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Abstract
Purpose Nonlinear multimodal image registration, for example, the fusion of computed tomography (CT) and magnetic
resonance imaging (MRI), fundamentally depends on a definition of image similarity. Previousmethods that derivedmodality-
invariant representations focused on either global statistical grayscale relations or local structural similarity, both of which
are prone to local optima. In contrast to most learning-based methods that rely on strong supervision of aligned multimodal
image pairs, we aim to overcome this limitation for further practical use cases.
Methods We propose a new concept that exploits anatomical shape information and requires only segmentation labels for
both modalities individually. First, a shape-constrained encoder–decoder segmentation network without skip connections is
jointly trained on labeled CT andMRI inputs. Second, an iterative energy-based minimization scheme is introduced that relies
on the capability of the network to generate intermediate nonlinear shape representations. This further eases the multimodal
alignment in the case of large deformations.
Results Our novel approach robustly and accurately aligns 3D scans from the multimodal whole-heart segmentation dataset,
outperforming classical unsupervised frameworks. Since both parts of our method rely on (stochastic) gradient optimization,
it can be easily integrated in deep learning frameworks and executed on GPUs.
Conclusions We present an integrated approach for weakly supervised multimodal image registration. Achieving promising
results due to the exploration of intermediate shape features as registration guidance encourages further research in this
direction.
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Introduction

Fusion of data acquired fromdifferentmodalities (or sensors)
plays a very important role in remote sensing, medical imag-
ing, and cross-modal learning. We present a new concept for
aligning multimodal medical images by exploring the rela-
tions between shape encodings and spatial nonlinear transfor-
mations within convolutional autoencoders. The deformable
registration of magnetic resonance imaging (MRI) and com-
puter tomography (CT) scans has numerous clinically highly
relevant applications, including radiotherapy, image-guided
interventions, and multimodal diagnostics. In contrast to
same-modality alignment, which is mainly complicated by
anatomical deformations due to motion or disease progres-
sion, the fusion of multimodal medical scans is in addition
highly challenging due to non-functional intensity mapping
across CT and MRI and locally varying contrast patterns.
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In this work, we propose to learn a modality-independent
mapping to a common shape space that enables us to sep-
arate the intensity matching and spatial alignment tasks.
First, a joint convolutional encoder–decoder network with-
out skip connections is trained using segmentation masks
as supervision to learn a low-dimensional embedding that
accurately represents anatomical shapes regardless of input
domain/modality. Abolishing skip connections, we enforce
the latent code to comprise all relevant information to ade-
quately reconstruct the target shapes. Second, we propose to
align the images of two unseen CT and MRI scans based
on their reconstructed shapes—using gradient descent and a
cross-entropy loss together with a regularization penalty to
ensure the smoothness of the estimated nonlinear displace-
ment field. Especially for large deformations, misalignment
can occur when a local minima of the cost landscape is
reached. Here, we smoothly interpolate realistic intermediate
shapes from our learned space and can therefore make use
of a divide-and-conquer strategy that concatenates small and
thus easier registration steps.

After reviewing the related work in the next section, we
describe our proposed method in detail in the “Methods”
section. Due to the two-part nature of our approach, we
perform experiments in the “Experiments and results” sec-
tion to evaluate the quality of the learned nonlinear shape
embedding on the one hand, as well as the robustness of the
proposed iterative registration guidance on the other hand.
Finally, we discuss our results in the “Discussion” section
and give an outlook on future work to further improve our
proposed approach.

Related work

Registration of image pairs usually relies on image metrics
that assess how well corresponding structures are aligned
[4]. In the monomodal case, similarity measures like the
sum of squared differences (SSD) are often sufficient. In
contrast, registering volumes from different domains, e.g.
CT and MRI, requires more elaborate strategies. Classical
approaches contain, e.g. information theoretic methods to
compute similarities based onmutual information [13].How-
ever, different modalities may result in deceptive statistical
correlations for certain image patterns that do not correspond
to real anatomical structures—leading to a physiologically
implausible alignment [20].

Alternative strategies transform both modalities into a
shared space,where theybecomecomparable. Self-similarity
based modality-invariant local image representations have
been successfully used in computer vision [16] and medical
imaging [7]. Despite their convincing results, with the ongo-
ing success of convolutional neural networks (CNNs) [12],
there is currently a clear trend to learn expressive features
instead of using handcrafted ones.

In the context of image registration, the learning of fea-
tures is challenging for several reasons. Most importantly,
large amounts of ground-truth data , that are normally a
prerequisite for deep learning, are very scarce. In [15,19]
aligned images are generated with “traditional” registration
approaches, thus the learned transformations simply mimic
the latter or serve as parameter initializations for the clas-
sical methods. Furthermore, various strategies emerged to
simulate pseudo-ground truth deformations that could be
employed for the training of CNNs, e.g. [3,17]—without
guarantees to comply with real anatomical deformations.
Using differentiable image sampling, as first proposed in [9],
was employed in [2] to derive a feed-forward network that
was trainedwith classical cost terms (similarity and displace-
ment regularization). This idea was further extended in [8]
to employ segmentation labels as supervision for multimodal
alignment. Using shape information as prior for learning to
segment images from a new modality without paired image
data was recently proposed in [11].

We refer interested readers to [14] and [18] for a more
detailed overview on classical medical image registration
and segmentation-based registration methods in particular.
The accuracy of segmentation-based registration methods is
always limited by the structure-of-interest delineation qual-
ity. However, with the advent of deep learning techniques,
this elemental segmentation step has improved dramatically
andgainedour attraction. Therefore, instead of relyingon sta-
tistical shapemodels that could provide perfect 1-to-1 surface
correspondences, but only under very costly computations,
we want to exploit the advantages of a well-defined shape
space to guide a segmentation-based registration process—
detailed in the following.

Contributions

Our work aims to overcome certain limitations of previous
work on deep learning-based multimodal image registra-
tion. Firstly, our method does not require aligned images
or landmarks (as in [15]) or (synthetic) ground-truth defor-
mation fields to be trained (cf [3]). It therefore avoids
substantial problems of ambiguous correspondences and
time-consuming training data generation. Similar to [8] and
[11], we rely on weak-supervision through anatomical seg-
mentation labels. New to our work is (1) the novel use of
these weakly learned shape priors in a classical optimization
driven registration framework and (2) the exploitation of an
appropriately constrained shape space to performmeaningful
intermediate interpolations of the two considered anatomies.
With this approach, we are able to decouple the learning
of modality-invariant similarity from known pairwise corre-
spondences and employwell-known regularization cost func-
tions and iterative optimization of consecutive deformations.
While our method would be applicable to same-modality
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alignment, the practical need for improving multimodal
registration and fusion together with joint multimodal repre-
sentation learning is of much greater importance.

Methods

Our proposed multimodal registration approach is based on
two main ideas that we explain in more detail in the fol-
lowing: First, we assume that reasonable correspondences
between images from such fundamentally different domains
asCTandMRI scans canbemore easily found,whenaligning
consistent segmentations of anatomical structures. In order
to generate these segmentations in the first place, we make
use of a convolutional encoder–decoder architecture. Second,
suitably training such encoder–decoder networks enables
to linearly interpolate codes between the shape embedding
of both input images to yield smooth and realistic shape
interpolations. Reconstructed shapes from these intermediate
encodings guide the registration iteratively, instead of facing
possibly large nonlinear deformations in the direct registra-
tion problem.

CAE for shape-constrained segmentation

Our approach is based on our convolutional autoencoder
(CAE) architecture (see Fig. 1) previously published in [1].
Its two central features with regard to the low-dimensional
shape representation are as follows: First, our network avoids
any skip connections to enable interpretable shape repre-
sentations. This is necessary and crucial to note for the
subsequent registration guidance, since we aim to interpolate
between two shapes only by moving through the embedding
space. Second, we also proposed in [1] a novel joint training
of the model using CT andMR images Ii , as well as segmen-
tations Si (i = 1, . . . , N ) as alternating inputs to the same
network enabling multimodal end-to-end training.

Our model follows a traditional CAE structure, i.e. based
on its low-dimensional encoding, it aims at optimally recon-
structing the input. The intermediate representation (shape
space, see Fig. 1) is of low-dimensional nature to force the
network to capture the most salient (rather global) features
of the underlying anatomy. Our encoder E is of multimodal
nature and projects different input domains (CT,MR, shapes)
into a joint 1584 dimensional shape space resulting in very
smooth shape predictions. Since multi-organ integer labels
are converted tomulti-channel one-hot encodings,whileMRI
and CT are single-channel inputs, the first layer of our net-
work is the only one that differs for grayscale scans and
segmentations.

Joint training and CE-optimization: We employ the opti-
mization approach of our previous work [1] to train the

model. Here, mini-batches of solely segmentations Si or
grayscale images Ii (MRI and/or CT) are inputted to the
network in an alternating fashion. In the former case, the
inputted shapes are encoded in the low-dimensional shape
space (by E) and subsequently propagated through D for
reconstruction. This traditional CAE structure is optimized
by cross-entropy (CE) loss minimization between shape
inputs and predictions.

When CT and MR images are inputs, we found a CE-
based optimization for grayscale input encoding into the
shape space to be superior over directly regressing image
encodings to their corresponding shape encodings by mini-
mizing the �1-distances ||E(Ii )−E(Si )||1 (as in [10]). In fact,
we fix the decoder D and propagate input images through E
as well as D, and minimize the CE-loss between predic-
tions and ground-truth labels CE{D(E(Ii )), Si } to improve
image embedding quality. Despite potential vanishing gra-
dient issues, this improves the image embedding due to the
following advantages: firstly, the embedding is optimized for
the optimal shape code in the current shape space instead
of its (suboptimal) shape encoding. Secondly, CE has con-
stantly shown its superiority over the �1-loss for classification
tasks by providing more helpful gradients for optimization,
and thirdly, E is solely trained on CE-loss-based updates
that makes it redundant to find a proper weighting between
�1- and CE-loss-updates instead, thus improving the stability
during training.

Hence, E is trained to improve the reconstruction qual-
ity of segmentations, and simultaneously learns to transfer
shape as well as multimodal image features into a common
shape space trying to yield an equal representation of each
domain. In contrast to most previous work, we let E provide
about three times as many convolutional layers (and there-
fore abstractational depth) as D, since D is only optimized for
reconstruction quality of segmentations and E for extracting
domain-invariant, high-level features, which requires enough
preceding nonlinear transformations to reveal common rep-
resentations of shape features. Interestingly, we found that
five convolutional layers suffice for D to map from the shape
space into the segmentation domain with a high representa-
tion ability.

Iteratively guided registration

Having successfully trained our shape CAE, the subsequent
registration approach is illustrated in Fig. 2. Given a pair
of images (F ,M), where the moving image M should be
aligned with the fixed image F , we formulate this problem
as

argmin
ϕ

D(SF , ϕ ◦ SM) + αR(ϕ) (1)
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Fig. 1 Block diagram of our proposed all-convolutional model pro-
viding 624K trainable parameters. The abbreviation “conv(3 × 3 ×
3-s1-10C)” stands for a convolutional layer with 3× 3× 3 kernel size,
1 × 1 × 1 striding and 10 output channels. E projects its input into the

2 · 8 · 9 · 11 = 1584-dimensional shape space. The low-dimensional
shape code is then propagated through D for segmentation synthesis.
Note that E provides three times as more convolutional layers as D

Fig. 2 Iteratively guided registration: we compute CAE encodings
E(M) and E(F) for moving (M) and fixed (F) image. We then gener-
ate n linearly interpolated encodings to reconstruct S0, . . . ,Sn . Instead
of directly looking for a possibly large transformation to align S0 with
Sn via ϕdirect , we iteratively compute each ϕi between Si and Si−1

i.e. we are looking for a transformation ϕ, that minimizes a
distancemeasureD between CAE-generated organ labelings
and an additional regularization termR, e.g. responsible for
smooth deformation fields. Our hypothesis is that we can
linearly interpolate between both encodings in this space
to yield n − 1 smooth shape-interpolated versions evol-
ving between the CAE-generated segmentations SF/M =
D(E(F/M)) by evaluating

Sλ = D

(
E(M) − λ

n
· (E(M) − E(F))

)
(2)

with λ ∈ {0, . . . , n}, such that S0 = SM and Sn = SF .
We aim to iteratively guide the registration process between
the given moving and fixed images when iteratively aligning
their organ labelings.

Consequently, we break down the complex registration
problemof finding an optimal transformationϕdirect intomul-
tiple, and due to smaller deformations, much easier ones:

ϕdirect ≈ ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ2 ◦ ϕ1 (3)

The number of interpolation steps n controls the deforma-
tion magnitude per iteration. Note that the CAE outputs
S are of dimension c × x × y × z, where c = #labels.
We extract voxelwise labels Lk by selecting the argmax
of Sk along the first dimension. This is necessary, since
we minimize the cross-entropy loss—here acting as dis-
tance measure D—between target labels Lk and the warped
label map ϕ ◦ Sk−1 per voxel to obtain the transforma-
tion ϕk between two shape interpolations Sk−1 and Sk . In
order to additionally generate anatomically plausible defor-
mations, we penalize abrupt local changes by summing the
squared differences between the deformation and a smoothed
version of itself and also favor small transformations by
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adding the length of all displacement vectors to our loss:
i.e. R = ∑

x∈� ‖ϕx − ϕx
smooth‖22 + ‖ϕx‖22.

By only employing differentiable loss terms, we can
employ gradient-descent schemes to iteratively estimate the
transformation ϕk that best aligns Sk−1 to Sk . Note that we
employ an Adam optimizer at this point, that updates the
displacements whose gradients we track using the autograd
engine of the PyTorch framework. In order to restrict the
number of parameters for our transformation model, we use
a coarse grid of control points. For every gridpoint g, a three-
dimensional displacement vector dg needs to be estimated,
that in combination with its positional identity idg forms the
transformation ϕ

g
k = idg + dg at this position. To yield a

dense transformation for every image voxel, we use trilinear
upsampling, also a differentiable operation.

Experiments and results

According to the split of our method into two steps, we
also perform two experiments for the respective parts: First,
we examine the proposed encoder–decoder network for
shape-constrained segmentation. Subsequently, we perform
registrations with a varying number of shape interpolations.
Additionally, as comparison, we report registration results
obtained with an end-to-end CNN-based approach [8] using
their publicly available code, as well as results achieved with
SSC deeds [5] as a representative of classical registration
frameworks.

We evaluate our approach on the MM-WHS training
dataset which consists of 40 multimodality whole-heart
images (20 cardiac CT/CTA and MRI) covering whole-heart
substructures of different patients each. As preprocessing,
our pipeline starts with data resampling into isotropic voxel
sizes of 1.5× 1.5× 1.5mm3. We then crop bounding boxes
with sizes of 144× 122× 168 around the region of interest.
The pipeline ends with applying a zero mean unit variance
transformation on the cropped grayscale patches. In order to
thoroughly validate our method, we employ a fourfold cross-
validation (15 CT/MRI for training, 5 for testing).

CAE shape reconstruction

First, we need to examine the robustness of our proposed
segmentation approach. While state-of-the-art segmenta-
tion methods employ U-Net architectures, we omit skip
connections. Although expecting this to cause inferior per-
formance, this step is crucial in order to interpolate between
shape encodings to generate intermediate organ labelings as
registration guidance.

For the CAE experiment (as conducted in [1]), we trained
ourmodel on randommini-batches of size 3 containing either
CT and/orMRdata, or solely segmentations, in an alternating

order for 1000 epochs.We use the Xavier method to initialize
the parameters of the model and optimize them with Adam.
We have empirically chosen the hyper-parameters as follows:
The learning rate starts with 0.002 and is reduced by a factor
of 0.9 every 30th epoch. Besides, every convolutional layer
is followed by batch normalization and a LeakyReLU acti-
vation function (α = 0.1)—except for a softmax function
as final output layer which together with the negative log
likelihood loss constitutes the cross-entropy loss on shape
reconstructions. Furthermore, we use affine transformations
for data augmentation and additionally apply weight decay
with a weighting of 10−5 to avoid over-fitting. For compar-
ison, we also train the same architecture incorporating skip
connections in the U-Net experiment only on CT and/or MR
grayscale input and evidently without decoder fixation, to
judge their effect with regard to the resulting segmentations.
To measure the segmentation accuracy, we report the mean
Dice–Sørensen coefficient obtained by our fourfold cross-
validation experiment.

As expected, U-Nets with their skip connections yield
average Dice scores of 0.87 (CT) and 0.84 (MR), outper-
forming the CAE variant with 0.84 (CT) and 0.79 (MR).
However, as illustrated in Fig. 3, the CAE-generated seg-
mentations can guide iterative registration steps since they
still exhibit strong similarities with the ground truth.

Iteratively guided registration

Based on the trained CAE, we subsequently aim to analyze
our proposed iterative registration approach. As clarified in
the “Methods” section, we argue that a more plausible trans-
formation can be foundwhen guiding the registration process
by intermediate shape representations. We therefore conduct
experiments with regard to an increasing number of inter-
polated shapes Si in between SM = S0 and SF = Sn .
We use the same fourfold cross-validation splits as in the
preceding shape reconstruction experiment. We register five
MR images as moving imagesM to fixed CT images F per
fold (25 pairs in total) and gradually increase the number of
composed transformations ϕ from n = 1 over n = {3, 5, 8}
to n = 15. Because the images contain large anatomical
variabilities (unpaired patients) and originate from differ-
ent domains, their registration is very challenging. For every
transformation ϕi again we use Adam with a learning rate of
0.01 andoptimize for 50 epochs (# foundempirically: ensures
converging of ϕ◦Sk−1 and Sk). With placing our control grid
points at every 8th image voxel and setting α = 0.01 as for
the additional deformation constraint R, we regularize the
transformations ϕ.

Figure 4 illustrates the obtained Dice values for each
organ label (true CTSeg to warped true MRSeg) when using
different numbers of intermediate shape representations as
registration guidance. As baselines, we show the initial Dice
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Fig. 3 Illustrating CAE-based segmentations: a expert segmentation of the axial CT slice in (b); c CAE-generated labeling; 3D renderings of the
ground truth (d) and the corresponding CAE-result (e)

Fig. 4 Registration results for 20 MR to CT pairs: average Dice scores
between ground-truth CT segmentations and warped ground truth MR
segmentations with increasing number n of composed transformations

ϕn ◦· · ·◦ϕ1. n = 15 (red) is achieving the best results and outperforms a
direct registration (n = 1, light blue) by+11.65%. Striped bars indicate
the SSC deeds [5] results

values when transferring the true segmentations without any
registration (dark blue) and Dice scores obtained with a
classical image registration framework, that was specifically
designed for multimodal MR-CT alignment (SSC deeds,
[5,6], striped bars). Furthermore, we conducted experiments
with the publicly available code for [8]. Compared to the ini-
tial average Dice score of 33% without registration, only a
minimal improvement to 35%could be achieved.With regard
to our approach, composing n = 15 (red) transformations ϕ

leads to a rise of 11.65% (∅ Dice: 65.27%; ∅ stddev field
Jacobian: 0.3994, indicating volume changes; % rate Jaco-
bian < 0 : 0.001 , indicating foldings) compared to a direct
registration (n = 1, light blue, ∅ Dice: 53.62%, ∅ stddev
field Jacobian: 0.2210, % rate Jacobian < 0: 0.001). Using
the Wilcoxon rank sum test, this increase in dice scores is
statistically significant (p = 7.98e−4). Although getting
gradually smaller with a growing number of iterations, Dice

scores steadily increase as indicated by the stacked, corre-
spondingly colored horizontal barplots. Table 1 summarizes
the results.

In Fig. 5, we exemplarily show the same axial slice of a
patient before and after registration.

The bottom row with its checkerboard representations
visualizes the alignment of heart structures after registering
both volumes with our proposed approach. Only exhibiting
slight unevenness for label transitions at checker borders in
the middle after registration, this visual inspection confirms
the enhanced alignment of foreground structures—which our
employed cross-entropy loss function in conjunction with
the Adam optimizer targets for. While these image contents
undergo larger deformations, most background parts remain
nearly unaltered.
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Table 1 Results of evaluated approaches. label-reg [8] only minimally improves no_reg, while our approach with n = 15 outperforms classical
SSC deeds [5]

Method no_reg label-reg [8] Ours n = 1 SSC deeds [5] Ours n = 15

Dice 0.331 0.352 0.526 0.608 0.653

Fig. 5 CT-MR registration pair. Top f.l.t.r.: axial initial MR slice M;
same slice registered ϕ15 ◦· · ·◦ϕ1 ◦M; corresponding CT sliceF . Yel-
low arrows indicate misaligned body borders in background in contrast

to well aligned foreground structures. Bottom f.l.t.r.:F andM checker-
board images before/after registration with overlayed foreground labels

Discussion

In general, the resulting registrations are convincing in
comparison with previous work and when considering the
prevailing challenges of multimodal image alignment.

The CAE used to obtain shape embeddings, handles input
data from different domains and still generates a compact
and smooth shape encoding space. Thus, it enables us to
generate realistic intermediate shapes between input CT and
MR images for the iterative registration guidance task. How-
ever, omitting skip connections in its design results in an
anticipated drop in segmentation accuracy with effects on
the subsequent registration, because the CAE segmentation
quality forms an upper bound regarding the expected regis-
tration alignment. Continuing experiments could search for
ways to compensate the loss of spatial information when
ommiting skip connections.

Our second experiment, confirms our hypothesis that a
stepwise concatenation of small transformations achieves
superior results compared to a direct estimation of possibly
large deformations. Accuracy improvements with increasing

numbers of intermediate steps clearly indicate that points
along the interpolation path do not mislead the registration
due to implausible shape transformations, thus the learned
space itself is reasonably smooth. While outperforming the
SSC deeds [5] as a baseline using n = 15 steps regard-
ing Dice scores, only small deformations in the background
occur. Although this is enforced by our regularizer, there
is an obvious misalignment of body boundaries as shown in
Fig. 5 when comparing the patients’ chests and it will require
further improvements. One potential solution would be to
employ spatially more informative signed distance maps
instead of only discrete label maps. Alternatively, increased
supervision with the introduction of more classes or anatom-
ical landmarks (cf. [8]) could improve the robustness of the
shape embedding learned by the CAE.

To conclude our discussion, it is worthmentioning that the
idea of iteratively guiding image registration by interpolating
intermediate shapes not only enhances the results. Beyond
that, it introduces an opportunity to indirectly measure the
plausibility of the learned shape space—which is hardly pos-
sible so far—, by checking whether better results could be
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achieved,when incorporatingmulti-step registrations. To this
end, our method could be transferred to CAE-based shape
modeling as a latent space evaluation tool.

Conclusion

In our work, we introduced an integrated approach for
iteratively guided multimodal image registration in the con-
text of medical volume data. Jointly learning shared features
in a single, end-to-end trainable deep encoder–decodermodel
without skip connections results in good accuracies for
multi-label CT and MRI whole-heart segmentations, while
simultaneously restricting the underlying shape represen-
tation to be compact. The latter puts us in a position to
interpolate between segmentation labels. This enables us to
iteratively compute and concatenate small transformations—
showing superior performance (65.27%, n = 15)when being
evaluated on a challenging registration task compared to a
single-step approach (52.62%, n = 1) as well as a well-
known classical unsupervised multimodal registration tool
(60.8%) that was designed specifically for multimodal MR-
CT alignment. Our method can be trained without the need
for strong supervision and requires no labels during infer-
ence. To conclude, our promising results encourage future
work toward the exploration of intermediate shape features
as registration guidance and the examination of multi-scale
strategies.
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