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Abstract
Purpose Image-guided surgical navigation system (SNS) has proved to be an increasingly important assistance tool for 
mini-invasive surgery. However, using standard devices such as keyboard and mouse as human–computer interaction (HCI) 
is a latent vector of infectious medium, causing risks to patients and surgeons. To solve the human–computer interaction 
problem, we proposed an optimized structure of LSTM based on a depth camera to recognize gestures and applied it to an in-
house oral and maxillofacial surgical navigation system (Qin et al. in Int J Comput Assist Radiol Surg 14(2):281–289, 2019).
Methods The proposed optimized structure of LSTM named multi-LSTM allows multiple input layers and takes into account 
the relationships between inputs. To combine the gesture recognition with the SNS, four left-hand signs waving along four 
directions were designed to correspond to four operations of the mouse, and the motion of right hand was used to control the 
movement of the cursor. Finally, a phantom study for zygomatic implant placement was conducted to evaluate the feasibility 
of multi-LSTM as HCI.
Results 3D hand trajectories of both wrist and elbow from 10 participants were collected to train the recognition network. 
Then tenfold cross-validation was performed for judging signs, and the mean accuracy was 96% ± 3%. In the phantom study, 
four implants were successfully placed, and the average deviations of planned–placed implants were 1.22 mm and 1.70 mm 
for the entry and end points, respectively, while the angular deviation ranged from 0.4° to 2.9°.
Conclusion The results showed that this non-contact user interface based on multi-LSTM could be used as a promising tool 
to eliminate the disinfection problem in operation room and alleviate manipulation complexity of surgical navigation system.
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Introduction

Image-guided surgical navigation system (SNS) has become 
an incrementally effected clinical assistance tool for mini-
invasive surgery. Since the concept was proposed, this 
technology has been rapidly developed to apply in various 
fields, including orthopedics, neurosurgery, otorhinolaryn-
gology and so on. Generally, before the operation, imaging 
diagnosis with preoperative computed tomography (CT) or 
magnetic resonance imaging (MRI) was performed to ana-
lyze surrounding anatomical tissues and design surgical tra-
jectories by using computer-assisted preoperative planning 
software. And at the time of surgery, under the guidance of 
a tracking system, the relative positions among the surgical 
tools, anatomy structures and planning trajectories could be 
visualized on a computer screen, guaranteeing the operation 
accuracy and reliability [2, 3].

 * Xiaojun Chen 
 xiaojunchen@sjtu.edu.cn

1 School of Biomedical Engineering, Shanghai Jiao Tong 
University, Shanghai, China

2 Room 805, School of Mechanical Engineering, Shanghai Jiao 
Tong University, Dongchuan Road 800, Minhang District, 
Shanghai 200240, China

3 College of Biomedical Engineering and Instrument Science, 
Zhejiang University, Zhejiang, China

4 Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao 
Tong University School of Medicine, Shanghai, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-019-02031-y&domain=pdf


2148 International Journal of Computer Assisted Radiology and Surgery (2019) 14:2147–2154

1 3

However, in accordance with the strict operation require-
ment, all subjects of the surgeon contact must be sterile. 
However, it is extremely troublesome and time-consuming 
to disinfect the hardware of the surgical navigation system 
[4]. Therefore, using standard devices such as keyboard and 
mouse as HCI is a latent vector of an infectious medium, 
causing risks to patients and surgeons. Fortunately, three-
dimensional hand gesture recognition based on depth camera 
as an efficient method of touch-free interface has attracted 
increasing research interests [5, 6]. In general, non-contact 
hand gesture recognition approaches can be divided into two 
categories: (1) static hand gesture recognition, which mainly 
relies on the judgment of difference static hand postures [7, 
8]. Unfortunately, this category is infeasible in clinical appli-
cation as the existence of potential interference of complex 
surgical postures. (2) Dynamic gesture recognition. Cur-
rently, both single poses and continuous multi-label gestures 
can be distinguished by detecting the begin–end of special 
gesture from an infinite motion trajectory [9–11]. However, 
almost all dynamic pose recognition approaches required to 
abstract the beginning and ending point of special gesture 
which is a complex task itself.

Therefore, combined with the depth camera, a gesture 
recognition algorithm was proposed on the basis of an 
optimized structure of long short-term memory, i.e., multi-
LSTM, which allows multiple isolate inputs and takes into 
account the relationships between inputs layers. The multi-
LSTM network was then attached to an in-house oral and 
maxillofacial surgical navigation system to work as a non-
contact user interface. Then a phantom study was involved 
to evaluate its clinical feasibility and reliability.

Methodology

The architecture of multi‑LSTM

LSTM, an optimized network structure of recurrent neural 
network, can exploit long range relationships in data on the 
basis of internal purpose-designed memory cells [12, 13]. 
Figure 1 presents a single-LSTM memory cell, and its data 
flow can be formulated as:

(1)It = �
(
uxi ∗ xt + whi ∗ ht−1 + bi

)

(2)Ft = �
(
uxf ∗ xt + whf ∗ ht−1 + bf

)

(3)Ot = �
(
uxo ∗ xt + who ∗ ht−1 + bo

)

(4)Ct = Ft ∗ Ct−1 + It ∗ tanh
(
uxc ∗ xt + whc ∗ ht−1 + bt

)

where subscripts t  and t − 1 represent the current and last 
moment, respectively; � means sigmoid function; It , Ft and 
Ot are the node value of input gate, forget gate and output 
gate, respectively; uxi , uxf  and uxo are the different weights 
of input components of different gates; whi , whf  and who cor-
respond with the weights of output in last moment ht−1 ; Ct 
represents the status of current memory cell; and ht means 
the cell output value.

Figure 2 illustrates the architecture of multi-LSTM, 
which mainly is comprised of two rows of associated 
serial LSTM cells. The calculation formulas of I1t , F1t , 
O1t and C1t are same as Eqs. (1)–(4). For the upper row, 
the calculation function of each node can be presented 
as follows:

Compared with Eq. (1)–(5), an additional item h1t1 is 
added in C2t and the three gates I2t , F2t , F2t . Meanwhile, 
both outputs of two row h1 and h2 are contributed to finial 
prediction.

(5)ht = Ot ∗ tanh(Ct)

(6)h1t1 = O1t ∗ tanh(C1t)

(7)I2t = �
(
qhi ∗ h1t + u2xi ∗ x2t + w2hi ∗ h2t−1 + b2i

)

(8)F2t = �
(
qhf ∗ h1t + u2xf ∗ x2t + w2hf ∗ h2t−1 + b2f

)

(9)O2t = �(qho ∗ h1t + u2xo ∗ xt + w2ho ∗ h2t−1 + b2o)

(10)
C2t = F2t ∗ C2t−1 + I2t ∗ tanh

(
qhc ∗ h1t1 + u2xc ∗ xt + w2hc ∗ h2t−1 + bt

)

(11)h2t = O2t ∗ tanh(C2t)

(12)y = �(s1 ∗ h1 + s2 ∗ h2 + b)

Fig. 1  LSTM cell
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Training the multi‑LSTM

Data acquisition

In order to combine the gesture recognition with the in-
house surgical navigation system of BeiDou-SNS (School 
of Mechanical Engineering, Shanghai Jiao Tong Univer-
sity) [1], the motion of the right hand is used to control 
the cursor movement, and gestures of the left hand are 
designed to manipulate the mouse operation. To investi-
gate the reliability of the gesture recognition algorithm, 
the trajectory data of both wrist and elbow from 10 par-
ticipants were collected by a Kinect RGB-depth camera V 

1.0 for Windows (Microsoft Inc., USA) to train the multi-
LSTM network. During acquisition, the upward direction 
of the camera was required to align with the operator’s 
vertical orientation, and the imaging plane was adjusted 
to parallel to the operator’s coronal plane. Then, as shown 
in Fig. 3, the operator cooperated according to the follow-
ing instructions:

(1) wave upward: firstly, make a wrist–elbow line perpen-
dicular to coronal plane and keep elbow stationary; 
then, wave hand upward until wrist–elbow line perpen-
dicular to transverse plane; finally, return to the original 
position;

Fig. 2  Architecture of multi-LSTM

Fig. 3  Gesture schematic. a 
Waving upward, b waving 
downward, c waving leftward, d 
waving rightward
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(2) wave downward: this process is the same as 1) except 
for waving downward in the second portion;

(3) wave leftward: this process is similar as 1) except for 
moving leftward until wrist–elbow line perpendicular 
with sagittal plane in the second portion;

(4) wave rightward: this process is the same as 3) except 
for moving rightward in the second portion;

(5) other moving or stationary states: arbitrary movement 
as long as it is different from the above four categories.

Each participant signed each aforementioned five gestures 
50 times, producing 500 specimens for each pose. As little 
training samples may cause poor performance, massive data 
are required in our method to train the model appropriately. 
In order to alleviate this limitation, we applied a data argu-
ment method to generate a lot of train data on the basis of 
our collected data.

Gesture recognition training

As shown in Fig. 4, the red lines are the motion trajectories 
and the green pots are the coordinate positions of the wrist in 
different moments. As the velocity variations of hand move-
ment contribute to the maldistribution of the positions of 
elbow and wrist, a cubic spline interpolation was introduced 
to preprocess these points before entering the network.

We instantiated the multi-LSTM of network size = 128 to 
learn the trajectory-to-gesture mapping from interpolated data. 
The input size was 60 which included 30 wrist input units in x

1
 

and 30 elbow input units in x
2
 . As shown in Fig. 4, the output 

O = 5 is the gesture classification which was represented in 
binary. 00001 to 10000 represent wave upward, downward, 

leftward and rightward, respectively. All the weights were 
initialized with sparse connections, and the bias vectors were 
initialized to 0. In addition, L2 regularization and early stop-
ping were adapted to avoid over fitting. The main parameters 
are listed in Table 1.

Integration with the surgical navigation system

In order to combine the gesture recognition with the surgical 
navigation system, aforementioned signs along four directions 
were designed to correspond to a left button click, right but-
ton click, middle wheel forward and middle wheel backward 
of a mouse event, respectively. Furthermore, the motion of 
right hand was used to control the movement of the cursor. 
Theoretically, according to the following equations, the mov-
ing vector of the cursor can be obtained by linear mapping 
from the motion vector.

(13)�
⇀

d

�t
=

p
h(t) − p

h(t − 1)

Δt

(14)P
c(t) = P

c(t − 1) + w ∗
�

⇀

d

�t

Fig. 4  Process of gesture recognition

Table 1  Training parameters used in multi-LSTM network

No. Parameters Value Parameters Value

1 Learning rate 1.0E−04 Batch size 128
2 Beta 1 0.90 Input size 3
3 Beta 2 0.99 Input units 30*2
4 Epsilon 1.0E−08 Hidden units 128
5 Max iteration 1.0E+07 Classification num 5
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where p
h(t) represents hand’ position of current moment 

and p
h(t − 1) for the last moment; therefore, �

⇀

d∕�t means 
the hand’ motion vector. w is the mapping factor which is 
initialized according to the resolution of screen; p

c(t) and 
p
c(t − 1) represent cursor’ position of current moment and 

the last moment, respectively.
However, due to the location draft of depth camera 

itself and the synergetic effect of limbs, the direct linear 
mapping results are barely satisfactory. Therefore, a map-
ping factor which can dynamically be adjusted according 
to tanh function was adopted.

where x is equivalent to the module of �
⇀

d∕�t , that is, the 
hand’ motion velocity.

According to the correspondence between signs and 
mouse operations, the gesture recognition network was 
attached to BeiDou-SNS as a sub-thread. And a sliding 
input model was employed to the recognition approach. 
As shown in Fig. 5, the latest N sets of data collected 
from the camera were inputted into the network for each 
sign judgment. The advantages of this input model are 
twofold: Firstly, the model effectively eliminates the trou-
ble of query starting point of each gesture. Both isolated 
gestures and continuous gestures can be recognized. Sec-
ondly, the length of input data can be adjustable accord-
ing to the speed of user movement.

(15)x =

‖
‖
‖‖
‖
‖

�
⇀

d

�t

‖
‖
‖
‖
‖
‖

(16)f (x) = tanh (x) =
ex − e−x

ex + e−x

(17)P
c(t) = P

c(t − 1) + w ∗ f (x) ∗
�

⇀

d

�t

Phantom experiment validation

A phantom study for zygomatic implants (ZIs) placement 
was conducted to validate the reliability of the HCI of surgi-
cal navigation system based on the proposed multi-LSTM. ZI 
surgery was proposed by Brånemark [14, 15] in 1989 to assist 
massive grafting surgery or rehabilitate patients who had 
gone through maxillectomy. As long trajectory is requested 
in implant embedment, tiny angle deviation or entry point 
error could lead to intolerable terminal point error [16].

Serving as fiducial makers, eight bone anchored titanium 
mini-screw (length of 11.0 mm, square cavity of 1.0 mm, 
diameter of 1.6  mm,  CIBEI®, Shanghai, China) were 
inserted into a resin craniomaxillofacial model. The prin-
ciple of quantity and distribution of markers was based on 
the registration criteria [17]. After that, a cone beam com-
puted tomography (CBCT) (Planmeca, Helsinki, Finland) 
scanning (resolution of 0.33 mm/pixel, slice thickness of 
0.4 mm) was performed. Then the CBCT DICOM data were 
transferred into an in-house oral and maxillofacial planning 
software [18] and four ZI paths. The resin model and pre-
surgical planning are shown in Fig. 6a, b, respectively.

First of all, the Kinect RGB-depth camera was activated 
to control the in-house BeiDou-SNS, as shown in Fig. 6f. 
Then, under the assistance of Kinect RGB-depth camera 
and the guideline of NDI Polaris (Accuracy of 0.25 mm, 
Northern Digital Inc., Canada), the phantom experiment of 
zygomatic implant placement was conducted on a PC with 
Intel Core I7-7700TM with a 3.60 GHz CPU, 8 GB memory, 
a 64-bit Windows 10 operating system and a 3 GB NVIDIA 
GeForce GTX 1060. And the operations were as follows:

(1) Moved right hand and waved left hand upward to open 
files, including pre-surgical DICOM images, the con-
figuration files of the tracking system and the planning 
paths;

Fig. 5  Sliding inputs of multi-
LSTM
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(2) Waved left hand leftward or rightward to scan DICOM 
images by switching the image slice and zooming cur-
rent image size;

(3) Waved left hand downward to activate the tracking sys-
tem;

(4) Moved right hand and waved left hand upward to cali-
brate the surgical instruments and to register the image 
coordinate space and world coordinate space by starting 
up corresponding functions.

Results

Recognition accuracy evaluation

As no public dataset meets our train requirement, we 
recorded 3D hand trajectories of elbow and wrist from 10 

participants. Each participant signed each aforementioned 
five gestures 50 times, providing 500 instances in number 
for each pose. Three-quarter of the recorded data served as 
training data and the rest as testing data. Meanwhile, both 
rotating coordinate and adding noise were used to augment 
the abundance of train data. To investigate the reliability of 
the proposed gesture recognition algorithm, tenfold cross-
validation was performed at judging signs, and the mean 
accuracy is 96% ± 3%.

The results of the phantom experiment

In the phantom experiment, several gestures have been 
redone because they were not recognized or incorrectly 
judged sometimes. From statistical data, gestures toward 
up, down and right three directions could be distinguished 
with an accuracy of 92%, and the recognition precision of 

Fig. 6  Procedure and results of the phantom experiment. a Preopera-
tive resin model with eight titanium fiducial makers inserted into the 
maxilla bilaterally; b preoperative virtual model and the four zygoma 
implant paths; c postoperative resin model with four implants; d 
intraoperative screen snapshot; e real-time skeleton of operator. Dif-

ferent signs were recognized according to the trajectories of left wrist 
and elbow, and the position of cursor followed the motion of right 
hand; f intraoperative non-contact manipulation of the surgical navi-
gation system via the Kinect RGB-depth camera
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leftward waves was around 80%. And during the whole 
experiment, there is no human–computer interaction except 
the control from Kinect. Along the planned trajectories, four 
zygomatic implants were successfully placed, as shown in 
Fig. 6c. After the four implants have been inserted, the 3D 
model was CBCT scanned again to obtain the postoperative 
images, which were then fused with the preoperative ones, 
and three parameters including entry point deviation, exit 
point deviation and angular deviation were used to evaluate 
the accuracy of zygomatic implant placement. As shown 
in Fig. 7, three deviations of four zygomatic implants were 
measured, and the average deviations of planned–placed 
implants were 1.22 mm and 1.70 mm for the entry and end 
points, respectively, while the angular deviation ranged 
from 0.4° to 2.9°, which can meet clinical requirements. 
The details are shown in Table 2.

Normally, using a mouse as the human–computer interac-
tion is quite reliable. The default frequency of mouse click 
for Windows XP is in the range of 1–5 Hz, which depends 
on the response rate of user-defined double-click events. 
By comparison, the gesture recognition rate of our system 
depends on the data update frequency of the RGB-depth 
camera and the system data acquisition frequency. For dif-
ferent users, the time to complete a wave will be recorded to 
initialize the user-specific data collection frequency before 
using the system, ensuring the integrity of the intercepted 
gesture trajectories. By default, the joint position acquisi-
tion frequency of our gesture recognition framework is con-
figured to 60 Hz, and the input of the network requires 30 
wrist position units and 30 elbow position units. Therefore, 

the default recognition rate is 2 Hz, which is slightly slower 
than using mouse. The maximum recognition rate can be 
improved by using other RGB-depth cameras with a higher 
frame rate or using higher frequency of data acquisition.

Discussion and conclusion

As the 3D continuous position of targets can be captured in 
real time by RGB-D cameras, various gesture recognition 
approaches have been proposed for HCI, disease detection, 
robotics and so on [19, 20]. However, as a requisite step 
in those methods, the algorithm complexity is increased 
with the distinctions of the beginning and ending points of 
gestures.

In this study, we proposed an optimized sign judgement 
structure named multi-LSTM on the basis of traditional 
LSTM as a method of HCI. To meet clinical requirements, 
the gesture recognition algorithm was integrated with an 

Fig. 7  Fusion of preoperative image and post-operative image and the illustration of planned–placed deviations of implants

Table 2  Planned–placed deviation of four implants

No. Implant 
length (mm)

Entry point 
deviation (mm)

End point 
deviation (mm)

Angular 
deviation 
(°)

1 50.00 0.50 1.19 1.39
2 45.00 0.37 1.83 1.88
3 50.00 2.30 1.80 2.9
4 42.50 1.70 1.97 0.4
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in-house surgical navigation system to control the user inter-
face. A phantom study of zygomatic implant placement was 
conducted to validate its feasibility. As a result, it showed 
that the non-contact interface based on multi-LSTM could 
be used as a promising tool to eliminate the disinfection 
problem for both patients and surgeons.

Although it seems that the results are satisfactory in this 
study, there are twofold limitations. Firstly, compared to 
other algorithms, it requires longer time to train the model to 
suit different users. Nevertheless, it can achieve high speed 
of gesture recognition in our online test. Secondly, when 
more than one person is in its detection range, Kinect depth 
camera will trace several skeletons simultaneously, caus-
ing confusion of recognition target. So, user-specific gesture 
recognition algorithm is expected for further development.
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