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Abstract
Purpose We address the automatic segmentation of healthy and cancerous liver tissues (parenchyma, active and necrotic
parts of hepatocellular carcinoma (HCC) tumor) on multiphase CT images using a deep learning approach.
Methods We devise a cascaded convolutional neural network based on the U-Net architecture. Two strategies for dealing
with multiphase information are compared: Single-phase images are concatenated in a multi-dimensional features map on the
input layer, or output maps are computed independently for each phase before beingmerged to produce the final segmentation.
Each network of the cascade is specialized in the segmentation of a specific tissue. The performances of these networks taken
separately and of the cascaded architecture are assessed on both single-phase and on multiphase images.
Results In terms of Dice coefficients, the proposed method is on par with a state-of-the-art method designed for automatic
MR image segmentation and outperforms previously used technique for interactive CT image segmentation. We validate the
hypothesis that several cascaded specialized networks have a higher prediction accuracy than a single network addressing all
tasks simultaneously. Although the portal venous phase alone seems to provide sufficient contrast for discriminating tumors
from healthy parenchyma, the multiphase information brings significant improvement for the segmentation of cancerous
tissues (active versus necrotic part).
Conclusion The proposed cascaded multiphase architecture showed promising performances for the automatic segmentation
of liver tissues, allowing to reliably estimate the necrosis rate, a valuable imaging biomarker of the clinical outcome.
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Introduction

Liver cancer is the sixthmost commoncancerworldwide, and
the thirdmost common cause of cancer death according to the
Global Cancer Observatory [6]. Among the different types
of primary liver cancers, the hepatocellular carcinoma is the
most frequent and the most lethal one. Contrast-enhanced
computed tomography (CECT) is one of the most informa-
tive image modalities for monitoring liver cancer [14,25].
The main advantage brought by the CECT compared to
non-enhanced CT (NECT) is its ability to investigate the
dynamics of tissue vascularization and the vessel structure
[23]. However, as a prerequisite to a quantitative analysis of
such temporal sequences, an efficient deformable registra-
tion method is needed to compensate for respiratory motion
between the different phases [14,22].

In the clinical routine, the detectionof lesions aswell as the
estimation of their size and number is still broadly performed
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using visual inspection of CT and MR images, which can be
subjective, operator dependent and prone to diagnosis mis-
interpretations because of the high inter-tumor variability.
The high intra-tumoral heterogeneity should also be con-
sidered when characterizing the cancer phenotype [19]. In
radiomics studies, this can be achieved by differentiating
active from necrotic tissue within the tumor [10,25] using
shape and texture information. This differentiation can also
be useful to compute the necrosis rate, which is a valuable
imaging biomarker for patients follow-up, since it has been
shown to be correlated with survival after treatment [20].

All these observations underline the need for automatic
and reliable tools dedicated to tumor segmentation and active
andnecrotic part discrimination in order tofinely characterize
liver cancer.

Related work

The segmentation of the liver and of its lesions remains a
challenging task, mainly due to the high anatomical shape
variability and to the fact that liver may be in contact with
neighboring structures of similar intensities. In addition to
that, diseases affecting the liver may have a large impact on
its textural properties [17].

Intensity-based techniques were proposed either by learn-
ing the intensity distribution from training samples in order
to pre-segment the region of interest [7], or simply by using
thresholding techniques [13]. Machine learning methods
were also proposed in combination with the aforementioned
techniques to segment the liver [26] and its lesions [8]. Sta-
tistical shape models were considered in order to capture
the shape of the liver, while coupling them with deformable
model [5] or graph cuts [24]. Methods based on probabilistic
atlases are an alternative to incorporate a priori knowledge
about location and shape of the liver, as well as information
about surrounding anatomical structures [15].

More recently, deep learning approaches have led tomajor
breakthroughs in medical image analysis. They have been
recognized for their ability to encode complexmorphological
and texture information in images by directly using raw pixel
intensities as inputs, whereas traditional machine learning
methods required carefully handcrafted features to achieve
descent results [16,28]. Deep learning networks achieved
state-of-the-art results in many medical-related applications,
including detection, classification, segmentation, localiza-
tion and registration [11,16]. These performances have been
reached, even with a small number of training cases, thanks
to smart architecture choices, data augmentation or trans-
fer learning [31]. Fully convolutional networks (FCNs) are
now widely used for medical applications [9], in particular,
for liver and lesions segmentation [2,3,27,30]. They signifi-
cantly outperform the standard methods mentioned above.

Segmentation using FCNs was popularized by the U-Net
network initially introduced to segment cells on histopatho-
logical slices [21] and afterward applied to liver and lesion
segmentation [2].More recently, a cascaded version of theU-
Net network was used for both liver and lesion segmentation
[3]. Only a few studies exploited the multiphase information
using FCNs [27], and to our knowledge, only one contribu-
tion tackled the delineation of both active and necrotic parts
within the lesions, but using MR images [30].

Contributions

In this work, we applied deep learning-based semantic
segmentation to delineate the liver and its lesions in contrast-
enhanced CT sequences, while discriminating the necrotic
from the active parts. This task was previously addressed in
the context of MR images [30]. We evaluate the impact of
using either single-phase or multiphase CT images on the
performance of different FCNs architectures. We showed
that portal-phase images alone provide enough contrast for
discriminating lesions from healthy parenchyma, while mul-
tiphase information brings significant improvement for the
segmentation of active and necrotic tumor parts. Finally, our
results support the hypothesis that combining several special-
ized networks in cascade leads to better performance than a
single versatile network addressing all tasks simultaneously
[3].

Materials andmethods

Database

Due to the lack of publicly available datasets providing
segmentation of active and necrotic tissues within hep-
atic lesions, we used an in-house database (Db) containing
ground truth 2D annotations for three classes, namely the
healthy parenchyma, the active and the necrotic parts of the
lesions. A subset of Db was already used in a previous work
on the semiautomatic segmentation of liver tissue [4].

The database is composed of data from seven patients suf-
fering from hepatocellular carcinoma (HCC) that underwent
from one to three contrast-enhanced computed tomography
(CECT) examinations (in plane resolution ranging from 0.66
to 0.97 mm, slice thickness ranging from 0.7 to 1.25 mm),
resulting in a total number of 13 CT sequences. Each exam-
ination is composed of one image before contrast agent
injection (NECT), and two contrast-enhanced images reflect-
ing the arterial (AR) phase (≈ 25–30 s after injection) and
the portal venous (PV) phase (≈ 60–70 s after injection). For
each CT sequence, four experts have manually segmented
the three classes on eight slices regularly sampled across
the tumor, resulting in a total number of 104 labeled slices.
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Fig. 1 PV-Lesion network used to segment lesions within the liver with a PV image as input

Expert annotations were fused using the STAPLE algorithm
to reach a consensus [29]. Themanual segmentation taskwas
performed on the PV images, which exhibit the best contrast
between the different tissues.

Data pre-processing

As a prerequisite for the use of multiphase information
[14], respiratory motion between the different phase images
was corrected using a diffeomorphic deformable registration
algorithm [1]. The PV image was considered as the reference
image in the registration process, following [4].

Images fromDb are of heterogeneous sizes and voxel res-
olutions. Since FCN requires a standardized input size, a
scaling transformation was applied to all images to enforce
isotropic resolution (0.97mm2) and a fixed 512 × 512 size.

An intensity normalization procedure similar to [3] was
then applied. We only retained Hounsfield unit (HU) intensi-
ties within the range [−100HU, 400HU], corresponding to
typical radiodensity values of the liver, to reduce the influence
of neighboring organs. Contrary to [3], we did not implement
slice-wise histogram equalization since it may be biased by
the different proportions of liver present in each slice. Instead,
we considered a linear mapping of the retained HU values to
the [0, 1] interval.

Cascaded networks

As in [3], we decompose the segmentation task in a hier-
archical manner by cascading several networks relying on
the U-Net architecture, each of them being specialized in

the segmentation of a specific tissue. In the sequel, a given
single-phase elementary network will be referred to by the
input phase and the target class. For example, PV-Lesion
(see Fig. 1) corresponds to a network dedicated to segment
lesions using PV images as input, while AR-Necrosis refers
to the network dedicated to the segmentation of the active vs
necrotic parts of the lesions using AR images as an input.

Two strategies were investigated to exploit multiphase
information. The first one, referred as DMP (Dimensional
MultiPhase) strategy, consists in concatenating single-phase
images in a multi-dimensional feature map used as the input
to the network (see Fig. 2). The second one, referred as
MPF (MultiPhase Fusion) strategy, consists in processing
each phase independently and then merges the output maps
(by simple addition) to obtain the final segmentation (see
Fig. 3). Only the AR and PV phases were considered in the
DMP and MPF networks because NECT does not provide
enough inter-tissue contrast.

The cascaded architecture is depicted in Fig. 4 and can
be composed of either single-phase or multiphase U-Net
sub-networks. Unlike the original cascaded architecture [3],
which cropped the original image to the predicted liver area
after the first step, we decided to keep the same image size
all throughout the networks. This choice was motivated by
the fact that cropping the image would require to resample
it in order to fit the fixed input size of the network, which
would alter its isotropic resolution.

To validate the hypothesis suggesting that cascaded spe-
cialized networks perform better than a versatile network
addressing all tasks simultaneously [3], we consider the orig-
inal U-Net architecture (denoted {·}-Full) to simultaneously
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Fig. 2 DMP-Lesion network that combines the AR and the PV images as an input to segment the lesions within the liver. Here, the two channels
are considered as features for the first layer

Fig. 3 MPF-Lesion network: initially, AR and PV images are processed separately. The resulting maps are merged (by simple addition) at the end
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Fig. 4 Cascaded network: The first network takes as input a CT image
and segments the liver. The resulting segmentation map is used to
remove non-liver pixels in the input data of the second network which

performs the segmentation of lesions. The last network segments the
necrosis within the lesions. The three binary masks are combined in the
final segmentation map

predict the three classes of liver tissues (see Fig. 5). This
network is evaluated for both single-phase and multiphase
conditions. To ensure that there was no bias in favor of the
cascaded networks in the comparison, the cascaded networks
were imposed to have a smaller number of parameters than
the versatile one (which had a total of 32 M parameters).
8 M parameters were specified for all cascaded networks,
apart from MPF-{·}, with 16 M parameters (fusion of two
networks with 8M parameters each).

Training

FCNs have proven their ability to operate well even when
trained on small databases. A data augmentation step is gen-
erally required to avoid overfitting and to generalize better
on unseen cases. In our case, for each input image, ten new
images were randomly generated using the following set-
tings:

– Rotation (90◦, 180◦, 270◦).
– Horizontal/vertical flip.
– Horizontal/vertical shift in range [0, 0.1] of the image
size.

– Addition of Gaussian noise (μ = 0, σ = 3 HU).

We chose to consider a moderate noise variance since
the inter-class difference is generally smaller than 20
HU.

A leave-one-patient-out cross-validation processwas used
during the training to ensure that no slices from the same
patient were present in both training and test sets. The net-
works were implemented using Keras with a TensorFlow
backend and trained on a single NVIDIA GTX 1070 with
8 GB VRAM. We used the Adam optimizer [12] with a
learning rate of 10−4 and a decay of 10−5. No additional
dropout layers were used since it appeared to decrease the
performance, probably due to the small number of images
available. The softmax function is considered for the final
layer of the different networks. To cope with the imbalanced
classes problem, we considered the weighted cross-entropy
as the cost function to optimize the weights of the networks,
as suggested in [18]. The segmentation quality was evalu-
ated with the Dice similarity coefficient (DSC), which is
commonly used for the assessment of semantic segmentation
[2–4,30].
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Fig. 5 AR-Full refers to the network trained with AR images as input (values outside the liver are masked), and that outputs a label map, with
parenchyma, active and necrotic parts annotated

Table 1 Segmentation results using single-phase versus multiphase methods on Db

Input Target Network

NECT AR PV DMP MPF

Raw CT Liver 81.1 ± 27.7 89.5 ± 13.2 88.7 ± 11.4 89.9 ± 15.6 88.2 ± 16.0

True liver mask Parenchyma 86.5 ± 13.7 82.5 ± 18.6 88.7 ± 15.4 90.5 ± 13.2 86.9 ± 17.8

True liver mask Lesion 77.4 ± 24.1 77.4 ± 20.2 87.8 ± 9.7 88.5 ± 11.7 86.6 ± 10.3

True lesion mask Necrosis 67.5 ± 15.5 69.7 ± 16.3 77.8 ± 12.4 78.5 ± 13.3 78.8 ± 11.7

True lesion mask Active Tumor 65.6 ± 20.4 63.9 ± 22.6 71.6 ± 20.7 75.5 ± 17.4 73.2 ± 18.6

Bold values highlight the highest value for each row

Experiments and results

Mean DSCs were computed over all slices for each tar-
get class. The different methods were statistically compared
using theWilcoxon signed paired rank tests, since slice-wise
DSCs did not follow a normal distribution. We first com-
pared {NECT, AR, PV, DMP, MPF}—Liver networks to
evaluate which phase allows better liver segmentation. We
then trained {NECT, AR, PV, DMP, MCF}—Lesion and
{NECT, AR, PV, DMP, MCF}—Necrosis networks sepa-
rately on Db by masking all values outside the liver using
ground truth annotations in order to assess whether multi-
phase information is really useful for the segmentation. The
results are given in Table 1.

Multiphase performed significantly better than single
phase for segmenting the liver (DMP versus PV, P = 0.001;
DMP versus AR, P = 0.005, DMP versus NECT, P <

0.001) and the active part of the lesions (DMP vs PV,
P < 0.001; DMP versus AR, P = 0.003; DMP versus

NECT, P < 0.001). When comparing single phase alone,
PV achieved significantly better DSCs than AR or NECT for
all the segmentation tasks except for the liver segmentation.
When comparing multiphase methods, DMP carries out sig-
nificantly better than MPF for the segmentation of the liver
(DMP versus MPF, P = 0.004), the parenchyma (DMP ver-
susMPF, P < 0.001) and the active part of the lesions (DMP
versus MPF, P = 0.005).

Since both DMP-Lesion and DMP-Necrosis led to the
best results, we combined them in a cascade as explained
before, and compared it to both {NECT, AR, PV, DMP,
MPF}—Full networks and evaluate them in terms of liver
tissue classification performance. (Experiments were con-
ducted on images that were masked with the ground truth
liver segmentation.) The mean DSCs are reported in Table 2.
Examples of segmentation results are shown in Fig. 6.

The results highlight that the cascaded version performed
significantly better than {·}-Full networks for segmenting
the active part of the lesion (Cascaded DMP vs PV-Full,
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Table 2 Segmentation results using {·}-Full versus cascaded architectures on Db

Target Network

NECT-Full AR-Full PV-Full DMP-Full MPF-Full Cascaded DMP

Parenchyma 85.3 ± 14.9 84.1 ± 17.9 87.0 ± 19.0 82.9 ± 19.7 87.9 ± 15.9 90.5 ± 13.2

Necrosis 62.6 ± 18.6 63.5 ± 21.5 75.7 ± 14.4 73.7 ± 14.1 75.6 ± 13.4 75.8 ± 15.1

Active Tumor 42.2 ± 24.0 43.2 ± 26.1 53.5 ± 24.2 51.3 ± 25.6 52.0 ± 23.3 59.6 ± 22.5

Bold values highlight the highest value for each row

Fig. 6 From top to bottom : raw
images with HU values inside
the liver, ground truth,
DMP-Full segmentation,
Cascaded DMP segmentation

P = 0.001). From the resulting segmentationmaps, wewere
also able to estimate the necrosis rate, which is commonly
used for diagnosis and prognosis of the treatment outcome.
Our workflow provided estimates of this valuable biomarker

with a mean error rate of 13.0%, which is accurate enough
for clinical application.

With our setup, we also achieved slightly better results
than those obtained in [30] for the same task, on a different
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Table 3 Average patient-wise
segmentation DSCs (on full
agreement expert area) with the
semi-interactive approach of [4]
and the Cascaded DMP method

Semi-interactive method [4] Ours

Parenchyma 93.7 ± 3.4 92.2 ± 4.7

Lesion 90.7 ± 6 91.8 ± 4

Necrosis 83.0 ± 12.9 83.6 ± 11.7

Active Tumor 75.2 ± 10.9 82.0 ± 6.4

Necrosis rate error 7.84 ± 4.4 7.10 ± 1.4

Bold values highlight the highest value for each row

Fig. 7 From top to bottom : raw
images, ground truth and results
of the fully automatic
segmentation of liver tissue

database of MR images. We evaluated our method on the
same database used in [4], where a manual expert interaction
was required for the segmentation phase, which is not the
case in the present deep learning approach. To allow fair
comparison, the evaluationwas conducted on the areaswhere
all the experts reached an agreement as in [4]. The mean
patient-wise segmentation DSCs are depicted in Table 3. Our
method enabled a better segmentation of the lesions and both
necrotic and active parts. Therefore, we were able to predict
the patient-wise necrosis rate with a slightly better precision.

We finally used the complete cascaded network, as
depicted in Fig. 4, which combines DMP-Liver, DMP-
Lesion and DMP-Necrosis to perform a fully automatic
segmentation from the raw (unmasked) CT image. We

reached average slice-wise DSCs of 78.3 ± 22.1 for the
segmentation of the parenchyma, 50.6 ± 24.6 for the seg-
mentation of the active part and 68.1± 23.2 for the necrotic
part of the lesions. As a by-product, we also provided a necro-
sis rate per patient with a mean error of 15.9%. Examples of
fully automatic segmentation results are given in Fig. 7.

Conclusion

Following the intuition developed in [3], we validated the
hypothesis that FCNs are able to learn the hierarchical struc-
tures present in a CT image, even when trained on small
databases. It has been shown that several cascaded special-
ized FCNs yield more accurate results than a single network
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addressing all tasks simultaneously. For a fair comparison,
this has been demonstrated on networks with a comparable
number of parameters.

The segmentation accuracy obtained by our method is on
par with the one reported in [30], which addresses the same
task using a different database of MR images. The accuracy
of the FCN-based automatic segmentation method outper-
forms the results reported in [4] on the same database, using
an ensemble classifier and requiring manual expert interac-
tion during the segmentation. As a by-product, we have also
shown that the segmentation maps may be used to provide
usable estimates of the necrosis rate, which is an important
predictor of treatment outcome.

The use of multiphase information has been proven to be
beneficial when segmenting active vs necrotic tumor parts.
However, this requires an accurate registrationof the different
phases, which remains a challenging step. As an alternative,
the single PV phase can be used, with reasonable results
for the lesion segmentation. A previous study has already
reported that multiphase information is helpful for lesion
segmentation, but that good outcomes may be reached using
AR images only [27]. This difference in the most appropri-
ate phase for segmentation may be explained by the fact that
our training database was only composed of HCC images,
whereas [27] was confronted with different tumor types that
respond differently to contrast agents. More interestingly,
multiphase information also significantly helped the seg-
mentation of the liver. This may be explained by the high
inter-class contrast present between lesion and parenchyma
at PV phase, leading PV-Liver to sometimes not consider
lesions as part of the liver.

In this work, we have based our 3D segmentation on the
segmentations of 2D slices. This choice wasmotivated by the
will to limit the computational cost, but also by the difficulty
to copewith the high variability of inter-voxels spacing in the
z-direction. In addition, our training database only contained
sparse annotations on 2D slices, which prevented a full 3D
training. The use of full 3D information during the training,
segmentation or in a post-processing phase is a perspective of
this work. The benefit of using 3D-CRF in a post-processing
step has, for instance, been shown for both liver and lesion
segmentation in [3].

To our knowledge, we are the first to provide amethod that
fully automatically segments liver tissues on CT images. We
conclude that automatic segmentation of liver tissue remains
a challenging task, but our results prove that it can be tackled
using fully convolutional networks. In addition, the resulting
lesion segmentations can provide useful clinical information
for patients follow-up, such as the necrosis rate.
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