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Abstract

Purpose Left atrium segmentation and visualization serve as a fundamental and crucial role in clinical analysis and under-
standing of atrial fibrillation. However, most of the existing methods are directly transmitting information, which may cause
redundant information to be passed to affect segmentation performance. Moreover, they did not further consider atrial visu-
alization after segmentation, which leads to a lack of understanding of the essential atrial anatomy.

Methods We propose a novel unified deep learning framework for left atrium segmentation and visualization simultaneously.
At first, a novel dual-path module is used to enhance the expressiveness of cardiac image representation. Then a multi-scale
context-aware module is designed to effectively handle complex appearance and shape variations of the left atrium and
associated pulmonary veins. The generated multi-scale features are feed to gated bidirectional message passing module to
remove irrelevant information and extract discriminative features. Finally, the features after message passing are efficiently
combined via a deep supervision mechanism to produce the final segmentation result and reconstruct 3D volumes.

Results Our approach primarily against the 2018 left atrium segmentation challenge dataset, which consists of 100 3D
gadolinium-enhanced magnetic resonance images. Our method achieves an average dice of 0.936 in segmenting the left
atrium via fivefold cross-validation, which outperforms state-of-the-art methods.

Conclusions The performance demonstrates the effectiveness and advantages of our network for the left atrium segmentation
and visualization. Therefore, our proposed network could potentially improve the clinical diagnosis and treatment of atrial
fibrillation.

Keywords Left atrium - Gadolinium-enhanced magnetic resonance image - Segmentation - Visualization

Introduction

Atrial fibrillation (AF) is the most common type of car-
diac disease, which is caused by impaired electrical activity
around the left atrium (LA) [1]. This can make blood more
likely to form heart-threatening clots, which are capable of
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limiting the blood supply to vital organs and further result
in a stroke and heart failure. 3D gadolinium-enhanced mag-
netic resonance images (GE-MRIs) have been confirmed to
improve the visibility of the patient’s atrial structure. There-
fore, GE-MRIs can provide guidance for ablation therapy of
AF [2]. LA segmentation is an essential step during the diag-
nosis and treatment of patients with AF. Unfortunately, due
to the lack of a basic understanding of atrial anatomy, the
current clinical treatment effect is poor [3]. LA visualization
is desired for analyzing atrial 3D geometry structures and
providing reliable information for clinical treatment of AF
after segmentation. However, most existing methods tend to
focus only on the atrial segmentation and neglect the atrial
visualization. Therefore, there is an urgent need for a unified
framework to automatically segment LA from 3D GE-MRIs
and accurately visualize atrial geometry for clinical analysis.

Itis a very complicated task to assist the medical manage-
ment of patients with AF based on LA geometric analysis.
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Many researchers have proposed a series of segmentation
methods to solve it. For example, non-rigid registration [4]
and deformable model [5] are typical methods for atrial
segmentation. Tobongomez et al. [6] compared the perfor-
mance of nine different approaches for LA segmentation
from MRIs/computed tomography, and the results show that
combining statistical models with regional growth meth-
ods is the most effective method. However, it is difficult to
apply these methods directly to the GE-MRIs, because atrial
structures are weaker under the effect of contrast agents.
Therefore, the improved approaches [7, 8] were proposed
and used to segment LA from GE-MRIs. Despite a lot of
efforts, most LA structural analysis studies are still based on
traditional methods and lack generalization capabilities for
invisible cases, such as LA with the rare number of proximal
pulmonary veins (PPVs). Moreover, they do not particularly
emphasize the visualization work after the LA segmentation.

Inrecent years, deep learning is the most advanced method
to process computer vision problems because of its efficiency
and effectiveness. Moreover, the full convolutional neural
(FCN) network architecture [9-11], such as U-Net, has been
proven to handle effectively the medical images and achieve
better performance. Therefore, many similar techniques have
been presented for the LA segmentation; for instance, Yang
et al. [12] closely combined 3D FCN, transfer learning, and
deep supervision mechanisms to extract 3D context infor-
mation to help segment the LA and other cardiac structures,
and hybrid loss functions were designed to guide the training
process by treating all classes equally. Subsequently, Yang
et al. [13] further improved the method and applied to LA
segmentation from GE-MRIs. Vesal et al. [14] presented a
modified version of the 3D U-Net, using dilated convolu-
tions in the lowest layer of the encoder branch, to segment
the LA directly from GE-MRIs. Chen et al. [15] proposed a
multi-task deep U-Net that could segment LA of the subject
and detect whether the subject is pre- or post-ablation. Due
to computer memory limitations and insufficient 3D data,
multi-view FCN networks were proposed in Mortazi et al.
[16] and Chen et al. [17].

Although these methods achieve competitive results, there
are still some problems. (1) The FCN-based segmenta-
tion models sequentially stack single-scale convolutions and
max-pooling layers to extract image features. This makes it
impossible to accurately detect the LA and PPVs with various
shapes and locations because of the limited receptive fields.
(2) The afore-mentioned methods employ element-wise or
concatenation operation to incorporate features from differ-
ent levels. Since not all hierarchical features are positive for
our goal, these incorporation fashions can cause informa-
tion superfluous. (3) LA visualization as a critical step after
segmentation can improve understanding of atrial anatomy
and help develop AF treatment plan. However, most of the
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above methods emphasize the segmentation of LA, and lack
of analysis of atrial visualization.

In this paper, our solutions to the problems described
above and contributions are as follows:

1. We propose a unified atrial segmentation and visualiza-
tion framework for improving the diagnosis of AF and
understanding of LA anatomy, which is a very crucial
procedure toward subject-specific treatment.

2. We design a new dual-path structure for enhancing the
expressiveness of GE-MRIs representation, and then a
multi-scale context-aware feature extraction module is
used to learn more contextual from hierarchical features
to tackle the huge complexity of the LA with PPVs.

3. We present a gated bidirectional message passing mod-
ule, which aims to adaptively filter redundant information
and retain useful information. Integrated useful informa-
tion is beneficial for LA segmentation and visualization.

Materials and methods

The overall workflow is shown in Fig. 1. Our frame-
work consists of four main components: dual-path module
(DPM), multi-scale context-aware module (MSCM), gated
bidirectional message passing module (GBMPM), and deep
supervision (DS) module. The details of each module are
introduced in the following.

Dual-path module

In this paper, we design a new dual-path module (DPM) that
aims to gradually enhance image representation. In fact, the
proposed DPM provides the advantage that extracts seman-
tic features and spatial details. Besides, the DPM capable
of increasing the depth of traditional convolutional neu-
ral networks without distinctly increasing the number of
parameters. In Fig. 2, we can find that each path has five
stages/levels, each stage outputs /;;, where i denotes the
paths and j denotes stages, so

/’lgj = COHV(hlj +h2(j_1)) (1)

where Conv(x;6) is a traditional convolution layer with
parameter & = {W, b}. hy; is also the jth block output. ‘+’
represents the element-wise addition which used to achieve
the dual-path connection. /11y denotes the input and /29 = 0.
The DPM can capture the context and structural information
by adopting the connection of the block at different levels.
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Fig. 1 The workflow of our proposed method. ‘G + D’ represent gate and down-sampling, and ‘U + G’ represent up-sampling and gate. In order to
ensure consistent representation and easy understanding, we use m;!, m;? and m;? to represent the feature maps in Mj;, Mp; and M3;, respectively,

herei=1,...,5

Multi-scale context-aware module

Existing FCN-based methods, which consist of a series of
convolution and max-pooling layers, cannot effectively han-
dle these complex appearance variables. Therefore, Bian
et al. [18] obtain the final LA segmentation results after
extracting multi-scale features by adopting pyramid pool-
ing. Due to the large stride of pooling, the image details
will be easily missed. A recent work [19] used stack sequen-
tial blocks containing several dilated convolutions to capture
different scale context information. Inspired by it, we put
forward a multi-scale context-aware module (MSCM) con-
sisting of four dilated convolutions with dilation ratios 1,
3, 5, and 7 to address large variations of LA and PPVs in
shape and appearance. The main reason is that the traditional
convolution filters with different kernel sizes produce redun-
dant information and increase computation. Figure 3 shows
the details of the MSCM, for the input image I, we first uti-
lized the DPM to extract features at different levels, which are
denotedas F = {f;,i = 1, ..., 5}. Then, four dilated convo-
lution layers with various receptive fields are used to capture
features f; context information at a different scale. Finally,
multi-level contextual features F* = { l.‘Y, i=1,..., 5} are

produced by concatenating the output of the four dilated con-
volution layers along the channel axis.

The gated bidirectional message passing module

Zeng et al. [20] proposed a bidirectional structure to pass
information between context areas of the bounding box for
object detection. Inspired by the work, we introduce and
improve the gated bidirectional message passing module
(GBMPM) to effectively and adaptively integrate the dif-
ferent level features. The difference from the bidirectional
structure proposed in [20] is that our GBMPM is established
among the different level output of the DPM. In the structure,
the extracted multi-level features F* = {f¥,i=1,...,5}
as input and mi3, i =1,...,5 represent the output features.
Our GBMPM involves two directions of information passing
among features with different spatial resolutions. We use the
m to represent the output feature maps of each stage in dif-
ferent directions. The superscript numbers (1 and 2) of the
m indicate the direction, and the subscript numbers indicate
the different stages. Using m can not only clearly show the
specific information passing process of the GBMPM but also
lead to better understanding of the flow of information in the
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GBMPM. Suppose m? = f7, m(l) = 0, and m% = 0, the
process of information transmitting from the shallow layers
to deep layers as follow.

1
m;

=Down (G (m?,l;ef_ll,,) ® ¥ (COHV (milfl;eilfl,z)))

+0 (Conv (m?; 0,-1))

And the message passing from the opposite direction is:

2

n? = Up (G (mlys0,) @ (Com (my562,.1) )
+ (Conv (m?; 93)) (3)

where Down() and Up() represent the downsample and
upsample the feature map, respectively. And @#() denotes
ReLu activation function. The g in the superscript of the
parameter 6 indicates the parameter in the G() gate func-
tion. As for the numbers 1 and 2 after g, they represent,
respectively, the two directions of information passing in the
GBMPM. ® denotes element-wise product. During the pro-
cess of information passing along the bidirection, it should
be decided whether the information on the current level is
helpful for the next level. A gate function consisting of a
convolutional layer with a sigmoid activation function, which
generates a message rate in the range of [0,1], is employed
to control the information transmitting. After filtering by the
gate function, the pixel value of the region containing the
redundant information on the feature maps is less than 0.5 and
close to 0, and the pixel value of the useful information region
is greater than 0.5 and close to 1. Finally, the above feature
maps and the feature maps by the previous convolution oper-
ation and the activation function is subjected to element-wise
product operation to generate feature maps, and the produced
feature maps pay more attention to the information of the use-
ful area and discard other redundant information. Moreover,
if we use convolution operations instead of the element-wise
product, the network will not be able to achieve the effect of
highlighting the object region. The G (x; 6¢) denotes the gate
function which is defined as.

T p——_— @

Here Conv(x; 68) represents a 3 x 3 convolution layer that
the number of channels is equal to x, this indicates that each
channel whose gate function is x learns a different gating
filter. If G(x;6%) = 0, the message of x will be prevented
from passing to other levels.

After information passing, the features in m ll could obtain
more fine spatial details from low-level features, and features
in ml2 obtain semantic information from high-level features.

As a result, we integrate the features from bidirections at
multi-level context features as follows

m3 = @(Conv(Cat(m}, m,.z);eﬁ)). )

1

where Cat() denotes the concatenation operation among
channel axis. ml3 contains both spatial details and seman-
tic information. Hence, m? i =1,...,5 will be useful for
LA segmentation and visualization. Taking the feature maps
m? and the prediction P;4; as input, the incorporate process

is summarized as follows:
P = Conv(m?; el.f) +Up(Pis1),i <5 (6)
p = C0nv<mi3; eif), i=5 %)

where Conv(*;@f ) is a 1 x 1 convolutional layer. Using
Eq. 6, predictions from deep layers are gradually transmitted
to shallow ones. Finally, for the convenience of calculation,
we set the number of channels in the convolution layer of
GBMPM and P; to 64.

Deep supervision mechanism

Since gradient-vanishing problems usually happen in the
shallow layers of the network, we add the batch normalization
and ReLu activation functions after the convolution opera-
tion to effectively avoid the gradient-vanishing problems in
the shallow layers. In addition, we use deep supervision to
train hidden layers in the network. Specifically, we firstly use
additional upsampling operations to expand the feature maps
at each level; we then use the soft-max function on these full-
scale feature maps and obtain additional dense predictions.
For these branch prediction results, we calculate their clas-
sification errors for ground truth. These auxiliary losses are
combined with the auxiliary loss of the last feature integration
layer to stimulate the backpropagation of the gradient in order
to update the parameters efficiently. In each training iteration,
the input of the network is large capacity data, and the errors
of these different loss components are back-propagated at the
same time. In a word, the auxiliary losses are fused to stimu-
late the backpropagation of the gradient so that the network
can update the parameters efficiently in each iteration. There-
fore, it can assist shallow layers to avoid gradient-vanishing.
Furthermore, deep supervision in our network can also alle-
viate the loss of some details caused by sampling operations.
As illustrated in Fig. 4, we add auxiliary side paths as well
as the specific side with multi-level integrated features and
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Fig. 4 Details of the deep supervision mechanism

thus expose each level to extra supervisions. As a result, the
overall loss function Lgyeral. i €laborated by:

Loveran :ZwiLi+mem+waf+(¥L2 i=1,...,5
i

®)

here w and L represent the weight and loss, respectively, and
the value of « is 0.0005. Note that we empirically set all the
weights w;, wy,, and wy are 1. In this work, it contains six
auxiliary losses and a main loss in the overall network. Each
loss function L; in the network is calculated by:

L; = Lce + Ldice + Lmae + Loverlapa

teli,m, f} ©)

And the first, we use the cross-entropy loss L. as a basic
component for main loss and all auxiliary losses to optimize
the network.

Lee ==Y Lylog(Pyy) + (1 =L y)log(1 = Py,) (10)
x,y
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Predict maps

where I, , € {0, 1} is the label for each pixel of the image
(x,y), and Py y is the probability for each pixel of the image
(x, y). The dice coefficient loss function can solve the prob-
lem of class imbalance which causes the traditional loss
function to bias and makes the network ignores the minor
classes. The generalized dice loss [21] Lgice is adopted as
follows:

L s (wg Zx,)- Sx.nyy + wy ZX__V(I - Sx,y)(l - Gx,y))
dice = 1 —
we Yy (Sey+Gry)+wg Y, 2=,y —Gyy)

(11

-1 -1
where w, = (Zx,y Gx,y) s Wy = (Zx,y(l - GX»y))
G is ground truth and S is predicted map. We use the
modified mean absolute errors L;,,.. penalize misclassified
LA region pixels and misclassified non-LA region pixels:

Limae = Zln(l +e|G)c,y_SX,y|)

X,y

12)

Note that the soft-plus function is adopted in L. make
it easy to optimize. The boundary pixels in the LA region
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are more likely to be classified incorrectly, so that boundary
ambiguity makes the classification of the LA region and the
non-LA region more difficult. Therefore, we introduce the
overlap 1oss [22] Loverlap to enlarge the gap between the LA
region and the non-LA region to minimize the misclassifica-
tion of pixels.

Loverlap = Zln(l + e|5x‘y*(lfo_y)|) (13)

X,y

where * is basic multiplication and Lverlap also use the soft-
plus function to assist optimize.

Experiment setup
Datasets

The 100 3D GE-MRIs with ground truth annotation were
provided from the STACOM 2018 challenge dataset (http://
atriaseg2018.cardiacatlas.org/). The size of the 3D GE-MRIs
is 88 x 640 x 640 and 88 x 576 x 576 with the unified spac-
ing 1.0 x 1.0 x 1.0 mm. Because of the information on the
edge of the GE-MRISs is useless, we crop each volume center
to a size of 88 x 400 x 400, and each 3D volume is divided
into multiple slices along the first dimension and each slice
further resizes to 256 x 256. All the samples are normalized
as zero mean and unit variance before the network started
running. We randomly split the dataset and validate the over-
all network via fivefold cross-validation, that is, 80 subjects
were used for training and 20 subjects for testing. We imple-
mented our network by TensorFlow on NVidia Tesla P100
GPU (16 GB GPU memory). For the dilated convolutional
layers in the MSCM, we initialize the weights using the
truncated normal method, and the parameters of the other
convolutional layers are initialized by [23]. We use the Adam
method (batchsize = 4, learning rate = le-6) as the optimiza-
tion algorithm to train our proposed network.

Evaluation criteria

We first evaluate the performance of our method and other
approaches using four metrics, including dice score, con-
form coefficient and Jaccard coefficient, which are is defined,
respectively, by

SNG
dice = 2 (14)
S+G
3 % dice — 2
conform = & (15)
dice
SNG
jaccard = (16)
SUG

where G is ground truth and S is predicted map. These metrics
focus on the overlap between ground truth area and predicted
area and they are in the range of 0~ 1. Furthermore, higher
values denote predicted contour closer to manual contour.
Besides, we also employ Hausdorff distance (HD) [24] to
measure shape variations. It is written as

HD(G, S) :Igneag{rsnelg{\/ﬁ” (17)

A smaller HD represents a better match between predicted
and manual contours.

Results and analysis
Analysis of the segmentation results

Our method delivers accurate segmentation for LA with
PPVs. The proposed network achieves average dice scores
of 0.936 as well as an average HD of 11.889 mm. Figure 5
shows segmentation results for the whole subjects in our
dataset. Among these results, the maximum of dice score
in our dataset is 0.95, and the minimum of dice score is
0.893 which was potentially due to the PPVs of the patient
are relatively small and thin compared to other patients and
thus it more difficult to predict. Figure 6 shows the com-
parison between the segmentation contours by our method
and ground truth counterparts manually obtained by human
experts. From Fig. 6, we can clearly see that the predicted
contour is very close to the manual contour. For the shape and
size of LA and PPVs vary widely among different subjects,
our method is capable of highlighting boundary positions of
the LA region with PPVs. Therefore, the proposed method
not only handles successfully the complex variation pattern
of LA and associated PPVs but also achieves accurate seg-
mentation for all the patients from GE-MRIs, revealing its
great potential for identification and diagnosis of AF in clin-
ical practice.

Analysis of the visualization results

Atrial visualization can provide reliable information for clin-
ical treatment and optimize the therapy plan. Figure 7 shows
the evaluation of the visualization quality of the proposed
approach. In Fig. 7, we can better see the overall prediction
performance of the LA of each patient from a 3D perspective.
Compared with the ground truth, our method also recon-
structs some spatial details well, such as the small branch of
the PPVs and the fine-grained details of its ends. To better
verify the effects of the visualization results, we quantify the
3D volumes of one of the clinical indicators. In Fig. 8, the blue
dot around the red line indicates that the LA body and asso-
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Fig.6 Segmentation results of the LA from the proposed method com-
pared to the ground truth for representative slices on the same 3D
GE-MRIs. The red line represents the manual definition, and the green

ciated PPVs are completely reconstructed by our approach
from the corresponding LA with PPVs. From Fig. 8, we can
obviously observe that the volumes predicted by the pro-
posed method is very close to the truth 3D volumes, and the
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line represents the predicted contours. Our method can well segment
areas pointed by the arrow that is difficult to segment

results display that it has a good correlation between our auto-
matic method and ground truth. Our method yielded accurate
visualization results, demonstrating its advantages in dealing
with high structural variability in the LA with PPVs. More-
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Fig.7 3D surface visualization

of the LA for the ground truth Ground
and the output generated by the truth
proposed method, respectively
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Fig.8 Comparison between visualization volumes by the automated
method and truth volumes

over, our network is capable of automatically segmenting
the 2D slices of GE-MRIs for accurate 3D visualization of
atrial geometry. This is beneficial to clinical patient-specific
diagnostics and treatment.

Ablation analysis

Our approach is composed of four modules, including DPM,
MSCM, GBMPM, and DS module. To investigate whether
each module has a positive effect on the final segmentation
and visualization results, several settings are used to demon-
strate the four components’ contributions to the network.
From Table 1 and Fig. 9, we can observe that the results
are effective in LA segmentation and visualization, respec-
tively. We conduct experiments to highlight the advantages
of our proposed network which consisting of four modules.
The experiments demonstrate that the results improve with
each addition of a proposed module. Consequently, the four

Table 1 Quantitative comparisons of different settings in our network.
The value in parentheses indicates the standard deviation

Model setting Dice (%)

Basic 86.148(0.984)

Basic + DPM 90.299(0.685)

Basic + DPM + MSCM 92.840(0.450)

Basic + DPM + MSCM + GBMPM 93.503(0.522)
(downsampling stream)

Basic + DPM + MSCM + GBMPM (upsampling 93.402(0.553)
stream)

Basic + DPM + MSCM + GBMPM (bidirectional 93.583(0.522)
structure)

Basic + DPM + MSCM + GBMPM + DS 93.640(0.536)

modules can assist the network to predict LA regions more
accurately and reduce the impact of adjacent tissues and oth-
ers. The comparison results prove that the combination of the
four components in our model contributes to the final seg-
mentation and visualization result because the performance
will decrease when using one of the four components alone.
Therefore, the experiments demonstrate that the combina-
tion of DPM, MSCM, GBMPM, and DS module makes our
method an efficient and reliable solution for the diagnoses
and understanding of AF.

Performance comparison with state-of-the-art
methods

In order to further verify the effectiveness of our proposed
method, we compared with several state-of-the-art algo-
rithms, including the LA segmentation methods and other
typical image segmentation techniques. Table 2 reports the
results of different approaches under different measurements.
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Fig.9 Comparison visualization

results of the LA for the ablation -
analysis. (1) Basic network; (2) ,
Basic + DPM; (3) Basic + DPM -
+ MSCM; (4) Basic + DPM +
MSCM + GBMPM
(downsampling stream); (5)
Basic + DPM + MSCM +
GBMPM (upsampling stream);
(6) Basic + DPM + MSCM +
GBMPM (bidirectional
structure); (7) Basic + DPM +
MSCM + GBMPM + DS
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When compared with existing typical segmentation net-
works, our method significantly outperforms the U-Net-2D
network by 4% average dice score and SegNet network by
2.8% average dice score. Besides, our method is obviously
superior to the recent approaches proposed on this dataset.
Among them, the average dice score obtained by our method
is 8.8% higher than the Vesal et al. [14] and 0.8% higher
than Bian et al. [18]. Our method overcomes complex shape
variance and size of LV and PPVs and achieves promising
performance. It proves the effectiveness and advantages of
our network is beneficial to LA with PPVs segmentation.
Therefore, automated segmentation and reconstruct of LA
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(6) (7) GT

with PPVs is extremely useful in providing reliable and
objective diagnoses and treatment of AF and relieving clini-
cians from laborious workloads.

Analysis of HD metric

The HD refers to the Hausdorff distance between the man-
ual contours and predicted contours, which better reflects
the degree of matching between manual and predicted con-
tours. As shown in Fig. 10, it can be clearly seen that the
manual contours are very close to the predicted contours for
the LA body, and large HD values often occur around the
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Table 2 Performance

comparison between our method Methods Dice (%) Conform (%) Jaccard (%) HD (mm)

iﬁf;:;i;i;ﬁiﬁ“rnﬂhOdSﬁ” PSPNet [25] 87.904 72218 78.532 23319
U-Net-2D 89.638 76.485 81.404 22,711
U-Net-3D 87.020 68.033 77.785 25.243
DeepLabV3 [26] 88.456 72.449 79.846 23.099
SegNet [27] 90.762 78.912 83.422 23.362
Yang et al. [13] 92.244 83.120 85.644 18.293
Vesal et al. [14] 84.800 - 77.000 -
Chen et al. [15] 90.100 - 82.200 14.230
Bian et al. [18] 92.834 84.445 86.694 17.891
Our method 93.640 86.377 88.068 11.889

Fig. 10 Some slices of GE-MRIs with poor matching, yellow circles indicate the PPVs with higher HD values

PPVs, which indicates a poor match between the predicted
contours and the ground truth. It is caused by the shape and
size of the LA with PPVs of different subjects. The final
HD is the average result of combining the LA body and the
PPVs. The HD of the PPVs is higher, which will increase the
final average result. It is worth noting that not all PPVs have
poor matching. All in all, the average HD is reasonable and
has a great competitive advantage compared with the result of
other methods. However, we also admit that our method does
not perfectly solve the segmentation problem of PPVs with
different shapes, sizes, and lengths. This makes the predicted
structure of the LA and PPVs different from the ground truth,
which may make the atrial fibrillation ablation plans can be
biased and affect treatment effects. Therefore, we are work-
ing hard to explore new solutions to solve this problem so
that the LA and PPVs have a high degree of matching with
ground truth.

Conclusion

This paper proposes a unified approach that can be used to
perform automatic LA segmentation and accurate LA visual-
ization from GE-MRIs. We have studied a robust model from
GE-MRIs in four modules: (1) a novel dual-path structure

for improving the expressiveness of GE-MRISs representation
at different levels. (2) MSCM, which contains four dilated
convolution layers with different receptive fields, to capture
the context information for LA feature learning at multiple
scales. (3) GBMPM to incorporate features from different
levels adaptively transmit information to each other. (4) the
DS mechanism is used to generate score maps on different
levels and utilize several loss functions to make effective the
training process. In the end, we evaluated the effectiveness of
our designed network on STACOM 2018 challenge dataset
via fivefold cross-validation and our method achieves the
desired results. It can accelerate the development of a more
accurate segmentation and visualization of the atrial geom-
etry method, which can possibly be assisting in improving
clinical diagnosis and clinical guidance during ablation treat-
ment for subjects with AF. In the future, we will look to
expand our method and improve the existing network frame-
work to deal with other problems of the organ segmentation
and visualization.
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