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Abstract
Purpose Surgical simulations play an increasingly important role in surgeon education and developing algorithms that enable
robots to perform surgical subtasks. To model anatomy, finite element method (FEM) simulations have been held as the gold
standard for calculating accurate soft tissue deformation. Unfortunately, their accuracy is highly dependent on the simulation
parameters, which can be difficult to obtain.
Methods In this work, we investigate how live data acquired during any robotic endoscopic surgical procedure may be
used to correct for inaccurate FEM simulation results. Since FEMs are calculated from initial parameters and cannot directly
incorporate observations, we propose to add a correction factor that accounts for the discrepancy between simulation and
observations. We train a network to predict this correction factor.
Results To evaluate our method, we use an open-source da Vinci Surgical System to probe a soft tissue phantom and replay
the interaction in simulation. We train the network to correct for the difference between the predicted mesh position and the
measured point cloud. This results in 15–30% improvement in the mean distance, demonstrating the effectiveness of our
approach across a large range of simulation parameters.
Conclusion We show a first step towards a framework that synergistically combines the benefits of model-based simulation
and real-time observations. It corrects discrepancies between simulation and the scene that results from inaccurate modeling
parameters. This can provide a more accurate simulation environment for surgeons and better data with which to train
algorithms.

Keywords Soft tissue deformation · Simulation · FEM · Error correction · Robotic surgery · Deep learning

Introduction

Robotic surgery has changed the way many surgeries are
performed. The da Vinci Surgical System® (Intuitive Sur-
gical Inc., Sunnyvale, CA) is the most successful example
with more than 4000 systems installed around the world.
Not only do robots allow physicians to perform more com-
plex surgeries, they also open the possibility for machine
learning algorithms provide aid, such as automating surgical
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subtasks. Obtaining data to train these algorithms can be dif-
ficult, including but not limited to concerns regarding patient
privacy; however, before operating on patients, doctors must
practice on simulators. This may provide a valuable source
of data. Unfortunately, many simulators have rudimentary
physics and cannot accurately model large deformations.
Thus, these simulators test surgeons on simplified tasks to
train agility rather than on a full surgery. While surgeons are
adept at generalizing from these tasks to the clinic, algorithms
are limited by the data they are provided. More accurate sim-
ulators are necessary to create realistic tasks, which can both
benefit the surgeon and provide high-quality data to train the
robot to intelligently aid physicians.

High precision is required for tissue simulation for med-
ical use. FEM is the current gold standard for simulating
deformation in soft tissue; however, its use in patient mod-
eling is limited by inaccuracies in parameter estimation and
its computational complexity.
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Accurate material parameters are integral to accurate
FEM simulations, though boundary conditions and geomet-
ric model also play an important role [16]. These are often
difficult to measure in a phantom and impossible to obtain
in a clinical setting. Inaccurate models in the FEM simula-
tions result in inaccurate predictions of tissue behavior.Given
these limitations inherent in any model, we propose a neu-
ral network that can provide corrections to an FEM model
in the presence of large deformations and inaccurate mate-
rial parameters. The network is self-supervised, as it can be
trained from data available in any robotic surgery: endoscope
video and robot kinematics. Recent works have recovered the
3D surface during surgery from the endoscope video [11],
which provides the ground truth for our network.

This is a first step of a framework that could be capable of
life-long learning and adapt models to patients throughout a
surgery. This can provide better feedback for users and serve
as a basis for generating datasets for data-driven methods.
Current surgical subtask automation research on soft tissue
manipulation is limited to simple 2D phantoms [21] or path
planning algorithms with no tissue interaction [18]. The pro-
posed system was implemented on the first-generation da
Vinci Surgical System with the open source controllers of
the da Vinci Research Kit (dVRK) [9]. We summarize our
contribution as follows:

– One of the first biomechanically accurate soft tissue sim-
ulators that is fully integrated with the dVRK framework

– A data-driven approach to improve FEM simulations of
soft tissue deformation based on robotics vision and kine-
matics data

We understand our approach to be a first step in a
framework that synergistically combines the benefits of
model-based simulation and real-time observations.

Previous work

We first review the simulation platforms that exist for the
dVRK. Second, we review the most relevant learning algo-
rithms that have been proposed to improve simulations.

Simulators Many existing works on simulators for the da
Vinci Research Kit have focused on the robot kinematics.
Gondokaryono et al. [8] uses Gazebo to support environ-
ment objects like placing a camera but does not actually
interact with any object. This work was extended to include
interactions by Munawar et al. [15] which introduced a new
simulation environment. The simulation environment uses a
new robot description format and supports soft bodies. The
aim here is rapidly prototyping complex environments for

surgeon training rather than accurate physics. Fontanelli et
al. [6] uses V-REP to create a rigid body simulation of the
da Vinci but does not support soft tissue interaction due to
V-REP’s limited physics backend. They discuss the desir-
ability of a soft tissue simulator and suggested using the
SOFA framework as the physics simulator. The SOFA frame-
work [1] focuses on simulation for medical purposes and has
been validated on a variety of tasks from surgical training
to guidance [22]. In this work, since we are interested in
modeling the soft tissue interaction, we chose SOFA as the
environment.

Learning to correct simulations While FEMs are the stan-
dard today for accurate, deformable tissue simulation, other
models have been proposed and the problem of parameter
estimation is common. We refer readers to the survey by
Zhang et al. [23] for details on FEM simulation and a com-
parison to other deformablemodels. Bianchi et al. [3] learned
parameters of simulations by approximating soft tissue as
spring-mass models. They found that a system with homo-
geneous stiffness is insufficient to model the complexity of
soft tissue behavior.

More recently, researchers have begun training deep learn-
ing models to predict deformations from FEM models.
Morooka et al. [14] trains a network to predict the deforma-
tions of an FEM, where the input is a force vector and contact
point, and the output is every point of the deformed mesh.
The size of the simulation object must be strictly reduced
since their network is fully connected, and thus, the network
size scales poorly with input and output sizes. They use prin-
cipal component analysis (PCA) to keep their network size
tractable. Although their method could be trained end-to-
end by using more recent architectures such as autoencoders,
these are currently shown to provide limited advantage over
PCA to model mesh deformations [19]. Meister et al. present
an alternative approach to use a fully connected network to
predict the solution of the Total Lagrangian Explicit Dynam-
ics needed for FEM for each vertex of the mesh. They show
that this is stable for larger timesteps than those atwhichFEM
is stable and could be used to speed up deformation [12].

Other works have replaced the fully connected layers with
convolutional layers to process larger meshes. Mendizabal et
al. use a 3D-UNet architecture [4] to learn the deformation of
amesh given forces represented by a 3Dgrid [13]. They apply
simulated force to a known mesh and generate the desired
deformation using FEM. Their network aims to predict the
FEM deformation. Pfeiffer et al. [16] use a similar U-Net
architecture to fill in the deformation of the entire organ given
the deformation on a partial surface. They show that their
synthetically trained network can generalize to real cases,
both in phantomandhumanCTdata,with different geometry.
Our work is complementary in that we predict the surface
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Fig. 1 Overview of the
proposed system. The left
blocks show the physical setup
and its corresponding simulation
scene. The system captures the
robot Cartesian positions as it is
moved and registers them to the
simulation scene, where it is
replayed. The mesh vertices
from the simulation are read out
and fed into a network which
predicts a correction factor. It is
trained by comparing the
simulated mesh plus the
correction factor with the point
cloud captured from the
physical setup
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deformation given a robot position for a mesh. Both these
works apply a force on FEM and measure the steady-state
response rather than capture the collision dynamics between
objects.

Method

Our goal is to learn correction factors for an FEM simulation
by comparing the simulation results to a physical setup. To
that end, there are three main components to our setup. First,
we create a physical phantom and use the da Vinci patient-
side manipulator (PSM) to palpate the phantom and capture
the RGBDvideo and robot kinematics. Second, we create the
same scene in simulation and replay the interaction to sim-
ulate the shape of the phantom as it deforms from the robot
interactions. Lastly, we compare the simulation mesh vertex
positions and the measured position of the physical phan-
tom and train a network to correct the simulated positions.
Figure 1 shows an overview of the setup.

Physical setup

Figure 2 shows the phantom setup. The robot instrument is
positioned to the top right, and the depth camera is on the left,
mounted above theworkspace.Wemove the robot instrument
to interact with the phantom while capturing its Cartesian
positions through ROS [17]. The camera measures the defor-
mation of the phantom. Interactions consist of probes to the
top and sides of the phantom. Each frame of the depth camera
is read out as a point cloud. We use the Point Cloud Library
(PCL) [20] to remove points from the instrument and the
table, as well as outliers so that the only points that remain
are the ones from the phantom. Thenwe subsample the points
to about 45k points, or about 16.5 points per mm2.

Fig. 2 Deformable phantom setup. The RGBD camera is mounted
above the workspace on the left. The phantom is coated with spray
paint and potato starch to improve its visibility to the depth camera

Simulation in SOFA

We create the surface mesh of the phantom in Solid-
works (Dassault Systèmes, Vélizy-Villacoublay, France) and
fill it with Gmsh [7] to create a solid, tetrahedral mesh.
SOFA provides different templates for modeling objects;
here we focus on two of them. With the ‘Rigid3d’ tem-
plate, objects have 7 parameters (3 translational and 4 for
rotation quaternion) while with the ‘Vec3d’ template, each
vertex of the object’s mesh can be individually set. We
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Fig. 3 Simulated phantom. The
gray sphere is the end-effector.
The red block is the deformable
phantom, with the pink cubes
showing where the phantom
mesh is fixed

use Vec3d for the phantom and Rigid3d for the instru-
ment.

While we implemented the robot in SOFA, comput-
ing the constrained movements was too computationally
expensive and not necessary for learning the mesh defor-
mation. Instead, to simplify computation, we only simulate
the end-effector pose and approximate it as a sphere of
radius 5 mm. The sphere is moved based on the Carte-
sian position of the end-effector at each step. Addition-
ally, to avoid simulating computationally expensive fric-
tion interaction with the table, we suspend the phantom
by fixing the bottom vertices in space rather than plac-
ing it on a plane. The fixed vertices are marked by pink
cube overlays in Fig. 3. Gravity is currently not simu-
lated. We use a parameter search to find the best material
parameters for the phantom. The results are shown in
Sect. 4.3.

We calibrate the real robot to the simulator reference
frame.We capture a calibration sequence where wemove the
robot to touch each of the four corners of the phantom and
extract the corner location from the robot and then perform
a rigid registration to the corresponding points of the sim-
ulated phantom. The simulated robot replays the calibrated
actions and the simulation saves the positions of the vertices
of the phantom mesh at each timestep that has a correspond-
ing point cloud label. At each timestep, the robot end-effector
position is updated based on the captured kinematics from
the interactions of the physical robot. To ensure the FEMsim-
ulations run stably, the simulation timestep is much smaller
than the rate at which the robot kinematics is captured. We
linearly interpolate the robot end-effector position for simu-
lation timesteps where we do not have a corresponding label.

Estimating correction factors

Wetrain thenetworkusing thepre-calculatedFEM-simulated
phantom mesh vertex positions as input. The output is a
correction factor for the vertex positions to match the real,
measured positions.

The vertices of the phantom mesh are represented by a
3D matrix, where each element has three values for the 3D
position of that vertex. We follow the architecture proposed
by previous work and use a 3D-UNet [4] to process themesh.
The network contains 3 blocks, each with 2 convolutional
layers with kernel size of 3 and feature size of 64, 128, and
256, respectively. There is aMax-pooling layer between each
block with kernel size of 2 to downsample the mesh. We
keep the default activation function, ReLU. The kinematics
information is inserted at the bottom of the network, where
the spatial information is themost condensed. The robot pose
is concatenated as additional features to each of the voxels.
This is inspired by the work of Finn and Levine [5] in robot-
motion planning where the action is inserted in the middle of
the video processing pipeline so the first layers focuses solely
on images. We add 4 convolutional layers, also with kernel
size 3, to incorporate the kinematics information. Since the
kinematic information is added as features, we also use them
to reduce the feature size back to 256 so that the feature
sizes match when concatenated with previous layers for the
decoder Figure 4 shows the network architecture.

Here, we want the network to extract global mesh infor-
mation before changing the portion of the mesh with which
the robot is interacting. The end-effector position is concate-
nated to each of the voxels before the decoding layers. The
network learnswhich part of themesh the end-effector affects
and produces a correction step for the displacement of each
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Fig. 4 The network architecture for calculating themesh correction.We
modify the 3D-UNet [4] to insert the kinematics at the bottom, as shown
by the light blue block. The robot position is concatenated to every voxel
of the mesh as a feature. Each block features two convolutional layers
and one Max-pooling. The numbers by each block indicate the number
of features. All convolutions are with kernel size 3 and padding 1

vertex so the output is the same size as the input. The correc-
tion is added to the mesh and we compare this to the point
cloud captured by a depth camera for ground truth displace-
ments.

To register from the camera to the simulation, we extract
the point cloud of the phantom without any robot interac-
tion. We find the transformation between the phantom and
that point cloud using iterative closest point (ICP) [2] as
implemented in PCL. Since the top of the block is flat and
featureless, we manually initialize the registration so that the
algorithm registers to the correct pose. The depth camera only
provides labels for the top layer of the phantom. Therefore,
we only allow the correction to be applied to the top layer of
the mesh. We also test a 2D version of UNet where only the
top layer of the mesh is passed to the network.

At each simulation step, we pass the position of the phan-
tom and the robot position as input to a neural network. The
network predicts a correction factor and updates its weight by
comparing the corrected mesh and actual phantom position.
To prevent vertices from crossing, the maximum correction
in each dimension is scaled to be half of the voxel length in
each direction. The training loss is the Chamfer distance or
themean shortest distance between one point on a point cloud
to another point cloud. In this case, we represent our mesh as
a point cloud of its vertices. We initially trained with Haus-
dorff distance, but since it is sensitive to outliers, the training
did not converge well. Using the network to calculate a dis-
placement map rather than the positions directly avoids the
need for formulating a regularization term in the loss func-
tion to prevent the vertex positions from crossing over each
other. This also gives us an additional factor to control how

much we want to rely on the simulation. If we trust our FEM
more, we can set the maximal displacement to be lower, or
higher if we are more uncertain about the FEM parameters.

During test time, at the end of each timestep, the simu-
lator passes the position of the phantom mesh to the trained
network to get the correction. In the 2D network case, we
only pass in the top layer of the mesh to the network. In our
training, we noticed that since our ground truth can only con-
strain the top layer of the mesh, only those values are valid
and are used to update the simulation. The other nodes stay
as the simulator calculates them.

To compare the mesh to the point cloud, we super-sample
the mesh by a factor of 3 in all directions using linear inter-
polation. The mesh must be fairly sparse due to computation
power constraints for the FEM simulation but this leads to
inefficient learning for the network as the loss is not smooth.
This does not change the form of the mesh but provides more
points for the point cloud to point cloud matching. Using
this point cloud loss avoids the more computationally expen-
sive point-to-surface matching. We only calculate loss from
the direction of the depth camera output to the mesh since
there may be no correspondences in the other direction due
to occlusion from the surgical instrument.

Experiments

Soft tissue phantom

The phantom was created by pouring liquid plastic into a
mold with some amount of hardener and softeners fromM-F
Manufacturing (Fort Worth, TX). After the phantom has set,
we cut out a rectangular block.After trimming, the phantom’s
dimensions are 68.7×35.8×39.3 mm, and it weighs 104.01
g.Wedonotmeasure the stiffness of the phantombut perform
a parameter search for its material parameters.

Wemove a PSMdirectly, without teleoperation, to interact
with the phantomwhile recording its kinematics andmeasur-
ing the deformation of the phantom using an Intel Realsense
SR300camera (Intel, SantaClara,CA). Intel reports the accu-
racy of the depthmeasurement to be 2mm.Since the plastic is
translucent after setting, we coat the phantom in spray paint
and potato starch so that it can be measured by the depth
camera.

In the first video, we capture data for calibration. We
manipulate the robot so that its end-effector successively
touches each of the phantom’s corners to calibrate between
the physical setup and the simulated scene. During the inter-
actions, robot position is captured at 1 kHz while the depth
image is captured at 30Hz.We subsample the robot positions
to match that of the depth images in time. After calibrating
our setup, we capture 12 more interactions. This results in
around 14min, or 25k frames, of video. Of those interactions,
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Table 1 A 1-min interaction with the phantom is simulated with each
of the Young’s Modulus and the average distance in mm frommeasured
point cloud to the mesh vertices is reported

1e1 1e2 1e3 1e4 1e5 1e6

8.4981 6.0760 5.5417 5.2632 5.1847 9.3356

the first one is 2 min and the rest are around 1 minute. The 2
min, 3794 frames, clip is used as the validation set. The next
two 1-min segments, 4417 frames, form the test set.

Simulation scene

The model in SOFA is represented as a solid, tetrahedral
mesh of size 13× 5× 5. Even with the small mesh, it takes
on the order of hours to simulate a minute of interactions.
This may be improved by multi-threading but as that does
not improve throughput over running multiple instances, it
was not implemented for this work. A finer surface mesh
is attached to that for smoother visualization. The da Vinci
instrument end-effector is approximated as a sphere with
comparatively large mass of 1000 g. We set the minimum
contact distance to be 0.5 mm and use Euler implicit solver
with Rayleigh stiffness and mass both set to 0.1.

Material parameter search

The main parameters of soft tissue can be considered to be
its Young’s Modulus and Poisson’s Ratio. Uncertainty in the
parameters come from the unknownmixture of softeners and
hardeners during construction of the phantom as well as its
age. To limit the search space and since the two parameters
are interdependent, we focus our parameter search on the
Young’s Modulus. Values for the Poisson’s Ratio are more
consistent in literature to be in the 0.4–0.5 range, whereas
estimates of theYoung’sModulus vary anywhere in the range
of 1e−4 to 1e6 depending on the specific construction of
the phantom. We set the Poisson’s ratio to be 0.44 based on
previous work [10].

To perform a grid search for the optimal Young’s Mod-
ulus, we choose one interaction sample from the training
set, about 1 min in duration, and simulate it with different
Young’s Modulus. Since FEMs are computationally expen-
sive to run,we separate the test in two stages. First, we sample
the Young’s Modulus at every factor of 10 from 1e1 to 1e6
to explore a broad range of values. We write out the simu-
lated phantom positions, super-sample the mesh by a factor
of 3, and compare the vertex positions to the measured point
cloud. The average distance from a point on the depth camera
point cloud to the simulated mesh is reported in Table 1.

Next, we pick the optimal range and explore that more
finely, in this case around 1e3–1e5. We test each interval

Table 2 A 1-min interaction with the phantom is simulated with each
of the Young’s Modulus and the average distance in mm frommeasured
point cloud to themeshvertices is reported.The simulationwithYoung’s
Modulus of 5e4 did not converge

2.5e3 5e3 7.5e3 2.5e4 5e4 7.5e4

5.2724 4.9041 5.5025 5.2202 N/A 5.4565

at every 2.5e3 and 2.5e4, respectively. Results are shown in
Table 2.

Weobserve thatYoung’sModulus optimization is not con-
vex, potentially due to measurement error since point clouds
are generally noisy and that a small change in parameter can
lead to a result that did not converge. This reinforces the
need to find a way to learn the optimal parameters rather
than search exhaustively. 5e3 was selected to be the optimal
Young’s Modulus. We simulate all the interactions using 5e3
to generate the input to our network.

Results

Network correction

We train the network on 9 min of the captured video sam-
ples, or 15872 samples, until convergence. Convergence is
measured by loss on the 2 min of validation data flattening or
going up. We test on the remaining two sequences of about
2 min. The mesh is refined before calculating the Chamfer
loss to provide a smoother loss for the network to train on.
We compare the performance using 2D and 3D network on
two sequences as shown in Table 3. One interesting use case
for the network is when you have sub-optimal FEM param-
eters. Since the parameter search is time-consuming, we test
if the network can correct for non-optimal parameters. We
run the simulations with the same setup, but set the Young’s
Modulus to 1e4 and 1e1. Then we train and test the network
using the same data split as before.

Discussion

We have shown a first step towards a framework to train net-
works to learn the behavior of soft tissue directly from robotic
surgery data. This approach combines model-based simula-
tions with real-time observations to correct for inaccurate
simulation parameters. Using the surface deformation and
a robot position, we trained the network to improve FEM
results by 15–30% over a range of simulation parameters.
This network can be used to improve FEM results where
we do not have reliable material parameter and implicitly
adjust for boundary conditions and other factors that are often

123



International Journal of Computer Assisted Radiology and Surgery (2020) 15:811–818 817

Table 3 The loss from FEM
directly and after correction
using 2D and 3D networks. The
loss is the average distance
between each point on the point
cloud to the closest
super-sampled mesh vertex in
mm

No network 2D network Improvement (%) 3D network Improvement (%)

5e3

Sequence 1 5.4627 4.3025 21.2 4.3234 20.9

Sequence 2 5.1170 4.3450 15.1 4.6269 9.6

1e4

Sequence 1 5.2333 4.2323 19.1 4.6446 11.2

Sequence 2 5.2734 4.3746 18.4 4.9828 5.5

1e1

Sequence 1 8.2322 5.6235 31.7 5.9614 27.6

Sequence 2 9.2899 6.4518 30.6 6.7030 27.8

intractable to model. We show that using the proposed cor-
rection factor, even starting from a Young’s Modulus 5e2
away from the optimal that we found, the network reduces
the error to within 1.5 mm of the most accurate simulation
without correction.

From our parameter search, we see that the best Young’s
Modulus found on one video sequence is not necessarily
the best for other sequences. There are unmodeled forces
that affect deformation. Our proposed data-driven method
avoids the need to search the high-dimensional space for
all these factors. This observation reinforces the advantage
of an observation-based correction. Additionally, since the
learning could be done online, this network can be updated
during a procedure if the models do not match real obser-
vations. The patient’s soft tissue characteristics may change
during surgery, and our method could be adapted to do life-
long learning, correcting for unmodeled changes.

We expected the 3D-UNet to provide better correction
than the 2D, since the network may take into account the
position of the next-to-top vertices; however, the 2D network
performed better. This may be due to not using enough train-
ing data as the 3D network has more parameters to train and
not enough constraints for the non-top layers of the mesh.
The 3D network may benefit from integrating synthetic data
and using the FEM to provide constraints for the unobserv-
able vertices. This would provide ground truth for the entire
mesh rather than only the surface.

More work is needed to show howwell this method would
work across different phantoms.While anymesh can be inter-
polated to fit a regular grid, network architectures that work
on meshes may show better performance on an arbitrarily
shaped mesh. Additionally, heterogeneous tissue is gener-
ally harder to model than homogeneous tissue and represent
further opportunities for data-driven corrections. Testing for
how well networks trained on one model may generalize to
another model of different stiffness or geometry would also
be an interesting extension of this work.

We currently do not include gravity or the velocity of the
end-effector, whichmay improve baseline simulation and the

learned correction factors. We use default hyperparameters
in our network, and a careful search may improve results.
While the network currently uses the FEM output, it could
in the future be trained directly without the FEM step. This
would be the natural extension of the existing literature that
uses a network to predict FEMsteps. Training onFEMresults
inherently limits their accuracies to be that of the FEM, and it
would be interesting to incorporate data from physical inter-
actions.

Conclusion

In this work, we outline a framework to correct model-based
simulation using data readily available in robotic surgeries.
We show a first step of such a system by implementing a net-
work that predicts deformation corrections on a soft tissue
phantom during robot interactions. This network can correct
for inaccurately modeled parameters as we show improve-
ments across a wide range of Young’s Modulus. Other terms
like friction and boundary conditions are rarely available in
patient data so anymodel-based simulationwould have a irre-
ducible error. A data-driven correction factor could account
for difficult-to-model errors. We envision that approaches
similar to the one proposed here can be adapted for patient
use, performing lifelong learning throughout a surgery as
patient condition changes.
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