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Abstract
Purpose Manual feedback from senior surgeons observing less experienced trainees is a laborious task that is very expensive,
time-consuming and prone to subjectivity. With the number of surgical procedures increasing annually, there is an unprece-
dented need to provide an accurate, objective and automatic evaluation of trainees’ surgical skills in order to improve surgical
practice.
Methods In this paper, we designed a convolutional neural network (CNN) to classify surgical skills by extracting latent
patterns in the trainees’ motions performed during robotic surgery. The method is validated on the JIGSAWS dataset for two
surgical skills evaluation tasks: classification and regression.
Results Our results show that deep neural networks constitute robust machine learning models that are able to reach new
competitive state-of-the-art performance on the JIGSAWS dataset. While we leveraged from CNNs’ efficiency, we were able
to minimize its black-box effect using the class activation map technique.
Conclusions This characteristic allowed our method to automatically pinpoint which parts of the surgery influenced the skill
evaluation the most, thus allowing us to explain a surgical skill classification and provide surgeons with a novel personalized
feedback technique. We believe this type of interpretable machine learning model could integrate within “Operation Room
2.0” and support novice surgeons in improving their skills to eventually become experts.

Keywords Kinematic data · Surgical education · Deep learning · Time-series classification · Interpretable machine learning

Introduction

Over the last century, the standard training exercise of Dr.
William Halsted has dominated surgical education in var-
ious regions of the world [18]. His training methodology
of “see one, do one, teach one” is still one of the most
adopted approaches to date [1]. The main idea is that the
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student could become an experienced surgeon by observing
and participating in mentored surgeries [18]. These train-
ing techniques, although widely used, lack of an objective
surgical skill evaluation method [14]. Standard assessment
of surgical skills is presently based on checklists that are
filled by an expert watching the surgical task [1]. In an
attempt to predict a trainee’s skill level without using on an
expert surgeon’s judgement, objective structured assessment
of technical skills (OSATS) was proposed and is currently
adopted for clinical practice [17]. Alas, this type of observa-
tional rating still suffers from several external and subjective
factors such as the inter-rater reliability, the development
process and the bias of respectively the checklist and the
evaluator [8].

Further studies demonstrated that a vivid relationship
occurs between a surgeon’s technical skill and the postop-
erative outcomes [2]. The latter approach suffers from the
fact that the aftermath of a surgery hinges on the physiologi-
cal attributes of the patient [14]. Furthermore, obtaining this
type of data is very strenuous, which renders these skill eval-
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uation techniques difficult to carry out for surgical education.
Recent progress in surgical robotics such as the da Vinci sur-
gical system [9] enabled the recording of video and kinematic
data from various surgical tasks. Ergo, a substitute for check-
lists and outcome-based approaches is to generate, from these
kinematics, global movement features (GMFs) such as the
surgical task’s speed, time completion, motion smoothness,
curvature and other holistic characteristics [14,24]. While
most of these techniques are efficacious, it is not perspicu-
ous how they could be leveraged to support the trainee with
a detailed and constructive feedback, in order to go beyond a
naive classification into a skill level (i.e., expert, intermedi-
ate, etc.). This is problematic as feedback onmedical practice
enables surgeons to reach higher skill levels while improving
their performance [10].

Lately, a field entitled Surgical Data Science [16] has
emerged by dint of the increasing access to a huge amount of
complex data which pertain to the staff, the patient and sen-
sors for capturing the procedure and patient related data such
as kinematic variables and images [6]. Instead of extracting
GMFs, recent inquiries have a tendency to break down sur-
gical tasks into finer segments called “gestures,” manually
before training the model, and finally estimate the trainees’
performance based on their assessment during these indi-
vidual gestures [19]. Even though these methods achieved
promising and accurate results in terms of evaluating sur-
gical skills, they necessitate labeling a huge amount of
gestures before training the estimator [19]. We pointed out
two major limits in the actual existing techniques that esti-
mate surgeons’ skill level from their correspondingkinematic
variables: firstly, the absence of an interpretable result of
the skill prediction that can be used by the trainees to reach
higher surgical skill levels; secondly, the requirement of ges-
ture boundaries that are pre-defined by annotators which is
prone to inter-annotator reliability and time-consuming [20].

In this paper, we design a novel architecture of convo-
lutional neural networks (CNNs) dedicated to evaluating
surgical skills. By employing one-dimensional kernels over
the kinematic time series, we avoid the need to extract
unreliable and sensitive gesture boundaries. The original
hierarchical structure of ourmodel allows us to capture global
information specific to the surgical skill level, as well as to
represent the gestures in latent low-level features. Further-
more, to provide an interpretable feedback, instead of using
a dense layer like most traditional deep learning architec-
tures [23], we place a global average pooling (GAP) layer
which allows us to take advantage from the class activa-
tion map (CAM), proposed originally by [23], to localize
which fraction of the trial impacted the model’s decision
when evaluating the skill level of a surgeon. Using a standard
experimental setup on the largest public dataset for robotic
surgical data analysis: the JHU-ISI Gesture and Skill Assess-
ment Working Set (JIGSAWS) [6], we show the precision of

our FCNmodel. Our main contribution is to demonstrate that
deep learning canbe leveraged to understand the complex and
latent structures when classifying surgical skills and predict-
ing the OSATS score of a surgery, especially since there is
still much to be learned on what does exactly constitute a
surgical skill [14].

Background

In this section, we turn our attention to the recent advances
leveraging the kinematic data for surgical skills evaluation.
The problem we are interested in requires an input that con-
sists of a set of time series recorded by the da Vinci’s motion
sensors representing the input surgery and the targeted task is
to attribute a skill level to the surgeon performing a trial. One
of the earliest work focused on extracting GMFs from kine-
matic variables and training off-the-shelf classifiers to output
the corresponding surgical skill level [14]. Although these
methods yielded impressive results, their accuracy depends
highly on the quality of the extracted features. As an alterna-
tive to GMF-based techniques, recent studies tend to break
down surgical tasks into smaller segments called surgical
gestures, manually before the training phase, and assess the
skill level of the surgeons based on their fine-grained per-
formance during the surgical gestures, for example, using
a sparse hidden Markov model (S-HMM) [19]. Although
the latter technique yields high accuracy, it requires manual
segmentation of the surgical trial into fine-grained gestures,
which is considered expensive and time-consuming. Hence,
recent surgical skills evaluation techniques have focused on
algorithms that do not require this type of annotation and
are mainly data driven [4,11,21,24]. For surgical skill evalu-
ation, we distinguish two tasks. The first one is to output the
discrete skill level of a surgeon such as novice (N), inter-
mediate (I) or expert (E). For example, [24] adopted the
approximate entropy (ApEn) algorithm to extract features
from each trial which are later fed to a nearest neighbor clas-
sifier. More recently, [21] proposed a CNN-based approach
to classify sliding windows of time series; therefore, instead
of outputting the class for the whole surgery, the network is
trained to output the class in an online setting for each win-
dow. In [5], the authors emphasized the lack of explainability
for these latter approaches, by highlighting the fact that inter-
pretable feedback to the trainees is important for a novice to
become an expert surgeon [10]. Therefore, the authors pro-
posed an approach that uses a sliding window technique with
a discretization method that transforms the time series into a
bag of words and trains a nearest neighbor classifier coupled
with the cosine similarity. Then, using the weight of each
word, the algorithm is able to provide a degree of contribu-
tion for each sliding window and therefore give some sort
of useful feedback to the trainees that explains the decision
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taken by the classifier. Although the latter technique showed
interesting results, the authors did sacrifice the accuracy in
favor of interpretability. On the other hand, using our fully
convolutional neural networks (FCN) we provide the trainee
with an interpretable yet very accurate model by leveraging
the class activation map (CAM) algorithm, originally pro-
posed for computer vision tasks by [23]. The second type of
problem in surgical skill evaluation is to train a model that
predicts themodifiedOSATS score for a certain surgical trial.
For example, [24] extended their ApEn model to predict the
OSATS score, also knownas global rating score (GRS). Inter-
estingly, the latter extension to a regression model instead of
a classification one enabled the authors to propose a tech-
nique that provides interpretability of the model’s decision,
whereas our neural network provides an explanation for both
classification and regression tasks.

We present briefly the dataset used in this paper as we
rely on the features’ definitions to describe our method. The
JIGSAWS dataset, first published by [6], has been collected
from eight right-handed subjects with three different surgi-
cal skill levels: novice (N), intermediate (I) and expert (E),
with each group having reported, respectively, less than 10
h, between 10 and 100 h and more than 100 h of training on
the Da Vinci. Each subject performed five trials of each one
of the three surgical tasks: suturing, needle passing and knot
tying. For each trial, the video and kinematic variables were
registered. In this paper, we focused solely on the kinematics
which are numeric variables of four manipulators: right and
left masters (controlled by the subject’s hands) and right and
left slaves (controlled indirectly by the subject via the master
manipulators). These 76 kinematic variables are recorded at a
frequency of 30 Hz for each surgical trial. Finally, we should
mention that in addition to the three self-proclaimed skill
levels (N,I,E), JIGSAWS also contains the modified OSATS
score [6], which corresponds to an expert surgeon observ-
ing the surgical trial and annotating the performance of the
trainee. The main goal of this work is to evaluate surgical
skills by considering either the self-proclaimed discrete skill
level (classification) or the OSATS score (regression) as our
target variable. We conceive each trial as a multivariate time
series (MTS) and designed a one-dimensional CNN dedi-
cated to learn automatically useful features for surgical skill
evaluation in an end-to-end manner [13].

Methods

Our approach takes inspiration of the recent success of CNNs
for time-series classification [13,22]. Figure 1 illustrates
the fully convolutional neural network (FCN) architecture,
which we have designed specifically for surgical skill eval-
uation using temporal kinematic data. The network’s input
is an MTS with a variable length l and 76 channels. For

the classification task, the output layer contains a number
of neurons equal to three (N,I,E) with the softmax activa-
tion function, whereas for the regression task (predicting the
OSATS score), the number of neurons in the last layer is equal
to six: (1) “Respect for tissue”; (2) “Suture/needle handling”;
(3) “Time and motion”; (4) “Flow of operation”; (5) “Over-
all performance”; (6) “Quality of final product” [6], with a
linear activation function.

Comparedwith convolutions for image recognition,where
usually the model’s input exhibits two spatial dimensions
(height and width) and three channels (red, green and blue),
the input to our network is a time series with one spa-
tial dimension (surgical task’s length l) and 76 channels
(denoting the 76 kinematics: x, y, z, . . . ). One of the main
challenges we have encountered when designing our archi-
tecture was the large number of channels (76) compared to
the traditional red, green and blue channels (3) for the image
recognition problem. Hence, instead of applying the filters
over the whole 76 channels at once, we propose to carry
out different convolutions for each group and subgroup of
channels. We used domain knowledge when grouping the
different channels, in order to decide which channels should
be clustered together.

Firstly, we separate the 76 channels into four distinct
groups, such as each group should contain the channels from
one of the manipulators: The first, second, third and fourth
groups correspond to the four manipulators (ML: master left,
MR: master right, SL: slave left and SR: slave right) of the
da Vinci surgical system. Thus, each group assembles 19 of
the total kinematic variables. Next, each group of 19 chan-
nels is divided into five different subgroups each containing
variables that we believe should be semantically clustered
together. For each cluster, the variables are grouped into five
sub-clusters:

– First sub-cluster with three variables for the Cartesian
coordinates (x, y, z);

– Second sub-cluster with three variables for the linear
velocity (x ′, y′, z′);

– Third sub-cluster with three variables for the rotational
velocity (α′, β ′, γ ′);

– Fourth sub-cluster with nine variables for the rotation
matrix R;

– Fifth sub-cluster with one variable for the gripper angular
velocity (θ ).

Figure 1 illustrates how the convolutions in the first layer are
different for each subgroup of kinematic variables. Following
the same line of thinking, the convolutions in the second layer
are different for each group of variables (SL, SR, ML and
MR). However, in the third layer, the same filters are applied
for all dimensions (or channels), which corresponds to the
traditional CNN.
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Fig. 1 Fully convolutional
network (FCN) for surgical skill
evaluation
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To take advantage from the CAM method while reduc-
ing the number of parameters (weights) in our network, we
employed a global average pooling operation after the last
convolutional layer. In other words, the convolution’s output
(theMTS) will shrink from a length l to 1, while maintaining
the same number of dimensions in the third layer. Without
any sort of validation, we choose the following default hyper-
parameters. We used 8 kernels for the first convolution, and
then we doubled the number of kernels, thus allowing us to
balance the number of parameters for each layer as a function
of its depth. We used ReLU as the nonlinear hidden activa-
tion function for all convolutional layers with a stride of 1
and a kernel length equal to 3.

We fixed our objective loss function to be the categorical
cross-entropy to learn the network’s parameters in an end-to-
end manner for the classification task, and the mean squared
error (MSE) when learning a regressor to predict the OSATS
score, which can be written as:

MSE = 1

n

n∑

i=1

(Yi − Ŷi )
2. (1)

The network’s weights were optimized using the Adam opti-
mization algorithm [15]. Thedefault value of the learning rate
was fixed to 0.001 aswell as the first and secondmoment esti-
mates were set to 0.9 and 0.999, respectively. We initialized
the weights using Glorot’s uniform initialization [7]. The
network’s parameters were updated with back-propagation
using stochastic gradient descent. We randomly shuffled the
training set before each epoch, whosemaximum number was
set to 1000 epochs. We then saved the model at each training
iteration by choosing the network’s state that minimizes the
loss function on a random (non-seen) split from the training
data. This process is also referred to as “model checkpoint”
by thedeep learning community [3], allowingus to choose the
best number of epochs based on the validation loss. Finally,
to avoid overfitting, we added an l2 regularization parameter
whose default value was fixed to 10−5; however, similarly to

the learning rate, we further discuss the effect of this hyper-
parameter in Sect. 4. For each surgical task, we have trained
a different network, resulting in three different models.1 We
adopted for both classification and regression tasks a leave-
one-super-trial-out (LOSO) scheme [1].

The use of a GAP layer allows us to employ the CAM
algorithm, which was originally designed for image classifi-
cation tasks by [23] and later introduced for time-series data
in [22]. Using the latter technique, we are able to highlight
which fractions of the surgical trial contributed highly to the
classification. Let Ak(t) be the result of the third convolution
which is an MTS with K dimensions (here K is equal to 32
filters (by default) and t denotes the time dimension). Let wc

k
be the weight between the output neuron of class c and the
kth filter. Since a GAP layer is used, the input to the output
neuron of class c can be written as zc and the CAM as Mc:

zc =
∑

k

wc
k

∑

t

Ak(t) =
∑

t

∑

k

wc
k Ak(t),

Mc(t) =
∑

k

wc
k Ak(t). (2)

Mc(t) denotes the contribution of each time stamp t when
identifying a class c. Finally, for the regression task, theCAM
can be extended in a trivial manner: Instead of computing
the contribution to a classification, we are computing the
contribution to a certain score prediction (1 out of 6 in total).

Results

The first task, which we have originally tackled in [11], con-
sists in assigning a skill level for an input surgical trial out
of the three possible levels: novice (N), intermediate (I) and
expert (E). In order to compare with current state-of-the-
art techniques, we adopted the micro and macro measures

1 Our source code will be publicly available upon the acceptance of the
paper.
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Table 1 Micro, macro and
Spearman’s coefficient ρ for
surgical skill evaluation

Method Suturing Needle passing Knot tying

Micro Macro ρ Micro Macro ρ Micro Macro ρ

S-HMM [19] 97.4 n/a n/a 96.2 n/a n/a 94.4 n/a n/a

ApEn [24] 100 n/a 0.59 100 n/a 0.45 99.9 n/a 0.66

Sax-Vsm [4] 89.7 86.7 n/a 96.3 95.8 n/a 61.1 53.3 n/a

CNN [21] 93.4 n/a n/a 89.9 n/a n/a 84.9 n/a n/a

FCN (proposed) 100 100 0.60 100 100 0.57 92.1 93.2 0.65

Bold values indicates the most accurate approach

defined in [1]. The micro measure refers simply to the tra-
ditional accuracy metric. However, the macro takes into
consideration the support of each class in the dataset, which
boils down to computing the precisionmetric. Table 1 reports
the macro and micro metrics of five different models for the
surgical skill classification of the three tasks: suturing, knot
tying and needle passing. For the proposed FCN model, we
average the accuracy over 40 runs to reduce the bias induced
by the randomness of the optimization algorithm. From these
results, it appears that FCN is much more accurate than the
other approaches with 100% accuracy for the needle-passing
and suturing tasks. As for the knot-tying task, we report
92.1% and 93.2%, respectively, for themicro andmacro con-
figurations. When comparing the other four techniques, for
the knot-tying surgical task, FCN exhibits relatively lower
accuracy, which can be explained by the minor difference
between the experts and intermediates for this task: Mean
OSATS score is 17.7 and 17.1 for expert and intermediate,
respectively.

A sparse hidden Markov model (S-HMM) was designed
to classify surgical skills [19]. Although this approach does
leverage the gesture boundaries for training purposes, our
method is much more accurate without the need to manually
segment each surgical trial intofiner gestures. [24] introduced
approximate entropy (ApEn) to generate characteristics from
each surgical task, which are later given to a classical nearest
neighbor classifier with a cosine similarity metric. Although
ApEn and FCN achieved state-of-the-art results with 100%
accuracy for the first two surgical tasks, it is still not obvious
howApEn could be used to give feedback for the trainee after
finishing his/her training session. [4] introduced a sliding
window technique with a discretization method to transform
the MTS into bag of words. To justify their low accuracy,
the authors in [4] insisted on the need to provide explainable
surgical skill evaluation for the trainees. On the other hand,
FCN is equally interpretable yet much more accurate; in
other words, we do not sacrifice accuracy for interpretability.
Finally, [21] designed a CNN whose architecture is depen-
dent on the length of the input time series. This technique
was clearly outperformed by our model which reached bet-
ter accuracy by removing the need to pre-process time series
into equal length thanks to the use of GAP.

In this paper, we extend the application of our FCN
model [11] to the regression task: predicting theOSATSscore
for a given input time series. Although the community made
a huge effort toward standardizing the comparison between
different surgical skills evaluation techniques [1], we did
not find any consensus over which evaluation metric should
be adopted when comparing different regression models.
However, [24] proposed the use of Spearman’s correlation
coefficient (denoted by ρ) to compare their 11 combina-
tion of regression models. The latter is a nonparametric
measure of rank correlation that evaluates how well the rela-
tionship between two distributions can be described by a
monotonic function. In fact, the regression task requires pre-
dicting six target variables; therefore, we compute ρ for each
target and finally report the corresponding mean over the six
predictions. By adopting the same validation methodology
proposed by [24], we are able to compare our proposed FCN
model to their best performing method. Table 1 reports also
the ρ values for the three tasks, showing how FCN reaches
higher ρ values for two out of three tasks. In other words,
the prediction and the ground-truth OSATS score are more
correlated when using FCN than the ApEn-based solution
proposed by [24] for the second task and equally correlated
for the other two tasks.

The CAM technique allows us to visualize which parts
of the trial contributes the most to a skill classification. By
localizing, for example, discriminative behaviors specific to
a skill level, observers can start to understandmotion patterns
specific to certain class of surgeons. To further improve them-
selves (the novice surgeons), the model, using the CAM’s
result, can pinpoint to the trainees their good/bad motor
behaviors. This would potentially enable novices to achieve
greater performance and eventually become experts.

By generating a heatmap from the CAM, we can see in
Fig. 2 how it is indeed possible to visualize the feedback for
the trainee. In fact, we examine a trial of an expert and novice
surgeon: The expert’s trajectory is illustrated in Fig. 2a, while
the novice’s trajectory is depicted in Fig. 2b. In this exam-
ple, we can see how the model was able to identify which
motion (red subsequence) is the main reason for identifying
a subject as a novice. Concretely, we can easily spot a pat-
tern that is being recognized by the model when outputting
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Fig. 2 Using class activation
map (CAM) to provide
explainable classification

(a) Suturing task for an expert (b) Suturing task for a novice

Fig. 3 Feedback using the
CAM on subject E’s second
knot-tying trial

(a) Suture/needle handling (b) Quality of the final product

the classification of subject H’s skill level: The orange and
red 3D subsequences correspond to same surgical gesture
“pulling suture” and are exhibiting a high influence over the
model’s decision. This feedback could be used to explain to
a young surgeon which movements are classifying him/her
as a novice and which ones are classifying another subject as
an expert. Thus ultimately, this sort of feedback could guide
the novices into becoming experts.

After having shown how our classifier can be interpreted
to provide feedback to the trainees, we now present the
result of applying the same visualization (based on the CAM
algorithm) in order to explain the OSATS score prediction.
Figure 3 depicts the trajectory with its associated heatmaps
for subject E performing the second trial of the knot-tying
task. Figure 3a and 3b illustrates the trajectory’s heatmap,
respectively, for “suture/needle handling” and “quality of the
final product”OSATS score predictions. At first glimpse, one
can see how a prediction that requires focusing on the whole
surgical trial leverages more than one region of the input
surgery—this is depicted by the multiple red subsequences
in Fig. 3b. However, when outputting a rating for a specific
task such as “suture/needle handling,” the model is focusing
on less parts of the input trajectory which is shown in Fig. 3a.

Limitations

We would like to first highlight the fact that our feedback
technique would benefit from an extended real use-case val-
idation process, for example verifying with expert surgeons
if indeed the model is able to detect the main reason for
classifying a surgical skill. In addition, the fact that we are
performing only a LOSO setup means that a surgeon should
be present in the training set in order to make a prediction.
However, since only two experts exist in the dataset, this sug-
gests that performing a leave-one-user-out setup wouldmean
having one expert in the training set. This constitutes a huge
problem originating from the limited dataset size. Therefore,
we finally conclude that our approach should be validated on
a larger dataset.

Conclusion

In this paper, we proposed a novel deep learning-based
method for surgical skills evaluation from kinematic data.
We achieved state-of-the-art accuracy by designing a specific
FCN, while providing explainability that justifies a certain
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skill evaluation, thus allowing us to mitigate the CNN’s
black-box effect. Furthermore, by extending our architecture
we were able to provide new state-of-the-art performance for
predicting the OSATS score from the input kinematic time-
series data. In the future, in order to compensate for the lack of
labeled data, we aim at exploring several regularization tech-
niques such as data augmentation and transfer learning [12]
for time-series data.
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