
International Journal of Computer Assisted Radiology and Surgery (2020) 15:963–972
https://doi.org/10.1007/s11548-020-02147-6

ORIG INAL ART ICLE

Deep learning-based liver segmentation for fusion-guided
intervention

Xi Fang1 · Sheng Xu2 · Bradford J. Wood2 · Pingkun Yan1

Received: 17 November 2019 / Accepted: 30 March 2020 / Published online: 21 April 2020
© CARS 2020

Abstract
Purpose Tumors often have different imaging properties, and there is no single imaging modality that can visualize all
tumors. In CT-guided needle placement procedures, image fusion (e.g. with MRI, PET, or contrast CT) is often used as image
guidance when the tumor is not directly visible in CT. In order to achieve image fusion, interventional CT image needs to
be registered to an imaging modality, in which the tumor is visible. However, multi-modality image registration is a very
challenging problem. In this work, we develop a deep learning-based liver segmentation algorithm and use the segmented
surfaces to assist image fusion with the applications in guided needle placement procedures for diagnosing and treating liver
tumors.
Methods The developed segmentation method integrates multi-scale input and multi-scale output features in one single
network for context information abstraction. The automatic segmentation results are used to register an interventional CT
with a diagnostic image. The registration helps visualize the target and guide the interventional operation.
Results The segmentation results demonstrated that the developed segmentation method is highly accurate with Dice of
96.1% on 70 CT scans provided by LiTS challenge. The segmentation algorithm is then applied to a set of images acquired for
liver tumor intervention for surface-based image fusion. The effectiveness of the proposed methods is demonstrated through
a number of clinical cases.
Conclusion Our study shows that deep learning-based image segmentation can obtain useful results to help image fusion for
interventional guidance. Such a technique may lead to a number of other potential applications.

Keywords Image fusion · Image segmentation · Deep learning · Image-guided interventions

Introduction

Image-guided biopsy and ablation procedures are increas-
ingly used for minimally invasive, local treatment of deep
space target tumors in the liver [1]. Despite the increasing
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availability of alternative imaging techniques for interven-
tional guidance, such as high-quality ultrasound systems and
innovative magnetic resonance imaging–compatible guid-
ance systems, computational tomography (CT) remains an
important imaging technology for guidance during percuta-
neous procedures [14]. In fact, the number of CT-guided pro-
cedures performed by interventional radiology has increased
partly due to the advances in CT imaging technologies [7].

During CT-guided procedures, a navigation system uses
interventional CT images to show the spatial relationship
between devices (e.g., biopsy needle or ablation catheter).
However, tumors often have different imaging properties and
there is no single imaging modality that can visualize all
tumors. When target lesions are not visible in interventional
CT images, fusing the interventional CT with different pre-
procedural diagnostic images can be very useful to visualize
both lesion and interventional devices. In CT-guided needle
placement procedures, image fusion (e.g., with MRI, PET or
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contrast CT) is often used as image guidance when the tumor
is not directly visible.

In order to achieve image fusion, interventional CT image
usually needs to be registered to a preprocedural image
of a different imaging modality, in which the tumor is
visible. However, a robust and fast multi-modality image
registration is a very challenging problem [9,19]. Meth-
ods for multi-modality image registration, depending on
how they exploit the image information, can be divided
into intensity-based and feature-based approaches. The main
idea of intensity-based registration is to search iteratively
for geometric transformation that, when applied to moving
imaging modality, optimizes a similarity measure. However,
manual- and intensity-based registrations are not robust
and can easily fail during the intervention. If these algo-
rithms fail, there is often no time to adjust the parameters
and run the algorithms again. Especially, these algorithms
often fail due to the large deformation and appearance differ-
ence between interventional CT and the imaging modality,
in which the tumor is visible. More robust registration algo-
rithm should be used during the intervention to minimize
the impact on the clinical workflow. Feature-based meth-
ods, on the other hand, provide a better solution to focus
on local structures [2,12]. Local representative features are
first extracted from images and matched to compute the cor-
responding transformation. However, matching the feature
points itself can be challenging. Using the segmented sur-
faces of the regions of interest can help robustly register the
twomodalities. In thosemethods [2,12], transform computed
from point-to-point alignment between the surfaces is used
to register the corresponding images. Such methods, how-
ever, require accurate and fast image segmentation to begin
with.

Automatic and robust liver segmentation from CT vol-
umes is a very challenging task due to low-intensity contrast
between liver and neighboring organs. State-of-the-art med-
ical image segmentation framework is mostly based on deep
convolutional neural networks (CNN) [16]. The receptive
field increases as convolutional layers are stacked. U-Net,
introduced by Ronneberger et al.[21], is the most widely
used network architecture for biomedical image segmenta-
tion. Incorporating the latest CNN structures into U-Net was
the most common changes to the basic U-Net architecture
for liver segmentation [3]. For example, Han [8] won ISBI
2017 LiTS Challenge1 by replacing the convolutional lay-
ers in U-Net with residual blocks from ResNet [11]. For
encoder-decoder network architectures like FED-Net [5], the
residual connection is integrated into 2D network in which
low-level fine appearance information is fused into coarse
high-level features through the attention gates between shal-
low and deep layers. H-DenseUNet [17] proposes to use

1 https://competitions.codalab.org/competitions/15595.

hybrid features to extract volumetric information. DeepX
[24] uses a 29-layer encoder-decoder network for liver seg-
mentation. Most of these works [8,17,24] adopt two-step
approach to segment the liver, where a coarse step first
localizes the liver and the other model does the fine segmen-
tation. Specifically, state-of-the-art liver segmentation like
the one in [17] requires deep 3D neural networks. Although
promising liver segmentation can be obtained, the two-step
segmentation and 3D convolutions have high demands on
the computational environment when transferring to clinical
use. Furthermore, the existing liver segmentation methods
are mainly developed for segmenting diagnostic CT images,
which may not be well suited for interventional CT image
segmentation. In order to meet the requirement for inter-
ventional use, a method needs to be not only accurate for
liver segmentation, but also able to robustly handle vari-
ous patient positions used for better guidance access in high
speed. Multi-scale mechanism, which utilizes contextual
information, has shown consistent significant improvement
in liver segmentation [6]. Thus, in this work, we propose
to use a multi-scale input and multi-scale output feature
abstraction network (MIMO-FAN) architecture for 2.5D
segmentation of the liver. The network takes three consec-
utive slices as input and extracts multi-scale appearance
features from the beginning. After going through a series
of convolutional layers, the multi-scale features are adap-
tively fused at the end for segmentation. As a result, in
our experiments, the developed MIMO-FAN demonstrates
a high segmentation accuracy for one-step fast liver segmen-
tation.

In summary, we present a deep learning-based liver seg-
mentation method for a new workflow of fusion-guided
intervention. The proposed liver segmentation algorithm seg-
ments liver surfaces of interventional CT and thus enables
accurate surface-based registration of preoperative diag-
nostic image and interventional CT. The performance of
MIMO-FAN is validated in both public dataset and our own
interventional CT images. The application of our developed
registration technique is demonstrated through the fusion of
various modalities with interventional CT.

Methods

This section presents the details of the proposed deep learn-
ing segmentation algorithm and the image fusion workflow.
Figure 1 shows an overview of the developed framework,
where our proposed MIMI-FAN is used for automatically
segmenting an interventional CT and the result is used for
surface-based intra-procedural multi-modal image registra-
tion.
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Fig. 1 Illustration of the
developed image fusion method.
Preoperative diagnostic image is
segmented under off-line
processing. During intervention,
our designed AI model makes an
automatic and fast segmentation
on the interventional CT. The
segmentation results are
represented in point sets. Then
iterative closest point (ICP)
algorithm is used to perform
surface-based registration to
align the preoperative image and
interventional CT in the same
coordinate

MIMO-FAN for liver segmentation

To efficiently exploit the image information for segmenta-
tion, in this paper, we design a novel 2.5D deep learning
network that uses pyramid input and output architecture to
fully abstract multi-scale features. As shown in Fig. 2, the
proposed network integrates multi-scale mechanism into a
U-shape architecture, which enables the network to extract
multi-scale features from the beginning to the end.

TheproposedMIMO-FANfirst performsmulti-scale anal-
ysis to the three consecutive input slices by using spatial
pyramid pooling [10] to obtain scene context information.
After the first level convolutional blocks with shared ker-
nels, image-level contextual features that interpret the overall
scene can be extracted from these inputs in different scales.
To fuse features from different scales, a notable feature of
MIMO-FAN is that features to be fused at a certain level all
go through the same number of convolutional layers, which
helps to keep thehierarchical semantic similar feature.Unlike
the classical U-Net-basedmethods [21], where the scale only
reduces when the convolutional depth increases, MIMO-
FANhasmulti-scale features at each depth and therefore both
global and local context information can be fully integrated
to augment the extracted features. Furthermore, inspired by
the work of deep supervision [23], we further introduce deep
pyramid supervision (DPS) to the decoding side for generat-
ing and supervising outputs of different scales,which helps to

alleviate the gradient vanishing problem and generate good
segmentation masks at different scales. DPS also ensures
the semantic similar features are learned in the same depth.
The training loss is computed by using the output and ground
truth segmentation at the same scale.Weighted cross-entropy
is used as the loss function in our work, which is defined as

L = − 1

S

S∑

s=1

1

Ns

Ns∑

i=1

1∑

c=0

wc
i,s y

c
i,s log pci,s, (1)

where pci,s denotes the predicted probability of voxel i
belonging to class c (background or liver) in scale s, yci,s
is the ground truth label in scale s, Ns denotes the number
of voxels in the scale s, and wc

i is weighting parameter for
different classes.

To effectively take advantage of the segmentation-level
features from different scales, we design an adaptive weight
layer (AWL), which makes use of attention mechanism to
learn relative importance of each scale driven by context and
fuse the score maps in an automatic and elastic fashion. The
score maps are first passed into a shared convolutional block
and squeezed into a single-channel feature vector. In the con-
volutional block, the first layer has 2 filters with kernel size
3× 3 and the second layer has 1 filters with kernel size 1× 1
to squeeze channel number into one for scale information.
To obtain global value for each scale, global average pool-
ing (GAP) and global max pooling (GMP) are applied on
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Fig. 2 Overview of proposed architecture. Information propagated from multi-scale inputs to hierarchically combination of semantic similar
features. Multi-scale segmentation-level features are fused by learnt adaptive weights from a shared convolutional block

the single-channel features to extract global feature of each
scale. In this work, their sum is applied to extract the global
information of each scale. The values from different scales
are then concatenated and fed into a softmax layer to get the
weights of each scales. The sumof theseweight values equals
to 1. After resampling to the original image size, the score
maps are weighted and summed to be the final score map.
Another softmax layer is applied, and the threshold value of
0.5 is used to obtain the prediction.

Surface-based registration for image fusion

Surface-based registrationofCT images andpatient’s anatomy
in physical space has shown good application to image-
guided surgery [12]. It allows physicians determine the
position and orientation of surgical tools relative to verte-
bral anatomy. Different surface-based methods can be used
for image fusion. In this work, we perform surface-based
registration using an independent implementation of iterative
closest point (ICP) registration algorithm of Besl andMcKay
[2]. After segmenting the target organs from interventional
CT and preoperative imaging, in which the tumor is visible,
point sets will be obtained from the segmentations to com-
pute surface-based registration. The standard ICP method
andmost variants implicitly assume an isotropic noise model
[4]. Selected points from these contours were rotated and
translated in the x ,y and z directions, and zero-mean, nor-
mally distributed, isotropic noise was added to the rotated
points to simulate a surface acquired in a different imaging
modality [12].We treat the interventional CT as the reference
imagingmodality and the other as moving imagingmodality.
The method is a two-step process. Principal component anal-

ysis (PCA) alignment is first used to obtain initial guess of
correspondences. Then singular value decomposition (SVD)
iteratively improves the correspondences. In the iteration,
for each transformed source point, the closest target point is
assigned as its corresponding point. To evaluate registration
error obtainedwith the proposedmethod, root-mean-squared
(RMS) distance is used. The optimization stops when a ter-
minal criterion is met. The ICP algorithm always converges
to the nearest local minimum with respect to the object func-
tion.

Experiments

This section presents the details of our experiments and
the results. We first present the materials used for training
and validating our algorithms. Three clinical cases of image
fusion are then demonstrated.

Materials

For image segmentation, we extensively evaluated our
method on the LiTS (liver tumor segmentation challenge2)
dataset. LiTS is the largest liver segmentation dataset that
is currently publicly available. The data are composed of
131 training and 70 test datasets. The data were collected
from different hospitals, and the resolution of the CT scans
varies between 0.45mm and 6mm for intra-slice and between
0.6 and 1.0mm for inter-slices, respectively. To validate the
diversity of the data, Li et al. [14] apply model trained on

2 https://competitions.codalab.org/competitions/17094
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Table 1 Comparison of
segmentation accuracy on the
test dataset. Results are from the
challenge Web site (accessed on
September 11, 2019)

Methods # of Steps Avg. Dice (%) Glb. Dice (%) Time (s/slice)

Vorontsov et al. [22] 1 95.1 – –

H-DenseUNet [17] 2 96.1 96.5 0.5

DeepX [24] 2 96.3 96.7 0.06

2D DenseUNet [17] 2 95.3 95.9 –

MIMO-FAN (ours) 1 96.1 96.5 0.04

LiTS data on another datasets (3DIRCADb) and obtain state-
of-the art liver segmentation performance (dice 0.982) on the
dataset.

The clinical datasets used for image fusion are from the
Clinical Center at the National Institutes of Health. Prepro-
cedural diagnostic images were acquired for each patient.
In our study, such modalities include magnetic resonance
imaging (MRI), positron emission tomography–computed
tomography (PET/CT), and contrast-enhanced CT (CE-CT).
The exactmodality varies dependingon the clinical needs and
the tumor characteristics. During the CT-guided procedures,
interventional CT scans are obtained to visualize needles or
catheters relative to the anatomy. By performing fusion of
the interventional CTwith the preprocedural image, we were
then able to clearly display the relative spatial relationship
between the target regions and the interventional devices.
Three different clinical cases are used to demonstrate the
effectiveness of the developed techniques.

Implementation details of deep learning

The proposed MIMO-FAN can be considered as a 2.5D seg-
mentation approach, since it takes three consecutive slices as
its input to enhance the spatial dependency. The implemen-
tation is based on the open-source platform PyTorch [20].
All the convolutional operations are followed by batch nor-
malization and ReLU activation. Weighted cross-entropy is
used as the loss function in our work. Empirically, we set
the weights of 0.2 and 1.2 for the background and the liver,
respectively. For network training, we use the RMSprop opti-
mizer. We set the initial learning rate to be 0.002 and the
maximum number of training epochs to be 2500. The learn-
ing rate decays by 0.01 after every 40 epochs. For the first
2000 epochs, deep supervised losses are applied to focus
on MIMO’s feature abstraction ability on each scale. For the
remaining 500 epochs, adaptiveweighting layer is introduced
and only this layer for fusing multi-scale features is trained.
We only keep the CT imaging HU values in the range of
[−200, 200] to have a good contrast on the liver. For each
epoch, we randomly crop a patch with size of 224×224×3
from each volume as input to the network. During testing,
four patches are cropped from one slice and segmented, and
then recombined into one probability map of the slice. All

segmented slices are then combined as the segmentation vol-
ume.After obtaining the segmentationvolume, the connected
component analysis was performed to divide all labeled vox-
els into different connected components; only the largest
component is kept as the final segmentation result.

Segmentation results

Most of the state-of-the-art methods on liver CT image seg-
mentation have two steps to complete the segmentation,
where a coarse segmentation is used to locate the liver
followed by fine segmentation step to obtain the final seg-
mentation [8,17]. However, such two-step methods can be
computationally expensive and thus time-consuming, which
may add delay to clinical procedures. For example during
training, the method in [17] takes 21 h to fine-tune a pre-
trained 2D DenseUNet and another 9 h to fine-tune the
H-DenseUNet with two Titan Xp GPUs. In contrast, our
proposed method can be trained on a single Titan Xp GPU
in 3 h. More importantly, when segmenting a CT volume,
our method only takes 0.04s for one slice on a single GPU,
which is, to the best of our knowledge, the fastest segmen-
tation method compared to other reported methods. In the
same time, we are able to obtain the same performance
measured by Dice similarity and even better symmetric sur-
face distance (SSD), which computes Euclidean distances
from points on the boundary of segmented region to the
boundary of the ground truth, and vice versa. The average
SSD, maximum SSD, minimum SSD of our algorithm and
H-DenseUNet are 1.413, 24.408, 2.421 and 1.450, 27.118,
3.150, respectively. Table 1 shows the performance compar-
ison with other published state-of-the-art methods on LiTS
challenge test dataset. Despite its simplicity, our proposed 2D
network segments the liver in a single step and can obtain a
very competitive performance with less than 0.2% drop in
Dice, compared to the top performing method – DeepX [24]
on the leader board.

We further compared our proposed MIMO-FAN against
several other classical 2D segmentation networks, including
U-Net [21], ResU-Net [8], and DenseU-Net [17], to demon-
strate the effectiveness of DPS and AWL. Some example
results are shown in Fig. 3. Our MIMO-FAN is based on
UNet [21] and ResU-Net [8], so we use them for ablation
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Fig. 3 Segmentation examples
of different methods. Red color
depicts the correctly segmented
liver area, blue shows the false
positive, and green indicates the
false negative

study. For fair comparison, all these networks are 19-layer
networks. The DenseU-Net is the same architecture as 2D
DenseU-Net in [17] and the encoder part is Densenet-169
[13]. All these 2D networks are trained from scratch in the
same environment.We evaluate the performance of the above
networks on LiTS challenge training dataset through fivefold
cross-validation. We also included one open-source Nvidia
Clara AIAA model “segment_ct_liver_and_tumor” [18] for
comparison on liver segmentation, which is integrated in 3D
slicer [15]. Segmented tumor and liver are merged into the
whole liver. Some example results are shown in Fig. 4. The
fivefold cross-validation results are shown in Table 2. The
conducted one-tailed t-test on these paired sample shows that
MIMO-FAN significantly outperforms Nvidia AIAA Clara,
U-Net, ResU-Net and DenseU-Net with p-values of 0.0006,
0.0003, 0.0056 and 0.0004, respectively, all less than 0.01.

Clinical cases of image fusion

When the target tumor is not directly visible in interventional
CT, image fusion with another preoperative imaging modal-
ity where the tumor is better visualized can be performed
to help guide the procedure. The imaging modality to be
fused varies depending on clinical application and tumor
characteristics. In this paper, we demonstrate the surface
registration-based fusion through three different clinical sce-
narios detailed in the sections below.

Fusion of interventional CT andMRI

Figure 5 shows the fusion of interventional CT and MRI
images. In this case,MRI canprovide clear anddetailed infor-
mation about soft tissue as well as tumor that CT imaging
cannot give. Through fusion, MRI, as the moving imaging
modality, can be mapped to interventional CT to help guide

the procedure. MRI can be done before the procedure with
manual interaction and the interventional CT is segmented
during the procedure. The images are then registered for
alignment in the same coordinate system by registering the
segmented surfaces. It is worth noting that the patient posi-
tion in this case is quite different from what is in the LiTS
dataset. All the images in the latter are used for diagnostic
purpose, and thus, the patients were in regular supine posi-
tions. However, for interventional guidance, patients often
have to be positioned for the best access to the target region.
Even in this case, our segmentation algorithmperformedvery
well to segment the liver. We contribute this to the use of
multi-scale features throughout the network, which enables
the superior combination of both high-level holistic features
and low-level image texture details.

Fusion of interventional CT and CE-CT

Figure 6 shows the fusion of interventional CT and CE-CT
images. By using contrast enhancing agent, CE-CT can pro-
vide good visualization of tumor and vascular structures.
Through fusion, CE-CT, as the moving imaging modality in
this case, can be mapped to interventional CT for interven-
tional guidance. CE-CT was acquired and segmented before
the procedure withmanual interaction, and the interventional
CT is segmented during the procedure. Image registration is
then performed by aligning the segmented surfaces.

Fusion of interventional CT and PET/CT

Figure 7 displays a case of fusing interventional CT and
PET, through the inherently registered CT component of
a PET/CT scan. In this case, functional imaging obtained
by PET and intra-procedural guidance imaging performed
by interventional CT are combined. PET imaging is low-
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Fig. 4 Comparison of our
algorithm with open-source
Nvidia AIAA Clara model.
From the left to right are ground
truth, segmentation examples of
Clara model and our
MIMO-FAN. Dice accuracy of
each volume is labeled in upper
right corner

Table 2 Network ablation study
using fivefold cross-validation
(Dice %)

Architecture Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean ± SD

Nvidia Clara 82.0 84.5 84.2 75.7 84.4 82.2 ± 3.76

U-Net [21] 94.5 93.8 94.1 93.0 94.1 93.9 ± 0.50

ResU-Net [8] 94.5 94.1 94.9 92.4 94.5 94.1 ± 0.88

DenseU-Net [17] 94.1 94.2 93.9 93.6 94.5 94.1 ± 0.30

MIMO-FAN (DPS) 95.7 95.1 95.1 94.5 96.1 95.3 ± 0.62

MIMO-FAN (DPS + AWL) 96.0 95.1 95.7 95.2 96.2 95.6 ± 0.48

resolution imaging modality, but can visualize the functional
activities of tumor very well. However, due to the lack of
structure information, it is hard to directly register PET with
interventional CT. Therefore, the CT image component in
the PET/CT scan is used as a bridge for registration, which is
registered to the interventional CT through aligning the seg-
mented surfaces. By fusing PET image with interventional

CT, tumors can be easily observed during a surgical proce-
dure. Figure 7 shows the three imaging modalities and the
fusion result, where the tumor is circled in light gold in the
three views.
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Fig. 5 (Top) Starting point of ICP, segmentation contour of MRI and CT is overlapped on interventional CT; (middle) fusion of interventional CT
and MRI with segmented contour after ICP; (bottom) deformable registration with AI CT segmentation on deformed MRI focusing on liver tumor

Fig. 6 (Top) Intervention CT image and the segmentation result; (bottom) fusion of interventional CT and CE-CT with the segmented contour
from interventional CT superimposed on the CE-CT image

Discussion

In this section, we analyze some cases that our algorithm fails
to segment the liver and then propose some corresponding
solutions for improvement. Figure8 shows three cases. In the
first and second case, our algorithm does not discriminate
liver from neighboring abdominal organs since these organs
have similar HU-value range and distribution. Specifically,
these false-positive region is near the left lobe of liver and
spleen is classified into liver in the second case. A possi-
ble solution may be training our algorithm more frequently
on patches near the left lobe and spleen region to reduce
the false-positive prediction. In the third case, our algorithm
classifies the liver tumor into background. It may be due

to the in-balance between liver tumor and non-tumor liver
during training. A possible solution is training our algo-
rithm to segment the liver tumor at the same time. We’d
also like to point it out that even in these cases, our algo-
rithm can still be helpful for clinical intervention. In this
case, we can see that the boundary of liver is well obtained.
After transforming into point sets, these false points can be
easily removed from liver surface with manual operation.
Segmented images can be then aligned for clearer visualiza-
tion during intra-operative processing. In this work, we use
ICP, a rigid registration method to illustrate the framework.
To achieve better image fusion, deformable registration can
be implemented to improve current workflow.
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Fig. 7 Fusion of PET and interventional CT for guiding biopsy nee-
dle placement. (Top) Segmentation of the CT image from a PET/CT
scan; (middle) superimposed contour from the PET/CT over the inter-

ventional CT image after registration; (bottom) blended PET and
interventional CT images with a biopdy needle reaching a tumor only
visible in PET

Fig. 8 Some results that our algorithm fails to segment the liver. Three cases are shown for illustration

Conclusion

In this paper, we presented a new deep learning-based
liver CT segmentation algorithm, which can accurately, effi-
ciently, and robustly segment interventional CT images for
surface-based image fusion.We then demonstrated the use of
this method in three clinical cases, where it facilitates image
fusion of interventional CTwith diagnostic CE-CT, PET/CT,
and MRI, respectively, for image guidance. The developed
method may also be used for other applications, including
image registration of CT image series for tumor tracking,

surface-based deformable image registration between treat-
ment planning, and intra-ablation and post-ablation CT scans
for iterative treatment planning and verification.
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