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Abstract
Purpose The combination of data visualization and auditory display (e.g., sonification) has been shown to increase accuracy,
and reduce perceived difficulty, within 3D navigation tasks. While accuracy within such tasks can be measured in real time,
subjective impressions about the difficulty of a task are more elusive to obtain. Prior work utilizing electrophysiology (EEG)
has found robust support that cognitive load and working memory can be monitored in real time using EEG data.
Methods In this study, we replicated a 3D navigation task (within the context of image-guided surgery) while recording data
pertaining to participants’ cognitive load through the use of EEG relative alpha-band weighting data. Specifically, 13 subjects
navigated a tracked surgical tool to randomly placed 3D virtual locations on a CT cerebral angiography volume while being
aided by visual, aural, or both visual and aural feedback. During the study EEG data were captured from the participants, and
after the study a NASA TLX questionnaire was filled out by the subjects. In addition to replicating an existing experimental
design on auditory display within image-guided neurosurgery, our primary aim sought to determine whether EEG-based
markers of cognitive load mirrored subjective ratings of task difficulty
Results Similar to existing literature, our study found evidence consistent with the hypothesis that auditory display can
increase the accuracy of navigating to a specified target. We also found significant differences in cognitive working load
across different feedbackmodalities, but none of which supported the experiments hypotheses. Finally, we foundmixed results
regarding the relationship between real-time measurements of cognitive workload and a posteriori subjective impressions of
task difficulty.
Conclusions Although we did not find a significant correlation between the subjective and physiological measurements,
differences in cognitive working load were found. As well, our study further supports the use of auditory display in image-
guided surgery.

Keywords Image-guided neurosurgery ·Neuronavigation ·Auditory display ·Data sonification · EEG · Cognitive workload ·
Evaluation · Interfaces
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Introduction

Image-guided neurosurgery, or neuronavigation, has been
used to visualize the location of surgical tools by tracking and
mapping their locations with respect to preoperative models
of a patient’s anatomy.Acommon limitation of image-guided
neurosurgery is that it requires the surgeon to regularly divert
attention away from the patient and toward the neuronaviga-
tion system. While there are many potential solutions to this
problem, here, we focus on the use of auditory display as a
means tomitigate this particular limitation.Auditorydisplays
use sound to communicate information from a computer sys-
tem to a user. According to Hermann [1] auditory displays
use sonification as ameans of generating sound signals based
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on data input. These sound signalsmay represent earcons (i.e.
distinctive sounds that represent a specific event), audifica-
tion (i.e. time series data mapped to acoustic pressure), voice
messaging and sonification. In this work, we use the tradi-
tional definition of sonification which according to Kramer
et al. [2] refers to the mapping between data relations (e.g.
distances between a surgical probe and target) and an acoustic
signal (e.g. sound representation of this distance) for the pur-
pose of facilitating the interpretation of navigating within a
neurosurgical volume.More specifically, this paper addresses
the methods by which we can assess auditory display as pro-
viding a meaningful benefit for clinicians.

Data sonification, a specific type of auditory display, offers
unique affordances, relative to data visualization, predomi-
nantly because the ear can successfully parse and attend to
multiple data streams at once, a phenomenon often referred to
as the cocktail party effect [3]. Prior research has investigated
the feasibility of utilizing sonified data streams to reduce
clinician dependence on visual information [4,5], thereby
increasing available attention for other tasks [6] and increas-
ing accuracy within 3D localization tasks [7]. One specific
application for sonified data within image-guided surgery
systems includes providing information pertaining to depth,
a feature that is difficult to visualize on a two-dimensional
screen. In this example, auditory display provides continuous
and immediate feedback that is not available from a visual
display. It bears emphasizing that this particular type of audi-
tory display should not be confused with auditory distance
control, which relates to a specific area of research concerned
with sound localization [8]. In researching the feasibility of
incorporating auditory display within existing systems, it is
necessary to have proper metrics to quantify the costs and
benefits of each particular implementation; the most com-
monmetrics include task-related performancemeasures (e.g.
time or accuracymeasurements) and/or subjective judgments
(e.g. Likert scale ratings).

While accuracy (e.g. average distance to target, time to
reach target, etc.) within such tasks can be measured in real
time, subjective impressions about the difficulty of a task
are more elusive to obtain. Indeed to evaluate the bene-
fit of different visualization methods, interfaces, simulators,
etc., researchers most often perform user studies that look
at task-related data such as timing and accuracy in addition
to post-experiment surveys on subjective impressions of task
difficulty, mental effort, and cognitive workload [9]. Studies
have shown, however, that subjective ratings on perceived
effort or cognitive workload using such questionnaires as
the NASA TLX [10] are not necessarily the best evaluation
techniques as they do not always correlate well with task
performance measures (e.g. [11,12]). Therefore, measures of
workload based on physiological data may be more suitable
[13].

Our aim was to utilize electroencephalogram (EEG)
recording, as a physiological measure, to monitor partici-
pants’ cognitive workload, specifically via relative frontal
alpha-band activity, while performing 3D neuronavigation
tasks. Prior work utilizing EEG has found robust support
that cognitive load, working memory, and attention can be
monitored in real time using EEG data. For example, in [9],
EEG monitoring and response time were used to quanti-
tatively evaluate the effectiveness of different visualization
techniques in terms of the burden they place on a viewer’s
cognitive load.

While several measures of EEG signal related to work-
load exist, we elected to focus on frontal alpha-band activity,
similar to other studies [9,14,15], which has been identified
as reflecting cognitive and memory performance [16–18].
In particular, we utilized a specific EEG metric which cal-
culated the relative alpha activity by dividing the absolute
linear-scale alpha-band power over the sum of the absolute
linear-scale powers in the beta, delta, gamma, and theta bands
[19]. Recent work has shown that increases in alpha-band
activity reflect the active inhibition of task-irrelevant infor-
mation, and therefore it is a good indicator of cognitive load,
but these changes in alpha activity are coupled to other fre-
quencies and vice versa [20]. Therefore, we elected to extract
changes in alpha as it increases relative to other bands to
account for this, allowing us to use values that are indicative
of real increases in alpha-band activity. We believe this to be
the best EEG measure of cognitive workload, as increases
in alpha-band activity may co-occur with other large-scale
changes in power among the different frequency bands [20].

In order to examine cognitive load associations when uti-
lizing auditory display within image-guided neurosurgery,
we designed an experiment utilizing a 3D localization task
with auditory, visual, and audio-visual feedback. A pri-
ori, and consistent with existing literature, we hypothesized
that audio information would improve the ability to locate
points within a 3D volume when combined with visual
information. Further, we hypothesized that tasks using audio-
visual feedback would require less cognitive workload (via
both subjective and physiological measurements) than uti-
lizing a singular modality for providing feedback. Finally,
we hypothesized that subjective and physiological measure-
ments would be positively correlated.

Methods

In order to interface a neuronavigation system (i.e., IBIS [21])
with an external sound synthesizer, we developed an audio
plug-in capable of transmitting Open Sound Control (OSC)
messages from an open-source neuronavigation system to
an open-source audio programming environment [22]. This
plug-in employed “oscpack” [23] for handling OSC packet
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manipulation. The audio portion of our system received OSC
messages from IBIS, which provided real-time information
on the location of a marked surgical probe, the location of a
target point within a 3D volume of a computed tomography
angiography (CTA) brain scan, and several other messages to
help facilitate the control of the experiment (detailed below).

Previous research has utilized a wide variety of sonifica-
tion types within auditory display (see Black et al. [6] for
a review) for the purpose of presenting a continuous stream
of information. These sonficiations include speech prompts,
abstract alarms, relatively abstract sound patterns, and even
music-like presentations. In this study, we utilized a simple
signal-to-noise manipulation that has been demonstrated to
be one of the most effective audio cues in our previous study
[24]. This particular sonification involved mapping the real-
time Euclidean distance (in three dimensions) between the
tip of the surgical probe and a specified target within the
volume to the real-time mix of two independent audio sig-
nals: a 400 Hz sine tone and white noise. Beyond a preset
distance threshold (300mm), this specific sonification pre-
sented white noise, and as the surgical tool approached the
target, the sonification faded linearly to a steady-state sine
tone. At a distance of 150mm, the signal consisted of 50%
noise and 50% sine tone. Participants were able to determine
that they had arrived at the target when the white noise signal
was completely absent and only the pure sine tone remained.

Procedure

In a controlled pilot experiment, 13 non-expert participants
(4 females) who were medical imaging or surgical technol-
ogy researchers and familiar with neuronavigation navigated
a tracked surgical tool to randomly placed 3D virtual loca-
tions while being aided by visual, aural, or both visual and
aural feedback; both the 3D virtual locations and feedback
method were randomly changed for every trial. Visual feed-
back included a bright yellow point placed on a vessel within
a 3D computed tomography angiography (CTA) volume, as
well as real-time mapping of the surgical pointer’s tip posi-
tion onto the same surgical volume (as seen in Fig. 1). As
described above, audio feedback consisted of a continuous
“signal-to-noise” sonificationwhich resulted in a linear trans-
formation fromwhite noise to a pure sine tone as participants
approached the target. Audio-visual feedback simply com-
bined the two types of feedback described above.

Participants each completed 24 trials, of which 8 provided
audio-only feedback, 8 provided visual-only feedback, and
8 provided both audio and visual feedback. Between every
trial, the navigation target was moved to a different location
on the surgical volume, and further, the volumewas randomly
rotated in all three of the x, y, and z axes.

For each trial, continuous pointer data were collected
from IBIS at a variable sampling rate of around 20Hz.

To compensate for sampling rate variation, all data points
were time-stamped to allow later data reconstruction; the
data were recorded within the Pure Data data flow program-
ming environment [22]. We also collected continuous EEG
data from a Muse EEG headband [19]. The Muse headset
is equipped with 7 sensors for reading 4 channels, two on
the forehead (Fp1 and Fp2) and two behind the ears (TP9
and TP10). Although raw data capture is available, in our
study we collected processed (de-noised and decomposed)
time series measurements of power spectral density. Specifi-
cally, we looked at alpha-band activity relative to beta, theta,
and gamma bands, as this EEG feature has been robustly
associated with cognitive workload and working memory.
Continuous data were broadcast by the Muse at a sampling
rate of 10Hz and were also recorded within Pure Data. It
should be noted that the Muse, although a wearable con-
sumer grade EEG device, has been shown to be feasible in
a number of common EEG experimental designs, including
oddball paradigms, reward learning tasks, and as a marker of
cognitive load during performance-based tasks (e.g. [25,26]).

After the completion of the experiment, participants were
asked to complete three separate NASA TLX questionnaires
[10], one for eachof the three experimental conditions (audio,
visual, and audio-visual). A priori, we hypothesized that
results from the questionnairewould positively correlatewith
averaged EEG cognitive load measurements taken from each
trial.

Results

Our main hypotheses stated that adding audio information
to visual displays would (1) improve performance within a
3D navigation task, (2) be associated with reduced cognitive
load, and (3) be rated as subjectively less demanding than
visual trials alone. Below, we explore each of these hypothe-
ses in turn.

Task accuracy data

There are several metrics that might be used to quan-
tify “improved task performance” for 3D navigation tasks,
including the required time to reach a target, the end accu-
racy of reaching a target, and/or the amount of error required
to find a target. For convenience, we utilized the average
total distance from target within each 15s trial to compare
feedback across each modality. We calculated the average
total trial distance via a simple summation of the distance
values between the surgical pointer and the randomly placed
3D virtual location, and then divided by the number of sam-
ples recorded within the trial (which was variable depending
on several factors discussed above). These “average trial
distances” were then used as data points to investigate
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Fig. 1 Experimental setup:
subjects used a tracked surgical
pointer to navigate to a
randomly placed point on a 3D
cerebral CTA volume using
visual, aural or both feedback
methods

accuracy as a function of stimulus modality (audio, visual,
and audio-visual) via a repeated-measures ANOVA. The
results showed a marginally significant effect of condition,
F(2, 12) = 2.894, p = .057; the means for each condition
were: audio −42.84mm, visual −47.82mm, and audio-
visual −20.57mm, A Tukey post hoc test found marginally
significant differences between the visual and audio-visual
condition (p = .06); the difference between audio and audio-
visual conditions was skewed in the predicted direction, but
not found to be significant (p = .16). These results were
consistent with the hypothesis that audio-visual feedback
resulted in greater accuracy relative to visual-only feedback
and are plotted in Fig. 2. Figure 3 visualizes the results as
time series data calculated from averaged trial data for all
participants as a function of stimulus modality.

Physiological data

In seeking to understand the relative cognitive load placed on
participants during each trial, we utilized a single EEG met-
ric (alpha-band change relative to theta, delta, and gamma
band change) that could be easily collapsed into an aver-
age. For each trial, we calculated the average physiological
working cognitive load across the entire 15 s second trial
(roughly 300 data points per trial). These average trial obser-
vations were then analyzed via a repeated-measures ANOVA
in order to investigate the effect of modality on participants’
cognitive load throughout the task. The results showed a sig-
nificant effect for condition, F(2, 12) = 4.24, p = .0154;
the means for each condition were: audio − .136, visual

Fig. 2 Audio-visual feedback resulted in greater accuracy relative to
visual-only feedback and aural feedback

− .131, and audio-visual − .129. A Tukey post hoc test
found a significant difference between the audio and audio-
visual condition (p = .01), whereas the difference between
the visual and audio-visual condition was not significant
(p = .18). These results were not consistent with the hypoth-
esis that audio-visual feedback resulted in lower deduced
working cognitive loads relative to visual-only feedback
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Fig. 3 Distance from target over time calculated from averaged trial
data for all participants as a function of stimulus modality

Fig. 4 For cognitive load there was a significant difference between the
audio and audio-visual conditions but no significant difference between
the visual and audio-visual condition

(see Fig. 4). For this significant difference, higher relative
alpha-band EEG activity may be viewed as a marker of a
greater cognitive workload, and thus, the data showed that
audio-only trials demanded greater cognitive resources when
compared to audio-visual trials.

Fig. 5 For subjective cognitive workload (using the NASA TLX ques-
tionnaire) results showed significant differences between the audio and
visual condition, as well as the audio and audio-visual conditions but no
significant difference between the visual and audio-visual conditions

Subjective data

As with previous studies, we utilized a standardized post-
experiment questionnaire in order to quantify participants’
impressions about the difficulty of the experimental task
across the three different modalities. Specifically, we used
the NASA TLX test in order to probe each participant about
the requiredmental, physical, and temporal demands for each
modality, as well as their overall performance, frustration
level, and amount of effort. Each of these factors was rated
on a 10-point scale using an online version of the form. After
completion, ratings from all six measurements were used to
calculate (by summation) an index of subjective cognitive
working load for each of the three modalities used in the
experiment. Again using a repeated-measures ANOVA, we
analyzed the effect ofmodality on subjective ratings of work-
ing load. The test found a significantmain effect formodality,
F(2, 12) = 12.38, p < .001; the means for each condi-
tion were: audio −36.31, visual −27.62, and audio-visual
−24.77. A Tukey post hoc test found significant differences
between the audio and visual condition (p < .001) as well
as the audio and audio-visual conditions (p = .004), but
no significant difference between the visual and audio-visual
conditions. These resultswere not consistentwith the hypoth-
esis that audio-visual feedback resulted in reduced subjective
working load relative to visual-only feedback (see Fig. 5).

A unique facet of our experimental design was the abil-
ity to correlate two different measures of cognitive working
load (both physiological and subjective) within a simulated
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Fig. 6 The overall correlation between average EEG score and com-
posite NASA TLX per subject was not statistically significant

surgical task. The motivation was to explore the efficacy of
basic EEG recordings as a marker of cognitive working load
for future work in human–computer interaction research. To
examine the correlation between collected EEG data and the
results from the NASA TLX questionnaire, we compared
the average EEG measurement (across all trials) against
the average TLX scores on a per person basis. We plotted
these data in a two-dimensional space to show average EEG
activity as a function of NASA TLX composite score (see
Fig. 6). The overall correlation between average EEG score
and composite NASA TLX was not statistically significant,
F(1, 11) = 1.039, p = .33, r = −.18; the implications of
which are discussed below.

Discussion and conclusions

Consistent with previous work on auditory display within
image-guided surgery, our findings provide further support
for the hypothesis that combining auditory distance cueswith
existing visual information may result in greater accuracy
when locating a given target in 3D. To the contrary, when
participants were asked to rate the perceived difficulty of
navigating via our 3 stimulus modality types, their responses
did not indicate that audio-visual navigationwas significantly
easier than visual navigation alone (although the results were
skewed in this predicted direction).A similar pattern emerged
within the reported physiological data, which did not reveal
any significant difference between visual and audio-visual
feedback, but did show results skewed in the predicted direc-

tion. Despite similar trends between these two markers of
task difficulty, the two variables (i.e. subjective reporting and
physiological data) were not found to be positively correlated
on an individual basis.

The aim of this research was not to diminish the util-
ity, or discourage the use of, a posteriori questionnaires
within UX studies. There are a large number of well-
tested tools for assessing user experience (e.g. SUS [27],
UMUX [28], UMUX-Lite [29]), and even some tools which
are specifically tailored to assess auditory user interfaces
(e.g. BUZZ [30]). In seeking to build better real-time sys-
tems, we designed our experimental paradigm to compare
a known real-time metric of cognitive workload with an
established a posteriori assessment tool, as any known cor-
relations between such metrics might potentially facilitate
better research and application design.

The lack of a significant correlation (in either direction)
between the subjective and physiological measurements of
cognitive workload should not be misinterpreted as evidence
of an absent effect, yet despite this null result, and because
this result was largely unexpected, a bit of additional dis-
cussion is warranted. While there are countless reasons why
these two markers for the same phenomenon might not be
correlated, we offer two purely hypothetical explanations.
First, one might assume that the subjective data are flawed,
and if so, that participants tend to underestimate the true dif-
ficulty of a task when such ratings are made a posteriori. This
scenario could explain the slight negative correlation reported
above if participants used the subjective rating portion of the
experiment to mitigate the perception of poor performance
(i.e., higher physiological workload results in the need for
more subjective padding of the true task difficulty). Indeed
one of the shortcomings of theNASATLX is that participants
tend to correlate their task performance with their workload
ratings. Secondly, one might assume that the physiological
data are flawed, perhaps because of noisy signals. In this
scenario, we would expect the relationship between phys-
iological and subjective data to be random. Arguably, this
seems to be a more plausible explanation for the reported
data, and it would be possible to test via a small number of
replication studies.

There were several limitations of this study that deserve
special mention. In particular, in seeking to understand and
develop a system for expert users, our convenience sample of
novice usersmay fail to capture some of the nuances involved
in a 3D target localization task. Secondly, the reported results
represent a relatively small number of subjects, and it seems
likely that a larger study would better reveal a more accu-
rate picture of several marginally significant effects reported
here. Thirdly, the provided analysis of time series data repre-
sents only a fraction of what could be gleaned from even this
small dataset; additional analyses could potentially highlight
if the physiological signals collected in this study were pat-
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terned. Finally, limitations imposed by our low-cost EEGunit
present real challenges to interpreting the data; additional
work should be done to verify the physiological markers
of interest on both consumer and medical grade equip-
ment.

In future work, we plan to examine whether a stronger
effect can be found by taking EEG recordings from a more
sophisticated device with a wider array of electrodes. This
would allow us to examine EEG signal change posteriorly as
well as anteriorly, providing amore comprehensive examina-
tion of changes across the scalp. Increasing the number and
quality of sensors would also facilitate additional analyses,
such as event-related potentials (ERP) analysis, potential sig-
nal coherence across the scalp, and changes in signal power
distribution.

While this specific study was more focused on a method-
ological question (i.e. how to quantify the potential benefits
of auditory display) than a specific implementation (i.e. new
sonification types),wewish to share one insight gleaned from
aparticipant debriefing.Within existing neuronavigation sys-
tems that employ auditory display, and within the system
utilized for this research, the data that feed the auditory signal
demands careful design. In both our audio and audio-visual
trials, the audio signal represented a 3-dimensional Euclidean
distance from the target. This strategymakes sensewhen only
auditory feedback is used, but it results in redundant infor-
mation when employed within audio-visual settings. Ideally,
audio information that is intended to be used in conjunction
with visual information should not duplicate information that
could be obtained visually. In an ideal audio-visual setup,
visual information might be used to navigate the x and y
dimensions, whereas audio information might be used only
for z-dimension navigation.

In investigating the use auditory display within neu-
ronavigation systems, the trends presented within the data
continue towarrant additional research. In replicating similar
experimental designs, and obtaining similar results, our aim
was to contribute to the vast number of ideas about when,
where, and how auditory display could best be deployed
within neuronavigation systems. Unfortunately, the results
presented here regarding cognitive workload as a metric
for quantifying the value of auditory display systems were
mixed, but nonetheless, offered a number of further ques-
tions for researchers in this field to address. If we wish
to truly demonstrate that auditory display is useful within
the operating room, then we must first and foremost ver-
ify that the tools we use to measure its utility are valid and
robust.
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