
International Journal of Computer Assisted Radiology and Surgery (2020) 15:425–436
https://doi.org/10.1007/s11548-019-02115-9

ORIG INAL ART ICLE

Contour-aware multi-label chest X-ray organ segmentation

M. Kholiavchenko1 · I. Sirazitdinov1 · K. Kubrak1 · R. Badrutdinova2 · R. Kuleev1 · Y. Yuan4 · T. Vrtovec5 ·
B. Ibragimov1,3

Received: 2 August 2019 / Accepted: 30 December 2019 / Published online: 7 February 2020
© CARS 2020

Abstract
Purpose Segmentation of organs from chest X-ray images is an essential task for an accurate and reliable diagnosis of
lung diseases and chest organ morphometry. In this study, we investigated the benefits of augmenting state-of-the-art deep
convolutional neural networks (CNNs) for image segmentation with organ contour information and evaluated the performance
of such augmentation on segmentation of lung fields, heart, and clavicles from chest X-ray images.
Methods Three state-of-the-art CNNswere augmented, namely theUNet and LinkNet architecture with the ResNeXt feature
extraction backbone, and the Tiramisu architecture with the DenseNet. All CNN architectures were trained on ground-truth
segmentation masks and additionally on the corresponding contours. The contribution of such contour-based augmentation
was evaluated against the contour-free architectures, and 20 existing algorithms for lung field segmentation.
Results The proposed contour-aware segmentation improved the segmentation performance, and when compared against
existing algorithms on the same publicly available database of 247 chest X-ray images, the UNet architecture with the
ResNeXt50 encoder combined with the contour-aware approach resulted in the best overall segmentation performance,
achieving a Jaccard overlap coefficient of 0.971, 0.933, and 0.903 for the lung fields, heart, and clavicles, respectively.
Conclusion In this study, we proposed to augment CNN architectures for CXR segmentation with organ contour information
and were able to significantly improve segmentation accuracy and outperform all existing solution using a public chest X-ray
database.

Keywords Image segmentation · Convolutional neural networks · Deep learning architectures · Chest X-ray (CXR) images ·
JSRT database

Introduction

Chest radiography is a diagnostic method for detecting
pathological changes in the chest, organs of the thoracic
cavity and nearby anatomical structures. Two-dimensional
chest X-rays (CXRs) remain the most commonly acquired
diagnostic images, and its computerization can significantly
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reduce diagnostic cost and potentially improve diagnostic
accuracy [1]. An important stage of computer-assisted CXR
image analysis is the automated segmentation of the chest
organs. Recently, Candemir and Antani [2] conducted a
comprehensive review on the topic and demonstrated that
CXR segmentation is an active research topic and such seg-
mentation can significantly facilitate accurate diagnosis and
quantification of chest pathologies. For example, pleural
effusion and emphysema distort the healthy lung appear-
ance and can be diagnosed from lung field segmentation [3].
The combined segmentation of lung fields and heart from
CXR opens a pathway for early diagnosis of hypertension,
systemic atherosclerosis, automated estimation of cardiotho-
racic ratio for cardiomegaly quantification, andmorphometry
of aortic valve boundary for diagnosis of other heart patholo-
gies [4,5]. Measuring the shape and size of the lung fields is a
step toward the localization of pulmonary nodules and other
abnormalities [6]. Segmentation of clavicles can improve
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the differentiation of normal and pathological structures that
visually collide in the apical lung region.

The field of computerized segmentation of CXRs has
been greatly facilitated by the availability of a public JSTR
database [7] with manual segmentations released by van
Ginneken et al. [8], who compared the performance of exist-
ing shape-based and intensity-based segmentation methods.
Machine learning approaches with predefined appearance
features also demonstrated potential on segmentation of
CXR images [9,10]. Recently, image segmentation based
on machine learning shifted from predefining appearance
features to automated feature learning through deep neural
networks. In-depth training approaches achieved expert-level
performance in interpreting natural andmedical images [11].
Different deep learning approaches for the CXR segmenta-
tion were proposed and evaluated on the JSTR database, with
the reported Jaccard coefficient reaching 0.963 for the lung
fields segmentation [12–19]. The maximum-to-date accu-
racy was achieved by Ngo and Carneiro [20] on the JSTR
database, but the authors unfortunately did not use the com-
mon evaluation protocol [8].

In this study, we propose a framework for contour-aware
multi-label CXR organ segmentation (Fig. 1). There are
the following contributions of our study. First, we analyze
the benefits of augmenting deep CNNs with object con-
tours with the aim to improve the segmentation of chest
organs. We leverage the recent work on contour-aware cell
segmentation [21,22] to investigate possibilities of moving
from single-object-type to multi-object-type segmentation,
and check whether the improvements observed for cell seg-
mentation continue to be present for respiratory organs with
low image intensity, e.g., lungs, soft tissues with poorly
visible boundaries, e.g., heart, and bones, e.g., clavicles.
Second, we augmented three state-of-the-art segmentation
CNNs to comprehensively evaluate contour-aware multi-
label segmentation methodology. Finally, we validated the
obtained results against the public JSTR database [8] and

compared segmentation accuracy to 20 algorithms presented
in the literature.

Methodology

After deep CNNs proved successful in solving image classi-
fication problems, they have been also adopted for image
segmentation problems [23]. Two main challenges were
addressed during this transition. First, the CNNpooling layer
that adds local translation invariance to its input and reduces
the computational complexity also progressively reduces
the size of the input. While this size reduction is benefi-
cial for classification, where a high-resolution input image
is down-sampled to form an output prediction vector, it is
not required for segmentation, where the output image res-
olution is expected to be the same as for the input image.
Second, the preservation of image resolution results in a
potentially rapid growth of network parameters, which may
reduce the CNNgeneralization abilities, slow down the train-
ing phase, and affect the segmentation performance. Modern
CNN architectures for image segmentation are based on
mathematical concepts that are able to address both chal-
lenges, and typically consist of an encodermodel followed by
a decoder model (“Proposed augmented networks” section).
To improve the segmentation performance, we propose to
augment such architectures with organ contours (“Contour-
aware multi-label segmentation” section), and consequently
request the last CNN layer to return both segmentationmasks
and the corresponding contours (Fig. 1).

Proposed augmented networks

In this paper, we investigate the following three state-of-the-
art architectureswithin the proposed contour-aware approach
to determine the best performing model for organ segmenta-
tion from CXR images:

Fig. 1 A schematic illustration of the proposed contour-aware multi-class chest X-ray organ segmentation framework. The neural network takes a
chest X-ray image as an input and generates organ masks and corresponding contours. Variables S1 and S2 correspond to the size of the chest X-ray
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Fig. 2 An aggregation block of
a ResNet (an earlier version of
ResNeXt) and b ResNeXt, both
with approximately the same
computational complexity in
terms of floating-point
operations and a similar number
of parameters [24]. Each
network layer is described by
the number of input channels m,
filter size of n × n, and number
of output channels of p

• TheUNet architecture [23] augmented with the ResNeXt
encoder [24] pre-trained on the ImageNet database [11]
(See “UNet” section).

• The LinkNet architecture [25] augmented with the
ResNeXt encoder pre-trained on the ImageNet database
(See “LinkNet” section).

• The Tiramisu architecture [26] augmented with the fully
convolutional DenseNet [27] (See “Tiramisu” section).

UNet

The UNet architecture introduced skip connections between
the down-sampling encoder and up-sampling decoder paths
[23], which help to propagate features from early layers that
preserve fine input details to deeper layers that aggregate
high-level information but lose small image details due to
a long sequence of intermediate pooling layers [28]. The
UNet-based approach was shown to be efficient even when
trained on relatively small databases [29], and won several
public computational challenges [30]. In our experiments,we
augmented the UNet architecture by replacing the original
encoder with a 50-layer ResNeXt encoder [24] pre-trained
on the ImageNet database [11] and adapting the correspond-
ing decoder to the new encoder. The ResNeXt50 encoder
introduces a building block that aggregates a set of transfor-
mations with the same topology, uses residual connections
that augment blocks of multiple convolution layers, and gen-
erates gradient shortcuts that reduce the risk of gradient
vanishing or explosion, therefore allowing to train deeper
network architectures (Fig. 2) [31].

LinkNet

Similarly to UNet, the LinkNet architecture [25] focuses on
utilizing the parameters of network efficiency by introducing

residual skip connections that bypass the features from the
encoder to the decoder and applying the summation of corre-
sponding down-sampling and up-sampling features (Fig. 3).
In contrast to layer concatenation in UNet skip connections,
summation does not increase the number of input channels
for the subsequent layer and therefore does not result in the
same growth of the number of network parameters as con-
catenation. Similarly to UNet, we augmented the LinkNet
architecture with a 50-layer ResNeXt encoder pre-trained
on the ImageNet database and adapted the corresponding
decoder to the new encoder.

Tiramisu

The Tiramisu architecture [26] combines the encoder–
decoder concept and the idea of densely connected CNNs–
DenseNets [27]. It utilizes UNet skip connections by feature
concatenation with additional feature extraction in dense
blocks of the up-sampling path. The DenseNet component
consists of dense blocks andpooling layers, andof a relatively
small number of parameters in comparison with a regular
stacked CNN that result from using direct connections from
any layer to all subsequent layers (Fig. 4). By reusing the fea-
tures, such an architecture becomes very efficient in terms of
parameters and convergence. A Tiramisu version with 103
layers was applied to accurately segment brain tumors [32].
In our experiments, we combined the Tiramisu with a 56-
layer DenseNet.

Contour-awaremulti-label segmentation

The recent work on histopathological image segmentation
with deep CNN architectures [21,22] has shown certain ben-
efits of analyzing the contours of cell nuclei jointly with their
corresponding masks. In our work, we extend the idea of
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Fig. 3 The LinkNet architecture [25]. The residual skip connections that go from early encoder to late decoder blocks are based on the layer
summation operation, which, in contrast to the layer concatenation operation, does not increase network parameters in subsequent layers

Fig. 4 a A diagram of the
Tiramisu architecture [26]. The
“transition-down” operation
consists of a 1× 1 convolution
operation and 2× 2 pooling
operation that reduce the size of
the operation input. The
“transition-up” operation is the
transposed convolution layer
that upscales its input to
eventually restore the original
size of the input image. b A
diagram of a dense block of four
layers as part of the Tiramisu
architecture

contour-aware segmentation into the segmentation of multi-
ple object types. For each training CXR image, we have three
binary masks representing lung fields, heart, and clavicles
and we compute three contour masks by applying morpho-
logical operations to the corresponding binary masks. The
segmentation CNN is trained to map an input CXR to N = 6
output channels, i.e., three channels representing segmen-
tation masks and three channels representing contours of
the lung fields, heart, and clavicles. All of the output chan-
nels are of the same size as the input CXR. The presence
of the contour masks in the output will impose additional
costs to the errors made at organ boundaries as not only
mask channel but also the corresponding contour channel
will be negatively affected by such errors. By arming a CNN
with contour information, we can explicitly indicate that con-
tour pixels preserve more valuable information than internal
mask pixels, instead of assuming that the CNNwill automat-

ically recognize the information richness of contour pixels.
Although contours are not used to evaluate the segmentation
performance, requesting them at the CNN output is required
to accommodate the corresponding CNN architecture. The
idea of targeting CNNs to specific image regions has shown
potential in other applications of computer-aided diagnosis,
e.g., targeting CNNs on ventricular walls helps to quantify
myocardial infarction [33] while targeting CNNs on anatom-
ical landmarks helps to diagnose orthodontics abnormalities
[34].

Loss function

The loss function for our networks is based on a combination
of two functions, namely the Dice coefficient loss D(x, y)
[35], which copes well with the cases when the foreground
area is relatively small in comparison with the background
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Fig. 5 The Japanese Society of Radiological Technology (JSRT)
database of posteroanterior chest X-ray images. a Original images.
b Corresponding organ segmentation masks, provided by the Segmen-

tation of Chest Radiographs (SCR) database. c Corresponding organ
contours, generated from the segmentation masks

area, and the binary cross-entropy B(x, y), which is preferred
for classification tasks:

D(x, y) = 2
∑

p∈P xp yp
∑

p∈P x2p + ∑
p∈P y2p

,

B(x, y) = −
∑

p∈P

yp log xp, (1)

where x is the mask predicted by a network, y is the corre-
sponding ground-truthmask, and P is the set of pixel indexes
in themask x (and y). A combination of binary cross-entropy
and Dice coefficient losses is shown to be efficient for the
segmentation ofmedical structures. It was utilized by the top-
scoring and winning teams at the 2018 Data Science Bowl
and 2019 Kidney and Kidney Tumor Segmentation Chal-
lenge [36–38]. The final loss function L(X ,Y ) is defined
as:

L(X ,Y ) =
N∑

i=1

B(Xi ,Yi ) − log

(
N∑

i=1

D(Xi ,Yi )

)

, (2)

where X denotes the output of a network that consists of N
channels and Y is the corresponding ground truth that also
consists of N channels. It is important to note that the CNN
output has individual channels for each organ segmentation
instead of uniting all organ segmentations into one multi-
label channel. The reason for such an algorithm design is
the projective nature of CXRs. In contrast to natural view
images, where each pixel belongs to one segmentation class,
organs in CXRs intersect and pixels may belong to multiple
classes simultaneously. From Fig. 5, it can be seen that most

of the pixels defining clavicles also belong to lung fields, etc.
We, therefore, use the binary cross-entropy losswithmultiple
output channels instead of the categorical cross-entropy loss.

Experiments and results

Experiments

Theproposed contour-awaremulti-label segmentation frame-
work was evaluated on the segmentation of lung fields, heart,
and clavicles from CXR images from JSRT database [7,8].
The JSRT database consists of 247 posteroanterior CXR
images with and without lung nodules, with a resolution of
2048× 2048 pixels and pixel size of 0.175mm (Fig. 5). To
obtain the organ contours required by the proposed segmen-
tation framework, we applied morphological edge detection
by first eroding the original masks using an all-ones 3× 3

Table 1 Augmentation techniques applied to chest X-ray images to
enrich the network training phase

Type of augmentation Value interval Probability

Horizontal mirroring – 0.50

Scale x , scale y [0.8, 1.2] 0.25

Rotation [−15◦,+15◦] 0.25

Shear [−10◦,+10◦] 0.25

Shift x , shift y 1 [−0.1,+ 0.1] 0.25

Example: During training, there is a 0.25 or 25% probability that an
image is rotated for a random angle from interval [−15◦,+15◦]
1Values are fractions of the original image size
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Table 2 Comparison of the
segmentation results, obtained
by augmented network
architectures that were trained
without and with (+) organ
contours, in terms of the Jaccard
coefficient

Method Lung fields Heart Clavicles

UNet_ResNeXt50_Masks 0.946 0.875 0.835

UNet_ResNeXt50_Masks+Contours 0.971 0.933 0.903

LinkNet_ResNeXt50_Masks 0.952 0.894 0.856

LinkNet_ResNeXt50_Masks+Contours 0.955 0.895 0.857

Tiramisu_DenseNet56 _Masks 0.959 0.896 0.848

Tiramisu_DenseNet56_Masks+Contours 0.961 0.899 0.847

Bold values indicate the best result in a column

Table 3 Comparison of the
proposed contour-aware
segmentation architectures (in
bold) against existing
segmentation algorithms that
were evaluated on the same
database of chest X-ray images
according to a common
evaluation protocol [8]

Method Lung fields Heart Clavicles

AAM1 [8] 0.847 0.775 0.505

ASM2 [8] 0.927 0.814 0.734

ASM with SIFT3 [40] 0.930 – –

ASM & AAM [41] 0.931 – –

ASM & AAM [42] 0.940 – –

Atlas registration [43] 0.940 – –

Second observer [8] 0.946 0.878 0.896

GTF4 [44] 0.946 – –

SCAN5 [14] 0.947 0.866 –

UNet [16] 0.950 0.882 0.868

FCN-DAL6 [15] 0.951 0.893 –

LF-SegNet [17] 0.951 – –

MISCP7 [45] 0.951 – –

Customized ASM [46] 0.952 – –

SED8 [47] 0.952 – –

ASLM9 [48] 0.953 – –

Atlas lung+heart [4] 0.954 0.697 –

LinkNet_ResNeXt50_Masks+Contours 0.955 0.895 0.857

Multi-task FCN [12] 0.959 0.899 0.863

CNN-AC10 [13] 0.961 – –

UNet /ImageNet [18] 0.961 0.906 0.858

Tiramisu_DenseNet56_Masks+Contours 0.961 0.899 0.847

Adaptive region growing [49] 0.963 – –

UNet_ResNeXt50_Masks+Contours 0.971 0.933 0.903

Values represent the Jaccard coefficient, and algorithms are listed in ascending order according to the result
for the lung fields
1Active appearance model; 2Active shape model; 3Scale-invariant feature transform; 4Game-theoretical
framework; 5Structure correcting adversarial network; 6Fully convolutional network dual-path adversarial
learning; 7Minimal intensity and shape cost path; 8Structured edge detector; 9Appearance, shape and land-
mark misdetection; 10Convolutional neural network with atrous convolution

matrix and then subtracting the eroded mask from the origi-
nal mask (Fig. 5c).

The images, segmentations masks and contours were sub-
sampled to a resolution of 512× 512 pixels and partitioned
into two folds as proposed by van Ginneken et al. [8]. In
the twofold cross-validation scheme, we first trained the net-
works on the first fold and performed evaluation on the
second fold and then repeated the procedure by inverting

the folds. The networks used the Adam optimization algo-
rithm [39], with the initial learning rate set to 0.001 that
was reduced each time when the training processes reached
a plateau, and the batch size set to 16. We also used an
early stopping technique and a set of image augmentation
approaches (Table 1) to reduce the risk of potential overfit-
ting and enrich the network training phase. For the output
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Fig. 6 Example of segmentation
results (light-colored regions) in
comparison with the ground
truth (dark-colored contours)
superimposed on the chest
X-ray image. a Mask-only
segmentation
(UNet_ResNeXt50_Masks).
b Contour-aware segmentation
(UNet_ResNeXt50_Masks+Contours).
The arrows indicate the regions
where segmentation
improvement is observed

network layer, the sigmoid function σ(x)= 1/(1+e−x )was
used as the activation function.

The final segmentationmaskswere obtained by threshold-
ing the probabilistic output of the networks at a 0.5 level, and
the quality of the segmentation was evaluated by computing
the Jaccard coefficient against the corresponding ground-
truth masks.

Results

Table 2 shows the segmentation results, achieved by the pro-
posed augmented networks on the JSRT database, where we
compared architectures with and without taking into account
the contours. The best performing architecture was the UNet
architecture augmented with the ResNeXt50 encoder that
incorporated organ contours (i.e., UNet_ResNeXt_Masks+
Contours), which reached the highest mean Jaccard coeffi-
cient for each observed organ, i.e., 0.971 ± 0.007 for the
lung fields, 0.933 ± 0.024 for the heart and 0.903 ± 0.022
for the clavicles. The incorporation of contours improved
the performance of every tested network architecture. In
Table 3, the results obtained by incorporating contours are
compared to existing approaches evaluated on the JSRT
database according to a common evaluation protocol [8].
An example of typical segmentation results is shown in
Fig. 6.

Discussion

The analysis of CXR is one of the important topics in
computer-aided diagnosis, which has been receiving more
attention with the rapid expansion of deep learning [2]. The
deep learning architectures may diagnose chest pathologies
in the end-to-end fashion, i.e., directly from CXRs with-
out a need for intermediate image processing steps [50]. It
is, however, a premature conclusion to suggest that end-to-
end solutions eliminated the need for organ segmentation.
Lung field segmentation improves pathology localization as
it was shown by some methods on the recent RSNA Kaggle
Pneumonia Detection Challenge [51]. The shape features of
segmented lungs can improve the accuracy of tuberculosis
diagnosis [52] and can augment end-to-end solutions. More-
over, computer-aided chest pathology diagnosis is not the
only problem of interest; segmentation is needed for longitu-
dinal chest disease monitoring and standardized radiological
reporting. In general, segmentation and landmark detection
have shown exceptional applicability on various diagnos-
tic challenges, including cephalometry [30], spinal structure
analysis [53], and heart morphometry [54].

In this study, we investigated the benefits of augmenting
deepCNNsegmentation architectures by including advanced
feature extraction and taking into account, besides segmen-
tation masks, also the corresponding contours [55]. We
selected three state-of-the-art CNNs (i.e., UNet, LinkNet
and Tiramisu) and modified them to include advanced fea-
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Fig. 7 Activation maps, obtained from the third to last layer of the
UNet architecture with the ResNeXt50 decoder. a Training for the
mask-only segmentation (UNet_ResNeXt50_Masks).bTraining for the
contour-aware segmentation (UNet_ResNeXt50_Masks+Contours),

which results in sharper organ contours, e.g., lung fields, heart, and
clavicles. (Note: Although activation maps in a and b correspond to the
image of the same subject, there is no pairwise correspondence between
them because their order is unpredictable during network training)

ture extraction backbones (i.e., ResNeXt andDenseNet). The
augmentation by contours architectures was evaluated on
segmentation of the lung fields, heart, and clavicles from
a public database of CXR images. The idea behind the
proposed contour-aware segmentation is to explicitly force
the CNNs to focus on organ boundaries so that during the
training phase the boundary appearance features are always
learned. Contour-aware segmentation performance was eval-
uated against existing segmentation solutions (Tables 2 and
3).

In this section, we analyzed the results of contour-
aware segmentation in terms of segmentation accuracy
and CNN properties. From the observed segmentation
results, we can see that augmenting CNNs with contours
resulted in improved accuracy for all structures, namely
lung fields, heart, and clavicles, and all tested networks
(Table 2, Fig. 6). It is important to note that our raw

UNet_ResNeXt50_Masks resulted in a very similar perfor-
mance to the UNet implementation of [16]. This obser-
vation supports the conclusion that there is minimal plat-
form dependency in our findings. Requesting the organ
contours as the network output requires it to learn the
appearance of organ borders, which is expected to be man-
ifested in the activation maps of the network. To visually
confirm this theoretical expectation, we generated and com-
pared the activation maps for the UNet_ResNeXt50_Masks
and UNet_ResNeXt50_Masks+Contours networks (Fig. 7).
The UNet_ResNeXt50_Masks+Contours activation maps
are sharper at borders for lung fields (6th and 14th maps of
Fig. 7b), heart (9th and 13th maps of Fig. 7b), and clavicles
(4th and 10th maps of Fig. 7b) in comparison with activation
maps for UNet_ResNeXt50_Masks returning fuzzier bor-
ders for lung fields (12th and 14th maps of Fig. 7a), heart
(2nd and 10th maps of Fig. 7a), and clavicles (4th map of
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Fig. 8 Log-scaled histograms of inner-boundary pixel values after the
sigmoid activation function (inner-boundary pixels are all pixels within
a distance of 5 pixels inward from the corresponding ground-truth mask

boundary). a Mask-only segmentation (UNet_ResNeXt50_Masks).
b Contour-aware segmentation (UNet_ResNeXt50_Masks+Contours)

Fig. 7a). It is important to indicate that the activationmaps for
UNet_ResNeXt50_Masks+Contours highlighted the upper
and lower borders of the heart. Such heart border decompo-
sition is of high practical value and needed to compute the 1D
cardiothoracic ratio, defined as the ratio between the maxi-
mum transverse cardiac diameter and the maximum thoracic
diameter, and 2D cardiothoracic ratio, defined as the ratio
between heart and lung perimeters [4].

In addition to visual comparison of activation maps of
the mask-only and contour-aware network versions (Fig. 7),
we also performed a numerical analysis of activations at
organ boundaries. We computed the log-scaled histograms
(Fig. 8) to estimate the proportion of organ boundary
pixels correctly assigned to the corresponding organ for
contour-aware and mask-only segmentations. From the his-
tograms, we can, for example, observe that around 13%
of lung boundary pixels are classified as background for
UNet_ResNeXt50_Masks, whereas this number drops to
around 3% for UNet_ResNeXt50_Masks+Contours. The

mean pixel activation values were also statistically compared
using the one-sided nonparametric Mann–Whitney test,
showing that they were statistically higher for the contour-
aware than for the mask-only segmentation (Table 4). These
experiments statistically confirm more accurate segmen-
tation at organ boundaries for UNet_ResNeXt50_Masks+
Contours.

To further validate the proposed concepts of contour-
aware CNNs for CXR segmentation, we evaluated the best
performing architecture UNet_ResNeXt50_Masks+
Contours on a Montgomery public database with lung field
segmentations [56]. The database consists of 138 CXR (80
are normal, 58 are abnormal with tuberculosis) with the
pixels size of 0.0875 mm. We performed fivefold cross-
validation on 138 CXRs and obtained segmentation results
of 0.966 and 0.967 in terms of the Jaccard coefficient for
UNet_ResNeXt50_Masks and UNet_ResNeXt50_Masks+
Contours, respectively. Augmentation with contours resulted
in improved CXR segmentations for the Montgomery
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Table 4 Mean probability of inner-boundary pixels activations (inner-boundary pixels are all pixels within a distance of 5 pixels inward from the
corresponding ground-truth mask boundary)

Lung fields Heart Clavicles

Mask-only segmentation (UNet_ResNeXt50_Masks) 0.869 0.690 0.851

Contour-aware segmentation (UNet_ResNeXt50_Masks+Contours) 0.967 0.933 0.971

p-value (Mann-Whitney test) < 10−6 < 10−8 < 10−8

Higher probabilities indicate a higher attention that the network gives to the organ boundaries

Table 5 Accuracy of lung field, heart, and clavicle segmentation in terms of Jaccard coefficient for different rotations of target images

Contour-aware segmentation (UNet_ResNeXt50_Masks+Contours) 10◦ 20◦ 30◦

Lungs 0.971 ± 0.007 0.970 ± 0.007 0.963 ± 0.008

Heart 0.933 ± 0.024 0.920 ± 0.022 0.884 ± 0.042

Clavicles 0.906 ± 0.022 0.897 ± 0.028 0.817 ± 0.100

Fig. 9 Example of heart
segmentation results
(light-colored regions) for the
contour-aware segmentation
(UNet_ResNeXt50_Masks+
Contours) in comparison with
the ground truth (dark-colored
contours) superimposed on the
chest X-ray image. a Contour
prediction. b Mask prediction.
The arrows indicate the regions
with poorly recognized heart
contours and poor segmentation
results

database; however, the improvements are less pronounced
than for the JSRT database. One of the potential explana-
tions for slightly lower segmentation accuracy is the fact that
the Montgomery database has more cases with pathologies
resulting in poorly visible boundaries.Candemir et al. [4] also
observed small deterioration of lung segmentation accuracy
for the Montgomery database in comparison with the JSRT
database. We finally evaluated how potential patient mispo-
sitioning may affect segmentation accuracy. To emulate the
situation when the patient is not perfectly upright, we intro-
duced artificial rotations to the testing CXRs with the 10◦,
20◦, and 30◦ magnitude. The segmentation results for rotated
CXRs are summarized in Table 5. We can observe that rota-
tions of 10◦ do not result in performance deterioration due
to the fact that [−15◦,+15◦] rotations we added to the input
CXRs as the training data augmentation for CNNs.

Further improvements in segmentation performance can
be achievedby imposing additional anatomical constraints on

contour definitions, as the current contour detection still faces
challenges in the case of poorly visible boundaries (Fig. 9).
One of the strategies is to additionally integrate fuzzy con-
tour information into the loss function, as it was performed
in the original UNet paper [23]. The authors computed the
distances between image pixels and the target object bor-
ders and added a distance-based loss component in order to
penalize errors near the object borders. Such a loss function
may strengthen the segmentation algorithm and improve the
robustness of the resulting masks and contours. At the same
time, that loss function requires the introduction and tuning
of two additional algorithm parameters per object type.

Conclusion

In this study, we evaluated an end-to-end contour-aware
CNN framework for the segmentation of the lung fields,
heart and clavicles from a public database of CXR images.
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The contour information improved the performance of three
state-of-the-art CNN architectures. Moreover, we numeri-
cally demonstrated that contour information helps CNNs to
learn useful features about both the segmentation mask and
contour of chest organs, therefore improving the quality of
the predicted segmentation mask along the corresponding
contour.
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