 20] and β = 1. b Binarising penalty in the frequency strategy, BiPβ, with
α = 20 and β ∈ [0, 1]. c Thinning penalty, TiP, for pbg ∈ [0, 0.5]. The dashed parts are not applicable, with pbg + p# > 1

remain steady for P5, P6. The evaluation of the proposed
score S (Proposed) and four competitors, namely � [14],
SD1 [8], RDE1 [8] and 1 − MF [6,15] are shown in Fig. 2.
We observe that P1 and P2 are passed by all scores. However,
P3, P5 and P6 defeat all scores but 1−MF and S (Proposed).
Finally, only the proposed score S passes P3 and is thus com-
pliant with all performance criteria.

Detector and loss

Architecture and training overviewWe propose the first end-
to-end OC2D method. We take care to comply with C1–C5,
especially with C3, namely to return a single response per
true contour pixel. This is probably the toughest criterion as
response thickness is one of the main limitations of current
CNN-based semantic edge and occlusion boundary detec-
tors. The problem is also well-known in edge detection from
image gradient. These detectors trigger, for instance, if the
gradient magnitude is larger than a threshold. A low thresh-
old thus leads to overdetection and violates C3, whereas a
high threshold leads to high FN rates and violates C1. Find-
ing a threshold to comply with both C1 and C3 is generally
not possible. The popular Canny edge detector [3] solves this
problem using a low threshold and performs morphological
operations to thin the responses.

The proposed detector takes inspiration from the Canny
detector but uses a CNN and an end-to-end training pro-
cess. The key idea is to design new penalties to integrate
thinning in the loss. We chose a U-Net architecture because
it performs well for semantic segmentation with a limited
amount of training images.We output three probability maps
P = {poc, pob, pbg} ∈ [0, 1]3 for the occluding contours,
the occlusion boundaries and the background (see Fig. 1)
and use a softmax layer to ensure poc + pob + pbg = 1.
We propose a three-step training procedure, gradually inte-

grating two new advanced structural penalties in the loss: the
Binarising Penalty (BiP) and the Thinning Penalty (TiP).

First training step: initial task learningThe first training step
specialises the model to the OC2D task using a mere cross-
entropy loss:

L1(P,Y) =
∑

∗∈{oc,ob,bg}
μ∗LCE(p∗, y∗), (1)

where∗ simply runs over the three classes,Y = {yoc, yob, ybg} ∈
{0, 1}3 are the true labels with yoc + yob + ybg = 1, μoc = 1,
μob = 1.5 and μbg = 0.01 are fixed weights, and LCE is
cross-entropy. We stop training when the model stalls.

Second training step: binarising The second training step
fine-tunes the model to binarise its outputs, as in image bina-
risation. It combines cross-entropy with a new Binarising
Penalty (BiP) B designed to encourage binary outputs:

L2(P,Y) = L1(P,Y)

+
∑

∗∈{oc,ob,bg}
α
(
(1 − β)K + βB(p∗)

)
. (2)

B is affinely combined with a constant K , and involves two
hyperparameters α and β tuned during training. We propose
B(x) = x(1−x) as the simplest BiP.We propose two training
strategies meant to gradually increase the BiP effect, illus-
trated in Fig. 3. The amplitude strategy, denoted BiPα, where
α gradually increases from 0 to 20while β is set to 1. The fre-
quency strategy, denoted BiPβ, where β gradually increases
from 0 to 1 while α is set to 20. The increase in α and β is
0.05 after each epoch.We stop training when themodel stalls
and keep the bestmodelwith hyperparametersαopt, βopt. The
outputs are still in the [0, 1] range but become very close to
{0, 1}.
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Input & Label Step 1: CE Step 2: CE-BiPα Step 3: CE-BiPα-TiP

Fig. 4 (Column 1, top) Input image for uterus OC2D with a cross
section of the occlusion boundary in yellow. (Column 1, middle) True
occluding contours in red and occlusion boundaries in green. (Columns
2–4, top) Output probability map poc from the proposed OC2D at each
of its training steps. CE is cross-entropy, BiP is our binarising penalty,

and TiP is our thinning penalty. (Columns 2–4, middle) Results of the
proposed OC2D as in column 1, middle. (All columns, bottom) Prob-
abilities poc and pbg along the selected cross section with transitions
between background and occlusion boundary in dashed black

Third training step: thinning The third training step fine-
tunes themodel to favour thin responses, as inmorphological
edge thinning. It combines cross-entropywith a new thinning
penalty (TiP), penalising pixels whose probability of being
an occluding contour is higher than and yet close to those of
not being one:

L3(P,Y) = L1(P,Y)

+
∑

#∈{oc,ob}
γ max(0, p# − pbg)σ (θ(λ − p#)),

(3)

where # simply runs over the two contour classes. In the TiP
term, illustrated in Fig. 3, γ is a hyperparameter which we
vary in the [0, 40] range, increasing by 0.05 after each epoch.
The first factor penalises the pixels for which p# > pbg as
a linear function of the probability discrepancy. The second
factor penalises the pixels forwhich p# < λ,whereλ ∈ [0, 1]
is a fixed threshold which we chose as λ = 0.8. A value
close to 1 means that only those pixels nearby true contours
should be detected. It uses a sigmoid σ and a fixed slope
θ = 15. We stop training when the model stalls and keep the
best model with hyperparameter γopt. The outputs represent
much thinner contours (see Fig. 4).

Dataset of uterus laparoscopy

Wepropose the first dataset of laparoscopy imageswith accu-
rate advanced contour labels for 3818 images.
Images The images come from 79 anonymous uterus
laparoscopy videos, 29 available from an IRB-approved
study in our hospital and 50 from YouTube. These show a
variety of procedures including hysterectomies, resections

of endometriosis nodules and cysts, salpingectomies, adeno-
myomectomies and myomectomies. We extracted multiple
frames from each video to ensure that our dataset captures
the two essential types of variability. The first variability is
the intra-patient and within-procedure one, which is due, for
instance, to viewpoint change, uterus deformation and colour
change, as the procedure goes by. The second variability is
the inter-patient and multiple-procedure one, which is due,
for instance, to the shape and appearance of the uterus, and
specific changes caused by the type of procedure and the
disease. We also took care to include various typical events
such as occlusion by surgical instruments and blurry images
(Fig. 5).

Labels and labelling As shown in Figs. 1 and 5, the labels
are the occluding contours, the occlusion boundaries and the
connection contours of the uterus. The connection contours
typically occur at the junction between the uterus and the
fallopian tubes, and at the cervix, where the uterus ends, but
there is no occlusion boundary or occluding contour. The
connection contours are not used in our OC2D method, but
they nonetheless represent valuable information, as together
with the occlusion boundary and occluding contours they
define the uterus region. The labelling was done by a surgeon
using the online platform Supervisely [19].

Evaluation

Evaluation overview We evaluated the proposed OC2D
method and its three training steps against a baseline and
existing work. We refer to our first training step, namely a U-
Net trained with cross-entropy, as the baseline. The proposed
training from Sect. 4 is CE-BiPx-TiP, where x ∈ {α, β}.
The naming uses ‘-’ between the training steps. In order to
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Fig. 5 Top: excerpts from our dataset of 3818 labelled laparoscopy
images. The uterus is the main organ of interest. The occluding con-
tours are in green, the occlusion boundaries in cyan and the connection
contours in blue. Bottom: responses of OC2D applied on the right-

most image, showing the robustness of the proposed method to surgical
smoke. The obtained scores are of 0.87, 0.35 and 0.25 for CASENet,
CE and CE-BiPα-TiP, respectively

Fig. 6 Quantitative performance evaluated during training of OC2D. From left to right: the overall score S = 1
dmax

(STP + SFP + SFN) and its three
terms STP, SFP and SFN. The lower the better. CASENet results are out of the graphs ranges for S, STP and SFP

understand the role of each loss term and of the training
steps, we have four alternative scenarios, whose names are
self-explaining: CE-BiPx , CE-BiPα-BiP+TiP and CE-TiP,
where ‘+’ means an aggregate of loss terms. We compared
with CASENet [26].

Implementation We use the implementation of U-Net and
CASENet in Pytorch from [17] and [1], respectively. We
fine-tuned CASENet on our dataset from pretraining on the
Semantic Boundary Dataset [8]. We used stochastic gradient
descent and decayed the initial learning rate by 0.1 every 10
epochs. We used a random 72%–13%–15% train-validation-
test split of our data et.

Results Several quantitative and qualitative results of the
OC2D methods applied on highly challenging cases are
shown in Figs. 5 and 7. They show in particular robustness of
the proposed OC2D to strong uterus occlusions, presence of
smoke and blood.Quantitative performance evaluated during
training is shown in Fig. 6, using the proposed score S, and
a breakdown of its three terms STP, SFP and SFN. Apart from
CASENet which shows very poor performance, we observe
that the baseline CE has the worst performance. The pro-

posed binarising penalty improves performance compared
to CE, similarly for both training strategies in CE-BiPα and
CE-BiPβ. The full proposed trainingCE-BiPα-TiPwith both
penalties obtains the best results, improving in all respects but
slightly degrading the FN rate, as thinning increases under-
detection. CE-TiP, which skips the second training step, has
lower performance. Interestingly, CE-BiPα-BiP+TiP, which
includes both penalties in the third training step, performs
closely to CE-BiPα-TiP. It improves the FN rate but degrades
the TP and FP rates. The very poor performance obtained
with CASENet could be partly explained by the limited num-
ber of training images (Fig. 7).

User study

We ran a user study to evaluate three OC2Dmethods, namely
our baseline CE, CE-BiPα-TiP of Sect. 4 (the best per-
forming in Sect. 6) and CASENet against manually marked
occluding contours in an existing augmented laparoscopy
system [4]. We used 10 recorded gynecologic laparoscopies
with MRI and preoperative 3D model collected under IRB
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Fig. 7 OC2D responses for four laparoscopy image examples. For each
example, the first row represents the input laparoscopy image and the
manually marked ground truth. Occluding contours are marked in red

and occlusion boundaries in green. The second row corresponds to the
detectors responses. The third row corresponds to the output probabil-
ities poc

(a) (b) (c)

Fig. 8 a Labelling of the occluding contours by a surgeon using a tac-
tile screen. b Augmentation with the preoperative 3D model registered
using the occluding contours from OC2D. A myoma is visualised in
yellow and the uterus external surface in light gray. c Evaluation of

the registration accuracy using the reprojection error, as the distance
between the silhouette of the tracked 3D model (red) and manually
labelled occluding contours of the uterus (green)

approval in our hospital. We involved 5 surgeons, broken
down in 3 juniors and 2 seniors, all of them familiar with
augmented reality. The surgeons were asked to label the
occluding contours of the uterus using a tactile screen (see
Fig. 8a) as in surgery conditions, and marking time was
recorded, for 18 images on average. We independently ran
the OC2D methods on the same image sets, and running
time was recorded. The registration accuracy was then eval-
uated for each laparoscopy by running [4]. The results of
this system directly depend on the occluding contours, as it
uses them to constrain preoperative 3D model registration.
The system then tracks the uterus to perform live augmen-
tation. We evaluated accuracy by evaluating the reprojection
error of the tracked 3D model in a set of 10 independent
frames. The reprojection error is defined as the average dis-

tance between the tracking-predicted occluding contour and
its careful annotation, as shown in Fig. 8b. The frames were
selected to ensure viewpoint variability towards the uterus
and such that at least 10% of the tracked 3Dmodel reprojects
in the image. This procedurewas run for the 10 laparoscopies,
the 5 surgeons and 3OC2Dmethods,which led to a total of 80
cases. The results are shown in Table 1. CE and CE-BiPα-
TiP led to nearly identical registration accuracy as manual
marking, but to a dramatic reduction of surgeon time of 3
min and 53 s on average, representing 97.4% of augmented
reality setup time. Despite showing completely aberrant con-
tour responses, CASENet shows an average error 14 pixels
higher than the proposed CE and CE-BiPα-TiP, a difference
which is not as significant as we expected. It is due to the
use of an M-estimator in the occluding contour term of the
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Table 1 User study for 10
laparoscopies, averaged over 5
surgeons for manual results

Case Manual CE-BiPα-TiP CE CASENet Time OC2D Time Manual

1 34.97 42.13 42.89 71.85 7.7′′ 4′56′′

2 56.41 53.93 53.14 60.58 7.8′′ 5′12′′

3 93.40 94.83 95.92 127.44 6.7′′ 4′39′′

4 42.13 40.84 43.42 50.46 7.8′′ 5’37′′

5 85.13 88.10 80.33 93.31 8.5′′ 4′34′′

6 90.47 90.07 91.37 100.30 5.1′′ 3′37′′

7 96.34 90.62 92.17 84.72 6.6′′ 3’24′′

8 46.76 48.56 49.03 54.58 5.5′′ 3′28′′

9 32.27 33.92 33.47 49.30 6.1′′ 3′30′′

10 39.58 41.43 38.39 67.00 2.2′′ 1′28′′

Average 61.75 62.44 62.01 75.95 6.4′′ 4′02′′

Bold highlights the better results for each row (the lowest error). The reprojection error (the lower, the better)
is in pixels. The time is in minute (′) and seconds (′′). Time OC2D is evaluated with CE-BiPα-TiP, but other
methods present similar values

minimised energy proposed in [4] that makes the registration
method highly robust to false contour responses. A stronger
consequence of this study is to indicate that fully automatic
augmented laparoscopy is feasible. The fact that the sur-
geon should understand the concept of occluding contour and
devote undivided attention to label around 20 images during
surgery has been prohibitive for the wide acceptance of aug-
mented reality. With OC2D, this constraint is now dropped,
and usability dramatically increased.

Conclusion

We have identified the organ-specific detection of occlud-
ing contours as a key missing component in the usability
of computer-aided laparoscopy with augmented reality. We
have identified this component with OC2D, an open and
challenging semantic detection problem, for which we have
proposed a complete framework. This includes a distance-
based evaluation score, the first to comply with all perfor-
mance criteria including Canny’s, a loss allowing one to
train a CNN-based detector, with two new specific penal-
ties, and a dataset of carefully labelled laparoscopy images.
Our penalties binarise the responsemap and thin the response
contours. They allow our detector to outperform the baseline
and existing work, in terms of response thickness, FN and
FP rates. We have conducted a user study to evaluate the
impact of automation by OC2D against manually marked
occluding contours in augmented laparoscopy. Automation
led to a substantial reduction of surgeon time while preserv-
ing augmentation accuracy. The surgeons are relieved from
the intraoperative labelling task and from understanding the
concept of occluding contours, confirming our initial motiva-
tion of developing OC2D. As future work, we plan to study
self-supervision for OC2D by using silhouette constraints

from multiple-view geometry and how the proposed bina-
rising and thinning penalties may improve other detection
tasks.
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