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Abstract
Purpose Deep learning has recently shown its outstanding performance in biomedical image semantic segmentation. Most
biomedical semantic segmentation frameworks comprise the encoder–decoder architecture directly fusing features of the
encoder and the decoder by the way of skip connections. However, the simple fusion operation may neglect the semantic gaps
which lie between these features in the decoder and the encoder, hindering the effectiveness of the network.
Methods Dense gate network (DG-Net) is proposed for biomedical image segmentation. In this model, the Gate Aggregate
structure is utilized to reduce the semantic gaps between features in the encoder and the corresponding features in the decoder,
and the gate unit is used to reduce the categorical ambiguity as well as to guide the low-level high-resolution features to
recover semantic information. Through this method, the features could reach a similar semantic level before fusion, which is
helpful for reducing semantic gaps, thereby producing accurate results.
Results Four medical semantic segmentation experiments, based on CT and microscopy images datasets, were performed
to evaluate our model. In the cross-validation experiments, the proposed method achieves IOU scores of 97.953%, 89.569%,
81.870% and 76.486% on these four datasets. Compared with U-Net and MultiResUNet methods, DG-Net yields a higher
average score on IOU and Acc.
Conclusion The DG-Net is competitive with the baseline methods. The experiment results indicate that Gate Aggregate
structure and gate unit could improve the performance of the network by aggregating features from different layers and
reducing the semantic gaps of features in the encoder and the decoder. This has potential in biomedical image segmentation.

Keywords Convolution neural networks · Semantic segmentation · Biomedical images · Deep learning

Introduction

The rise of deep learning greatly promotes the development
of machine vision during recent years. The success of con-
volution neural networks has highlighted its capabilities in
image classification, object detection and semantic segmen-
tation. Image segmentation is a significant and basic task in
biomedical image processing and analysis. An efficient and
automatic segmentationmethod is helpful for the preprocess-
ing of 3D image reconstruction, computer-assisted diagnosis,
etc.

Since the fully convolution network (FCN) [1] was
proposed, semantic segmentation methods based on deep
learninghave led to great interests from researchers in various
fields. Many convolution neural networks (CNNs) have been
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proposed to promote the performance on different datasets.
Zhao [2] proposed pyramid pooling module to improve the
performance of the network for segmentation. Chen et al.
[3] combined the Xception model and atrous spatial pyramid
pooling module for improvement. Yu et al. [4] designed a
bilateral network that includes spatial path and context path
to realize real-time segmentation. At present, CNN models
for semantic segmentation have been applied in many fields,
such as street scene segmentation [5–7].

The research on semantic segmentation is also extended
into the field of biomedical image segmentation [8, 9]. With
high representation power, high prediction accuracy and
fast inference ability, CNNs are competent in this task. For
biomedical image segmentation, U-Net is one of the most
commonly used models. U-Net [10] has an elegant archi-
tecture and is able to work with very few training images.
These characteristics of U-Net make it suitable for biomed-
ical image processing. With the development of research
in biomedical image segmentation, many variants of U-Net
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have emerged. Fausto [11] replaced 2D convolution opera-
tion with 3D convolution operation to process CT and MRI
images in the 3D domain. Oktay [12] introduced the attention
mechanism into U-Net. Hasan [13] proposed U-Net Plus for
surgical tool segmentation. Despite improvements in their
task, these models are still based on encoder–decoder archi-
tecture and fuse features with simple skip connections.

In this paper, we propose a dense gate network (DG-Net)
for semantic segmentation in which a novel feature fusion
structure is used to aggregate features from different layers.

Related work

In this section, we describe the technology and background
relevant to our work.

Encoder–decoder architecture

Most segmentation convolution neural networks are in the
form of encoder–decoder architecture. The encoder network
extracts features from images and enriches the semantic
information. The decoder network processes the features
from the encoder network and provides the final prediction
of the segmentation. The encoder sub-network is typically
alternately stacked by series of convolution, pooling and
nonlinear activation, while the decoder sub-network consists
of convolution, upsampling and nonlinear activation. The
decoder sub-network gradually enlarges features provided
by the encoder to recover final semantic and spatial infor-
mation. Usually, the encoder sub-network and the decoder
sub-network are connected by skip connections to fuse fea-
tures with different semantic and spatial information.

Skip connections

Skip connections have been proved to be beneficial to seg-
mentation [14] and are widely used in many CNNs [5,
10–12]. However, skip connections used in previous archi-
tectures usually merge features of the encoder with features
of the decoder of the corresponding level by one opera-
tion, which could not make full use of the semantic and
spatial information in features. Meanwhile, the semantic
gaps between the corresponding level features of encoder
and decoder may cause some discrepancies in the learning
process and affect the prediction adversely. Moreover, even
though the low-level high-resolution features could remedy
the spatial information lost in downsample operation, they
still lack semantic information [15]. The simple fusion oper-
ation cannot endow low-level high-resolution features with
sufficient semantic information for pixel-wise classification.
In [16], theMultiResUNet is proposed to reduce the semantic
gaps between features by replacing the skip connection with

theRes path. TheRes path is composedof a sequence of resid-
ual layers. This improvement has been tested to promote the
performance of the network by reducing the semantic gaps
between features in the encoder and the decoder.

Feature fusion

Because deep high-level layers in encoder extract more
semantic features and shallow low-level layers provide more
spatial information, it is necessary to explore how to con-
nect and combine these layers. There are two main methods
for layer fusion [17]. One performs on depths and chan-
nels by fusing different semantic features, which improves
the CNNs’ ability of classification, such as DenseNets [18].
The other performs on resolutions and scales by compound-
ing features with different resolutions, which is helpful for
localization, such as feature pyramid architectures [2].Mean-
while, the skip connections, that allow networks to retrieve
the spatial information lost in pooling, are usually used to
bridge the gaps between encoder and decoder. Recently, sev-
eral novel feature fusion methods have been proposed. Yu
et al. introduced a deep layer aggregation structure to fuse
features in different layers [17]. Zhou et al. presented a nested
U-Net architecture [19] to bridge the gap between different
level features. These architectures improved the performance
of semantic segmentation models and gave us an important
clue to design a light structure for multiple feature fusion.

Gate units

Inmost of theCNNmodels, the conventionalway to fuse low-
level high-resolution features and high-level low-resolution
features is summing or concatenating them directly by skip
connections. Even though the information from low-level
high-resolution features may be helpful for localization, they
are insufficient to recover the semantic information. Thus,
it is sensible to constrain those features with discrimina-
tive semantic information. Islam et al. [20] presented the
gate unit to filter finely localized layers with deeper layers.
Zhang et al. [15] proposed semantic embedding branch to
fuse features with different locations and semantic informa-
tion. These methods are aimed to introduce discriminative
semantic information of high-level low-resolution features
to low-level high-resolution features and guiding the recov-
ery of prediction in the semantic domain.

Methods

OurDG-Net combines dense nested feature connection struc-
ture with the gate unit. The main structure of DG-Net is
shown inFig. 1. Similar tomany semantic segmentationCNN
models, our DG-Net is in the form of encoder–decoder archi-
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Fig. 1 The main architecture of DG-Net

tecture. The encode sub-network is the same as U-Net. Every
encode stage consists of two 3×3 convolutions with batch
normalization and leakyReLU layer. And there are four 2×2
max-pooling operations in the encode pathway. In the decode
pathway, DG-Net employs Gate Aggregate (GA) module to
fuse features, and each of them fuses features of three adja-
cent levels. Features generated by the first GA module are
processed by a 3×3 convolution with batch normalization
and leakyReLU layer before entering the secondGateAggre-
gate module. At the same time, a 1×1 convolution is used
to provide a coarse score map P1 for deep supervision. Since
P1 has smaller spatial resolution compared with the ground-
truth label, we downsampled the ground-truth label to the
same resolution of P1 to form loss function l1. The final score
map P2 is obtained in the same way and is used to form loss
function l2. The final loss function is the summation of l1
and l2.

The main novelty of our network is the designation of the
Gate Aggregate module, which uses features in three levels
to construct a small decoder network. This small decoder
network makes full use of spatial and semantic information
of features and bridges the gaps between different features.
We describe the structure of the Gate Aggregate module in
detail in the next section.

Gate Aggregatemodule

The conventional networks, such as U-Net, tend to directly
combine features in the encoder with features in the decoder
with the same spatial resolution. However, the features in the
encoder undergo fewer operations than the features in the
decoder do. So, there are semantic differences between these
two types of features. The direct connections between these

two incompatible types of features may impede the learning
procedure of networks. To solve this problem, theGAmodule
is used to bridge the semantic gaps between the features in
the encoder and the decoder sub-network before fusion.

The detail of the GA module is shown in Fig. 2. The
GA module aggregates three adjacent level features (f1, f2,
f3) and forms a dense connected fusion structure. The fea-
tures with low resolution are upsampled by standard bilinear
interpolation method to the same size of features with high
resolution. And then, a 1×1 convolution is used to adjust
the channels of upsampled low-resolution features to the
same channels of high-resolution features. The gate units
and convolutions build a grid-like structure, in which fea-
tures are fused from low resolution to high resolution tomake
a progressive upsampling and decoding process. The dense
gate units and convolutions reduce the semantic discrepancy
between features in encoder and corresponding features in
decoder gradually.

The backbone of theGAmodule can be regarded as a small
U-Net++ L2 network [19]. As implied in [19], the inference
accuracy does not increase linearly with the complexity of
U-Net++ models. The U-Net++ L2 network is a nice com-
promise between accuracy and model complexity. Thus, a
three-layer U-Net++ backbone may keep the expression of
the network at a maximum degree with fewer parameters.
Meanwhile, in contrast to U-Net++ which concatenates two
features for fusion, theGAmodule uses the gate unit to imple-
ment features fusion. The motivation to introduce the gate
unit into the network is that even though the dense convolu-
tions reduce the gap between the features in the encoder and
the decoder, the shallow low-level high-resolution features of
encoder are still deficient on necessary semantic information.
The detail of the gate unit is described in the next section.
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Fig. 2 Structure of Gate
Aggregate module

Gate unit

The structure of gate unit is shown in Fig. 3. The process in
gate unit can be formulated as:

f � concat( fl, fl ∗ fh) (1)

where the concat operator denotes the concatenation in the
dimension of channels.And fl represents the upsampled low-
resolution features. fh is the high-resolution features, and f
is the final features.

Before gate unit, features with high-semantic-level low
resolution (features fl) are upsampled and filtered with
convolution to the same size of low-semantic-level high-
resolution features (features fh). In the gate unit, features
fh are filtered by features fl with element-wise multiplica-
tion to enhance the semantic information and the location
information. Finally, low-resolution features and the filtered
high-resolution features are concatenated together as a new
feature for the next convolution.

The gate unit is designed to control information passed
on and reinforce the semantic information of low-level high-
resolution features. The procedure of the gate unit and its
preprocessing are similar to the method proposed in [20].
But unlike [20], the low-level high-resolution features are
not abandoned after pixel-wise multiplication but are reused
to provide inherent spatial information.

Fig. 3 The structure of gate unit

Experiments and results

Datasets

To evaluate the proposed model, four medical imag-
ing datasets are used for comparison, including CT and
microscopy images. The details of those datasets are listed
in Table 1.

The liver segmentation dataset comes from liver tumor
segmentation challenge (LiTS). There are 131 3DCT images
in the training dataset of LiTS. The ground-truth labels
of the test set of LiTS are not publicly available, so only
the train set is used in this work. We sampled three sec-
tions that contain liver from each 3D CT image. The mouse
segmentation dataset is provided by our team for 3DCTvisu-
alization. The main task of this dataset is to remove the CT
scanning bed from the image to provide better data for 3D
visualization and reconstruction. Both the PHC and N2DH
datasets are obtained in cell tracking challenge. The PHC is
the PhC-C2DH-U373 dataset, and the N2DH represents the
Fluo-N2DH-SIM + dataset. The same to the LiTS dataset,
only the training datasets of PHC and N2DH are available.

Data augmentation is essential for network training. It
helps the network learn the invariance and perform more
robustly. It is especially significant when the dataset is small.
Thus, all four datasets were augmented before training by
the Augmentor library in Python [23]. We augmented liver

Table 1 Datasets used in our experiments

Dataset Image number Modality

Livera 393 CT

Mouse 320 CT

PHC [21, 22]b 34 Microscopy

N2DH [21, 22]b 215 Microscopy
aMICCAI 2018 LiTS challenge
bCell tracking challenge
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Table 2 Overview of augmented datasets

Dataset Augment methods Input size

Flip Rotation Distortion Shear

Liver
√ √

256×256

Mouse
√ √

256×256

PHC
√ √ √ √

256×352

N2DH
√ √ √ √

288×256

and mouse dataset by flipping and rotation (integer multiple
of 90°) operations. For PHC and N2DH, random distortions
and shear were also used.We then downsampled every image
and label to the input size due to computational constraints.
The augment methods and input resolutions of datasets are
listed in Table 2.

Baseline

TheU-Netwas used as a baseline in ourwork since it is a com-
monly used semantic segmentation network in biomedical
image processing. The filter numbers of five decode proce-
dures of encoder sub-network in U-Net are 16, 32, 64, 128
and 256. For a fair comparison, the filter numbers of decode
sub-network of DG-Net are the same as U-Net.

To further evaluate the performance of DG-Net, the Mul-
tiResUNet [16] was used for comparison. The filter numbers
ofMultiRes blocks in MultiResUNet are 16, 32, 64, 128 and
256. To keep the number of parameters of MultiResUNet is
on a similar scale asU-Net andDG-Net, we selected the scale
coefficient α� 1.15.

For a certain dataset, all models were trained under the
same condition. The parameters and flops of U-Net, Mul-
tiResUNet and DG-Net are listed in Table 3.

Implementation details

We have implemented our method using Tensorflow 1.9.0
and Python 3.5.6. The parameters in convolution layers were
initialized by Xavier initializer. We employed softmax cross-
entropy as the loss function to be optimized. The Adam
Optimizer was used for optimization. The batch size used
in training process was 5.

Table 3 Parameters and flops of U-Net, MultiResUNet and DG-Net

Model #Param (×106) #Flops (×106)

U-Net 1.94 9.71

MultiResUNet 1.92 9.61

DG-Net 1.82 9.10

Metrics

Given a binary segmentation map Seg and the corresponding
manually annotation Ann, the definition of TP, FP, TN, FN is
as follows:

T P �
∑

i j

(Segi j � 1 and Anni j � 1),

FP �
∑

i j

(Segi j � 1 and Anni j � 0)

T N �
∑

i j

(Segi j � 0 and nni j � 0),

FN �
∑

i j

(Segi j � 0 and Anni j � 1)

To evaluate our method quantitatively, the performance is
measured by pixel intersection-over-union (IOU) of objects
and accuracy (Acc). The equations of these metrics are as
follows:

I OU � T P

FN + FP + T P
(2)

Acc � T P + T N

FN + FP + T P + T N
(3)

Experimental results

In this paper, fivefold cross-validation is used to quanti-
tatively evaluate the performance of U-Net, MultiResUNet
and DG-Net. In each experiment, the training set consists of
fourfold, and the other fold is used for testing. Among the
training set, 20% of the data are held back for validation. We
repeated the experiments three times to reduce the impact

Table 4 Quantitative results of U-Net, MultiResUNet and DG-Net

Dataset Method IOU (%) Acc (%)

Mouse U-Net 97.587±0.997 99.680±0.092

MultiResUNet 97.380±1.045 99.642±0.117

DG-Net 97.953±1.010 99.718±0.108

Liver U-Net 89.323±1.239 98.982±0.160

MultiResUNet 89.266±1.134 98.938±0.181

DG-Net 89.569±1.477 99.024±0.169

PHC U-Net 81.559±3.297 98.622±0.205

MultiResUnet 80.966±3.300 98.574±0.211

DG-Net 81.870±3.261 98.647±0.214

N2DH U-Net 76.050±0.921 97.832±0.134

MultiResUNet 76.149±0.973 97.840±0.141

DG-Net 76.486±0.765 97.869±0.132

The best result of each experiment is marked in bold
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Table 5 Statistical analysis of U-Net, MultiResUNet and DG-Net

Dataset U-Net versus DG-Net MultiResUNet versus
DG-Net

IOU Acc IOU Acc

Mouse 0.002 0.071 <0.001 <0.001

Liver 0.179 0.039 0.203 0.032

PHC 0.064 0.056 <0.001 <0.001

N2DH <0.001 <0.001 0.012 0.016

The p-values which smaller than 0.05 are marked in bold

of randomness in the training process. The results of U-Net,
MultiResUNet andDG-Net onmouse, liver, PHC andN2DH
are listed in Table 4. It can be observed that though DG-
Net performed differently on different datasets, it performed
better thanU-Net on all datasets. ComparedwithU-Net, DG-
Net achieves at least 0.25% relative improvement on IOU.
In terms of Acc, the difference between U-Net and DG-Net
is not very obvious. Compared with MultiResUNet, though
DG-Net has fewer parameters, it surpassesMultiResUNet on
all four datasets.

Furthermore, the statistical analysis was performed to
evaluate the performance of DG-Net. The paired t-tests were
adopted to assess the significance of IOU and Acc between
U-Net, MultiResUNet and DG-Net. As shown in Table 5,
compared with U-Net and MultiResUNet, DG-Net could
achieve better performance than baselinewith significant dif-
ference in most cases.

As a popular used biomedical image segmentation model,
U-Net can provide accurate segmentation results in most
cases. The segmented results of U-Net, MultiResUNet and
DG-Net are shown in Fig. 4. In these examples, these three
methods could fit the ground truth nicely.

However, U-Net produces defective results on some other
samples, as shown in Fig. 5. U-Net seems to be over-
segmented or under-segmented on these samples. In Fig. 5a1,
b1, c1, the foreground objects are not segmented completely,
so there are some holes or gaps in the results. In Fig. 5a2,
b2, c2, U-Net misdeems some small objects in other tissue
or background as foreground objects. In Fig. 2d1, d2, some
areas around the target are segmented as part of the fore-
ground target. DG-Net performs more stable compared with
U-Net.

For some images, these three methods may fail to provide
accurate results, as shown in Fig. 6. In Fig. 6a1, these three
methods all produce over-segmented results. In Fig. 6a2, all
three methods make some wrong predictions and classify
some background areas as foreground, but DG-Net makes
relatively fewer mistakes.

InFig. 6b1, b2, irregular results are producedbyU-Net and
MultiResUNet. Though DG-Net also cannot provide perfect
results on these samples, it produces results with fewer irreg-

ularities along the boundaries and performs better than other
methods, which is meaningful to provide better references
for clinical diagnosis.

In Fig. 6c1, c2, all three methods under-segment or over-
segment cells. Among them, DG-Net makes fewer mistakes.
In Fig. 6d1, d2, the microscopy images contain more noise,
and signals of cells are weaker than instances in Fig. 4d;
thus, these images are more difficult for segmentation. The
segmentation results of U-Net contain many outliers that are
very similar to cells visually, which may mislead the sub-
sequent analysis. MultiResUNet and DG-Net perform more
stable compared with U-Net and can provide more valuable
information.

The results of experiments show that DG-Net has the
potential to produce competitive segmentation results of
biomedical images. In some situations, DG-Net performs
similarly to U-Net. However, in general, DG-Net is more
stable and could provide more meaningful results.

Discussion

The results in the experiments show that DG-Net could
yield remarkable accuracy. These achievements are partially
attributed to the employment of the Gate Aggregate mod-
ule and the gate unit. DG-Net employs the Gate Aggregate
module, which is based on the backbone of UNet++ L2, and
gate unit to aggregate features in three layers. The light three
layers U-Net++ structure can maintain the expression of the
network as much as possible with less parameters. At the
same time, the gate unit can enrich the semantic information
of low-level high-resolution features which may improve the
ability of the network further. In Fig. 7, features in G4 (Fig. 2)
of the first and second GA modules are visualized to show
the effect of gate unit.

In the first stage, high-resolution feature fh distinguishes
the mouse and the CT scanning table from the background,
but is unable to discriminate the mouse and the CT scanning
table. However, the upsampled low-resolution feature fl can
effectively differentiate the mouse from the background and
the CT scanning table. The result of gate unit f gains con-
siderable semantic information compared with feature fh.
Features in the second stage have a higher resolution than
features in the first stage. The fh in the second stage contains
ample spatial information, yet embodies less ability to dis-
tinguish targets. After filtered by the gate unit, the target area
becomes clearer. Figure 7 demonstrates that the gate unit
could efficiently enrich the semantic information of high-
resolution features, which may be beneficial to the learning
process.
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Fig. 4 The results of U-Net, MultiResUNet and DG-Net on different
datasets. a Sample of mouse CT dataset. b Sample of liver dataset.
c Sample of PHC dataset. d Result of N2DH cell dataset. The ground
truth is marked in cyan. And the outline of U-Net result is marked in

red, the outline of MultiResUNet result is marked in blue, and the out-
line of DG-Net result is marked in orange. The order of coloring is
U-Net, MultiResUNet and DG-Net; therefore, in the overlap area the
line drawn after will cover the previous line

Fig. 5 Some defective segmentations of U-Net. a1, a2 Samples of
mouse CT dataset, b1, b2 samples of liver dataset, c1, c2 part of two
samples of PHC dataset, d1, d2 part of two samples of N2DH dataset.

In order to show the detail of segmentation, the samples of PHC and
N2DH are cropped to highlight the region of interest

Conclusion

In this paper, we focus on the feature fusion method in clas-
sical U-Net architecture and present a dense gate network
for semantic segmentation. The Gate Aggregate module
assembles features in the adjacent three levels as a small sub-
network with a stratified structure. In this structure, semantic

gaps between features are reduced gradually by the dense
connected gate units and convolutions. Meanwhile, the gate
unit is designed to enhance the semantic information of low-
level high-resolution features to recover accurate results. The
DG-Network outperforms U-Net in four datasets including
CT images and microscopy images according to the exper-
iments, which demonstrate that better fusion methods can
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Fig. 6 Some results of U-Net, MultiResUNet and DG-Net. a1, a2 Samples of mouse CT dataset, b1, b2 samples of liver dataset, c1, c2 results of
PHC dataset, d1, d2 samples of N2DH dataset

Fig. 7 The effect of gate unit
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improve the performance of networks. Therefore, DG-Net
has the potential to become a reliable segment network.
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