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Abstract
Purpose The gold standard for colorectal cancer metastases detection in the peritoneum is histological evaluation of a
removed tissue sample. For feedback during interventions, real-time in vivo imaging with confocal laser microscopy has
been proposed for differentiation of benign and malignant tissue by manual expert evaluation. Automatic image classification
could improve the surgical workflow further by providing immediate feedback.
Methods We analyze the feasibility of classifying tissue from confocal laser microscopy in the colon and peritoneum. For
this purpose, we adopt both classical and state-of-the-art convolutional neural networks to directly learn from the images. As
the available dataset is small, we investigate several transfer learning strategies including partial freezing variants and full
fine-tuning. We address the distinction of different tissue types, as well as benign and malignant tissue.
Results We present a thorough analysis of transfer learning strategies for colorectal cancer with confocal laser microscopy.
In the peritoneum, metastases are classified with an AUC of 97.1, and in the colon the primarius is classified with an AUC
of 73.1. In general, transfer learning substantially improves performance over training from scratch. We find that the optimal
transfer learning strategy differs for models and classification tasks.
Conclusions We demonstrate that convolutional neural networks and transfer learning can be used to identify cancer tissue
with confocal laser microscopy. We show that there is no generally optimal transfer learning strategy and model as well as
task-specific engineering is required. Given the high performance for the peritoneum, even with a small dataset, application
for intraoperative decision support could be feasible.

Keywords Colon cancer · Confocal laser microscopy · Transfer learning · Convolution neural network

Introduction

Colorectal cancer is very common, and it is often associated
with metastatic spread [1]. In particular, peritoneal carci-
nomatosis (PC) can arise in later stages of development
which often shortens patient survival times substantially
[2,3]. Thus, early and reliable detection of metastases is
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crucial. Diagnosis with typical external imaging techniques
such as computed tomography (CT) and magnetic resonance
imaging (MRI) is difficult for PC as a very high resolution is
required. For example, preoperative CT has been shown to be
ineffective to detect individual peritoneal tumor deposits and
the interobserver variability among experts was significant
[4]. Also, integrated PET/CT did not provide sufficient infor-
mation for accurate assessment [5]. For MRI, studies have
shown improvement over assessment with CT only [6,7],
but overall, its resolution is still a limitation [8]. Therefore,
exploratory laparoscopy is generally employed to investigate
the presence of PC [9].

Recently, a new intraoperative device using confocal laser
microscopy (CLM) has been introduced which provides sub-
micrometer image resolution [10]. In the study, ten rats
received colon carcinoma cell implants in the colon and peri-
toneum.After a growth period, laparotomywith in vivoCLM
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was performed. CLM images of healthy andmalignant colon
tissue, as well as healthy and malignant peritoneum, were
acquired. It was shown that experts are able to distinguish
different tissue types as well as healthy and malignant tissue
from CLM. This raises the question whether image process-
ing techniques can be used to automatically classify different
tissue types. This could enable faster and improved intraop-
erative decision support with CLM.

Recently, automatic tissue characterization has been suc-
cessfully addressed using deep learning methods such as
convolutional neural networks (CNNs) for semantic seg-
mentation and classification [11,12]. For example, skin
cancer classification at dermatologist-level performance was
achieved [13]. However, the datasets for this and related stud-
ies are large, and commonly, datasets for medical learning
tasks are small [14]. This can be problematic as insufficient
data for optimal training might lead to overfitting and lim-
ited generalization. This is particularly important for deep
learning models which can be prone to overfitting due to
their large number of trainable parameters. To overcome this
issue, transfer learning methods have been proposed where
a deep learning model is first pretrained on a different, large
dataset [15]. Then, information from the source domain can
be transferred to the (medical) target domain using strategies
such as “off-the-shelf” features, partial layer freezing, or full
fine-tuning [16].While this has been successfully applied for
medical learning tasks [17], there is no single solution for all
problems and the optimal transfer learning strategy is highly
dependent on the imaging modality and dataset size [18].

Automatic analysis of CLM images has been proposed
for different tissue types such as human skin [19], the cornea
[20], or the oral cavity [21]. Recently, deep learning meth-
ods have been applied to CLM and similar modalities. For
example, CNNs have been used for oral squamous cell car-
cinoma classification [21] and motion correction with CLM
[22]. Similarly, skin images from CLM have been used with
CNN-based classification [23]. For the gastrointestinal tract,
CNNs have been used to distinguish three classes of Barrett’s
esophagus [24]. Also, brain tumor classification with CNNs
and CLM has shown promising results [25]. For example, a
CNN has been used to differentiate CLM images with and
without diagnostic value for a physician during surgery [26].
Also, weakly supervised localization has been used to derive
local information in CLM images from image-level labels
only [27].

So far, deep learning-based classification of colorectal
cancer from CLM images has not been addressed. Also,
while several approaches have usedCLMandCNNs for other
problems [28], there is no analysis of transfer learning prop-
erties for colorectal cancer with CLM. Therefore, we study
deep learning-based colon cancer classification from CLM
images with a variety of transfer learning methods from the
ImageNet dataset. We consider training from scratch, partial

layer freezing, “off-the-shelf” features and full fine-tuning to
investigate how transferable ImageNet features are to CLM.
We perform this study with the classic models VGG-16 [29]
and Inception-V3 [30] as well as the state-of-the-art archi-
tectures Densenet [31] and squeeze-and-excitation networks
[32] to analyze the consistency of transfer strategies across
architectures. We consider the classes healthy colon (HC),
malignant colon (MC), healthy peritoneum (HP) and malig-
nant peritoneum (MP). Based on these classes, we address
three binary classification taskswithCLM. First, we consider
the differentiation of organs (HP vs. HC). Then, we study the
detection of malignant tissue in two types of organs (HP vs.
MP andHCvs.MC). This allows us to study variations across
different classification tasks for CLM. A preliminary version
of this paper was presented at the BVMWorkshop 2019 [33].
We substantially revised the paper, extended the review of the
literature and performed more experiments with additional
transfer strategies andmore architectures. This paper is struc-
tured as follows: First, we describe our models and transfer
learning strategies and the dataset we use in “Methods” sec-
tion. Then, we report our results in “Results” section and
discuss them in “Discussion” section. Last, we conclude in
“Conclusion” section.

Methods

Model architectures and training strategies

First, we consider the classic model VGG-16 [29] with the
addition of batch normalization which enables faster train-
ing of the architecture by reducing the internal covariate
shift [34]. The model itself is simple as it consists of several
stacked convolutional layers without further augmentation.
In between blocks of two to three convolutional layers with
kernel sizes of 3×3 and 1×1,max pooling reduces the spatial
dimensions. Subsequent convolutions double the number of
featuremaps. A building block of the architecture is shown in
Fig. 1 (top left). Due to its simple structure, the architecture
can serve as a baseline.

Second, we employ Inception-V3 [30]. The model con-
sists of multiple Inception blocks which follow two core
design principles. First, the blocks have a multi-path struc-
ture, i.e., the input feature maps are processed in parallel by
different convolution and pooling operations. At the block’s
output, the feature maps from all paths are concatenated.
Second, the convolutional paths perform a reduction opera-
tion that downsizes the feature map dimension with 1 × 1
kernels. Then, computationally more expensive 3×3 convo-
lutions process the lower-dimensional representations. The
output feature map size is increased if the spatial dimensions
are reduced inside the block which avoids representational
limitations.
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The idea of reduction and expansion has also found itsway
into the Resnet architecture [35] which is a core component
of the next two models. Resnets learn a residual instead of
a full feature transformation by using skip connections. In
detail, a Resnet block (ResBlock) computes

x(l) = a(F(x(l−1), θ(l)) + x(l−1)) (1)

where x(l) is the block output, x(l−1) is the block input, a is
a ReLU activation [36] and F represents two convolutional
layers with parameters θ(l). The skip connection enables bet-
ter gradient propagation for improved training.

Third, we consider Densenet121 [31], a state-of-the-art
architecture which strives for more efficiency by introducing
extensive feature reuse. In particular,within oneDenseBlock,
features computed in previous layers are also fed into the
subsequent layers. To keep the feature map sizes moderate,
compression blocks reduce the feature maps between Dense-
Blocks. The DenseBlock is shown in Fig. 1 (bottom left).

Fourth, we adopt the architecture SE-Resnext50 [32].
At its core, the model uses Resnext blocks [37] which
are an extension of Resnet. Here, the single convolutional
path F is split into multiple paths with individual layers
which increases representational power. The key addition in
SE-Resnext50 is the use of squeeze-and-excitation (SE)mod-
ules which recalibrate the feature maps learned by Resnext
blocks. These modules have shown improved performance
with only a minimal increase in the number of parameters.
The concept is shown in Fig. 1 (bottom right).

Due to the small dataset size, we study several transfer
learning strategies where the above-mentioned models are
trained on ImageNet. We cut off the last layer of all models
and replace it with a fully connected layer with two outputs
for binary classification. We apply a softmax layer on top,
and the final classification output is the class with the highest
probability. We train a separate model for each of our binary
classification tasks.

As a baseline, we consider training from scratch, i.e., all
weights are randomly initialized. Then, we use several differ-
ent transfer learning strategies illustrated in Fig. 2. The first
transfer approach follows the “off-the-shelf” features idea.
Here, only the new classifier is retrained on features extracted
by the pretrained CNN.We also consider two partial freezing
methods, where an initial part of the network remains frozen
and the part closer to the classifier is retrained. We chose the
freezing points block-wise, i.e., we do not cut into building
blocks. Last, we consider full fine-tuning where all weights
in the network are retrained with a small learning rate. The
different strategies represent different abstractions of feature
transfer between ImageNet and CLM images.

To further improve generalization, we employ online
data augmentation with random image flipping and random
changes in brightness and contrast. Furthermore, we use ran-

Input Fin

Output Fout

ResNext
H × W × C

Avg. Pool

FC-σ

1 × 1 × C

1 × 1 × C

Input Fin

ResBlock
Fin + k

Fin + Nk
ResBlock

Compress
Avg. Pool

Output Fout

(d)(c)

Input Fin

C. 3 × 3
F12

2×C. 3 × 3
F22

Output Fout

(b)

Input Fin

C. 3 × 3
2Fin

C. 3 × 3
2Fin

Output Fout

(a)

C. 1 × 1
F21

C. 1 × 1
F11

Pool
Fin

Fig. 1 Building blocks of the models we use. The building blocks
from CNN architectures as indicated in Fig. 2. We employ VGG-
16 (a), Inception-V3 (b), Densenet121 (c) and SE-Resnext50 (d). F
denotes the number of feature maps in each block. The Conv blocks
also contain ReLU activations and batch normalization for VGG-16
(a). SE-Resnext50 is shown in simplified form without its bottleneck in
the SEmodule. FC-σ is a fully connected layer with sigmoid activation.
C. is an abbreviation for convolutional layers. Note that Inception-V3
employs multiple block variants and we show one example

dom cropping with crops of size 224 × 224 (299 × 299 for
Inception-V3) taken from the full images of size 384× 384.
Weuse theAdamalgorithm for optimization.We adapt learn-
ing rates and the number of training epochs for the different
transfer scenarios. We use a cross-entropy loss function with
additional weighting to account for the slight class imbal-
ance. In detail, we multiply the loss of a training example by
N/ni where N is the total number of training examples in
the current fold and ni is the number of examples belonging
to class i in the current fold. In this way, underrepresented
classes receive a higher weighting in the loss function. Dur-
ing evaluation, we use mutli-crop evaluation with Nc = 36
evenly spread crops over the images. This ensures that all
image regions are coveredwith large overlaps between crops.
The final predictions are averaged over the Nc crops. We
implement our models in PyTorch.

Dataset and experiments

The dataset was collected in a previous study conducted at
the University Hospital Schleswig-Holstein in Lübeckwhere
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Fig. 2 Different transfer
learning scenarios we
investigate. Model Block refers
to one of the blocks shown in
Fig. 1. Green indicates that
blocks are retrained. Red
indicates that blocks are frozen
with their weights having been
trained on ImageNet
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Fig. 3 Examples for the different classes. Malignant colon tissue, healthy colon tissue, malignant peritoneum tissue and healthy peritoneum tissue
are shown from left to right

expert assessment of CLM images in the colon area was eval-
uated [10]. A custom intraoperative device with integrated
CLM (Karl Storz GmbH & Co KG, Tuttlingen, Germany)
was built. The image resolution was 384× 384 pixels which
covers a field of view of 300µm × 300µm. In the study,
ten rats received colon adenocarcinoma cell implantation
in the colon and peritoneum with a growth time of seven
days. Then, laparotomywas conducted and images of healthy
colon tissue, malignant colon tissue, healthy peritoneum tis-
sue andmalignant peritoneum tissuewere obtained. Example
CLM images for each tissue type are shown in Fig. 3. After
removal of low-quality images, 1577 images remained with
533 belonging to class HC, 309 belonging to class MC, 343
belonging to class HP and 392 belonging to class MP. Note
that some subjects are missing classes such that, on average,
six subjects per class remain. Ground-truth annotation of all
images was obtained by tissue removal of the scanned areas
and subsequent histological evaluation.

Due to the small dataset size, we chose a cross-validation
schemewhere images from one subject are left for evaluation
and training is performed on the remaining ones. Thus, all
reported results are themean value of, on average, six training
scenarios with six different folds. Based on the four classes,
we address three binary classification problems. First, we
consider HC versus HP, i.e., we investigate the feasibility of
distinguishing the different organs in CLM. Then, we con-
sider the differentiation of healthy and malignant tissue with

the two binary classification problemsHP versusMP andHC
versus MC. We report the accuracy, sensitivity, specificity,
F1-score and AUC. We use the AUC as the main metric as it
is threshold independent.

Results

First, we compare the different transfer learning scenarios
described in “Methods” section across all architectures for
each classification scenario, see Fig. 4. In general, the AUC
is very high for the differentiation of different healthy tis-
sue types and healthy and malignant peritoneum tissue. The
AUC for classifying malignant colon tissue is substantially
lower. Also, the standard deviation is higher for this task.
Training from scratch performs worst for all architectures
and classification scenarios.

Regarding the transfer learning scenarios, training from
scratch performs worst for all classification scenarios. For
two of the three scenarios, only retraining the classifier shows
substantially lower performance than other transfer scenar-
ios. There are no clear trends between the partial freezing
and fine-tuning scenarios.

Second, we go into more details for the classification task
HP versusMP. Figure 5 shows the ROC curves for all models
with all transfer learning scenarios for the classification task.
Operating pointswith a good trade-off in the upper left corner
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Fig. 4 AUC values of all
applied architectures for the
different classification
problems. We evaluate the
following training types: (1)
retrain classifier, (2) partial
freeze 1, (3) partial freeze 2, (4)
full fine-tuning, (5) training
from scratch. For each value, the
standard deviation over multiple
folds is represented by an error
bar
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Fig. 5 ROC curve for the
different architectures and the
different training types, shown
for the classification of HP
versus MP
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vary for each model. For VGG-16, retraining the classifier
only stands out. For Densenet121, partial freezing performs
well. For Inception-V3 and SE-Resnext50, partial freezing
and fine-tuning perform similar.

Third, an overview of the best performing transfer strate-
gies is shown in Table 1. Comparing individual results for
each architecture, no model clearly outperforms the others
consistently. In general, Densenet121 performs slightly bet-
ter across the tasks. The optimal transfer strategy differs
across models and classification tasks. For HC versus HP

and for Densenet121 in general, the partial freezing method
performs best.

Last, we provide training times for all architectures and
training scenarios, see Fig. 6. In general, freezing more
weights during training reduces the overall training time.
Furthermore, training time loosely scales with the num-
ber of trainable parameters as VGG-16 contains the most
parameters and shows the longest training times, followed
by SE-Resnext50.
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Table 1 Best performing
transfer learning method for
each model and classification
task

Type Accuracy Sensitivity Specificity F1-Score AUC

HC versus HP

Inception Freeze 1 87.7 79.9 94.4 90.4 95.7

Densenet Freeze 1 91.2 82.8 95.3 91.9 92.6

SE-RX50 Freeze 1 85.8 78.5 96.3 91.3 91.9

VGG-16 Freeze 1 82.5 74.9 91.8 87.2 91.6

HP versus MP

Inception Freeze 2 85.9 86.6 87.0 86.8 95.6

Densenet Freeze 2 83.3 84.6 83.2 84.0 91.9

SE-RX50 Freeze 1 81.7 84.6 83.2 84.0 90.9

VGG-16 Classifier 88.0 91.0 84.6 87.9 97.1

HC versus MC

Inception Fine-tuning 63.1 71.0 57.0 63.7 68.0

Densenet Freeze 1 70.0 72.9 64.1 69.1 73.1

SE-RX50 Fine-tuning 63.7 66.7 65.9 69.1 71.8

VGG-16 Freeze 2 63.5 67.6 64.2 68.1 72.0

Densenet refers to the Densenet121 model; SE-RX50 refers to the SE-Resnext50 model. For each training
scenario, the best performing configuration is marked bold. All values are given in percent. The sensitivity is
given with respect to the cancer class, and for the case of organ differentiation it is given with respect to the
peritoneum class

Fig. 6 Training times for 90
epochs of all applied
architectures for the different
training scenarios for the
classification task HP versus
HC. Note that for training from
scratch the same number of
parameters is trained as for full
fine-tuning. Thus, training times
are equivalent for the two cases
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Discussion

We study deep transfer learning methods for CLM images
for three binary classification problems. Automatic decision
support with CLMduring interventions could improve work-
flow with immediate feedback on the tissue properties. For

this purpose, we investigate the use of CNNs with four dif-
ferent architectures and five training scenarios.

The three classification tasks As a baseline, differentiating
healthy colon and peritoneum tissueworkswell with anAUC
over 0.90 for partial freezing across all models, see Fig. 4.
This indicates that discriminative features for different organs
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canbe learned fromCLMimages. Similarly, for classification
of metastases in the peritoneum the AUC is around 0.90 for
all transfer learning scenarios. However, classifying healthy
andmalignant colon tissue performs substantiallyworsewith
an AUC of ≈ 0.70 for partial freezing and fine-tuning. The
task appears to be more difficult which is also reflected in
a slightly higher standard deviation. This indicates higher
uncertainty ofmodel predictions. This could be caused by the
heterogeneous appearance of colon tissue in different parts of
the colon which complicates the learning task in conjunction
with the small dataset size. Furthermore, during develop-
ment, colon carcinoma cells transform from a healthy stage
to adenoma and then carcinoma. At earlier stages, healthy
and malignant cells can still have similar appearance which
complicates the learning task.

Transfer learning scenarios Figure 4 also provides an
overview of the transfer strategies across all models. Clearly,
transfer learning substantially outperforms training from
scratch across all classification tasks which supports the
effectiveness of transfer learning for medical image classifi-
cation problems [38]. The results indicate that meaningful
feature transfer from the natural image domain to CLM
images is possible, although the images have a vastly dif-
ferent appearance. However, comparing transfer strategies,
only retraining the classifier performs worse than other sce-
narios in twoout of three classification tasks. This agreeswith
results of a previous study on transfer learning with CLM
images in neurosurgery [28]. Here, the authors found that
full fine-tuning outperforms retraining of the classifier only.
However, in our case, retraining the classifier only also shows
a high performance for the task HP versus MP. This could be
caused by fragile co-adaptation of weights [39] which leads
to large performance differences between the different clas-
sification tasks. For some tasks (e.g., HP vs. MP), recovery
and reuse of potentially coadapted weights might be feasible
while reuse is impaired for other tasks (e.g., HC vs. MC).
The partial freezing and fine-tuning strategies appear to be
more consistent across tasks; however, the optimal strategy
still differs. Overall, our results indicate that the transferabil-
ity of features not only depends on the imaging modality but
also the classification task. This adds to previous insights
on transfer learning in the medical domain where the opti-
mal transfer strategy was found to be modality and dataset
size dependent [18]. Comparing the partial freezing and fine-
tuning strategies, performance is very close and there is no
optimal strategy for eachof the tasks.However, training times
are also an aspect to consider for the different transfer learn-
ing strategies. As shown in Fig. 6, freezing more parameters
inside the architecture leads to reduced training times. Thus,
partial freezing can be generally seen as advantageous as it
often achieves similar performance as full fine-tuning while
requiring less training time. For application, this insight could

be useful when adopting and retraining models for cancer
classification in other organs or when newer architectures
are introduced.

Different architectures for CLM To analyze the different
transfer strategies further, we consider the ROC curves of
each architecture for the HP versus MP task, see Fig. 5.
For this task, using “off-the-shelf” features and only retrain-
ing the classifier performed considerably better than for the
other tasks. As discussed before, this indicates that trans-
fer learning scenarios are classification task dependent. In
detail, the ROC curves reveal that VGG-16 stands out in
particular where retraining the classifier only performs best
out of all transfer strategies. In transfer learning research,
VGG-16 is still a popular general purpose feature extrac-
tor for numerous tasks [11,40]. For the other architectures,
the optimal strategy differs. For example, for Densenet121,
the partial freezing methods show good operating points in
the upper, left corner of the ROC curve. For Inception-V3
and SE-Resnext50, partial freezing and fine-tuning perform
similar with no clearly superior method. This indicates that
the choice of transfer learning method depends on the archi-
tecture. This should be expected, as the models have very
different block types and each freezing type fixes a differ-
ent number of parameters. The detailed results in Table 1
with additional metrics underline this insight. There is no
optimal transfer learning strategy, and the best performing
strategy varies for different architectures and classifica-
tion tasks. Overall, we demonstrate that transfer learning
has an impact on performance; however, there is no sim-
ple rule of thumb for optimal transfer learning with CLM.
Our results show that examining different freezing strate-
gies can considerably improve performance for individual
models.

Conclusion

We investigate the feasibility of colon cancer classification
in CLM images using CNNs and multiple transfer learning
scenarios. Using in vivo images of healthy and malignant
colon and peritoneum tissue obtained from ten subjects, we
adopt four architectures and five transfer learning scenarios
for three classification problemswith CLM.Our results show
that different organs as well as healthy and malignant peri-
toneum tissue can be classified with deep transfer learning.
We show that transfer learning from ImageNet is success-
ful with CLM, but the transferability of features is limited.
We find that there is no single optimal model or transfer
strategy for all CLM classification problems and that task-
specific engineering is likely required for application. For
future work, our results could be extended to more classifi-
cation problems with CLM.
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