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Abstract
Purpose This paper addresses localization of needles inserted both in-plane and out-of-plane in challenging ultrasound-
guided interventions where the shaft and tip have low intensity. Our approach combines a novel digital subtraction scheme 
for enhancement of low-level intensity changes caused by tip movement in the ultrasound image and a state-of-the-art deep 
learning scheme for tip detection.
Methods As the needle tip moves through tissue, it causes subtle spatiotemporal variations in intensity. Relying on these 
intensity changes, we formulate a foreground detection scheme for enhancing the tip from consecutive ultrasound frames. 
The tip is augmented by solving a spatial total variation regularization problem using the split Bregman method. Lastly, we 
filter irrelevant motion events with a deep learning-based end-to-end data-driven method that models the appearance of the 
needle tip in ultrasound images, resulting in needle tip detection.
Results The detection model is trained and evaluated on an extensive ex vivo dataset collected with 17G and 22G needles 
inserted in-plane and out-of-plane in bovine, porcine and chicken phantoms. We use 5000 images extracted from 20 video 
sequences for training and 1000 images from 10 sequences for validation. The overall framework is evaluated on 700 images 
from 20 sequences not used in training and validation, and achieves a tip localization error of 0.72 ± 0.04 mm and an overall 
processing time of 0.094 s per frame (~ 10 frames per second).
Conclusion The proposed method is faster and more accurate than state of the art and is resilient to spatiotemporal redun-
dancies. The promising results demonstrate its potential for accurate needle localization in challenging ultrasound-guided 
interventions.

Keywords Needle tip localization · Ultrasound · Deep learning · Minimally invasive procedures

Introduction

Real-time and accurate localization of handheld needles is 
vital for the success of percutaneous ultrasound (US)-guided 
interventions such as biopsies and regional anesthesia. How-
ever, when the needle shaft and tip have low intensity, needle 

localization is difficult. For in-plane insertions (where the 
US probe axis and the needle are colinear, and the whole 
needle is ideally visible as a hyperechoic line), small diam-
eter needles usually produce an invisible shaft even if the 
needle is well aligned with the scan plane. Moreover, the 
needle tip may not exhibit a high-intensity feature. For out-
of-plane insertions (where the US probe axis and the needle 
are orthogonal), only the tip or a cross section of the shaft 
is visible.

Several hardware-based approaches have been proposed 
to improve needle visibility. Mechanical needle guides are 
attached to US probes to align the needle trajectory to the 
ultrasound beam [1]. However, needle guides are not effi-
cient in procedures where fine needle trajectory adjustments 
are required. Technical changes to the design of needles, 
such as embedding sensors at the tip [2, 3] and echogenic 
coats [4], enhance needle localization, but such needles are 
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costly. 3D/4D US offers bi-planar visualization but suffers 
from poor resolution and a low frame rate [5]. Electromag-
netic (EM)/optical tracking systems [6, 7] improve needle 
visualization but require specialized needles and probes. 
Moreover, EM systems are affected by metal objects in the 
operating environment. Robotic systems have been inte-
grated with US imaging to facilitate autonomous or semi-
autonomous needle insertion [8]. However, robotic systems 
are expensive. Considering limitations associated with all 
these advancements, handheld US remains the gold standard 
in clinics.

On the other hand, image processing methods do not 
require additional hardware to the conventional US system. 
Some of these methods rely on full or partial brightness 
of the needle shaft and tip [9–13]. When the shaft or tip is 
not conspicuous, these methods are untenable. Moreover, 
[10–13] focus on in-plane insertion, yet in some procedures, 
in-plane trajectories may be impractical because of the need 
to go around critical anatomy.

There have been attempts to localize needles from dynamic 
intensity changes that arise from needle movement in the US 
image [9, 14, 15]. These utilize optical flow, which works best 
if intensity changes associated with needle motion exhibit a 
smooth transition. Further, optical flow assumes that neigh-
boring points in an image always belong to the same feature 
and move together. These two assumptions reduce reliability 
of optical flow for dynamic handheld needle localization: Spa-
tiotemporal redundancies reduce localization efficiency, and 
US images are sensitive to speckle and susceptible to artifacts 
arising from abrupt changes in probe motion, patient move-
ment, hyperechoic anatomy or physiological events such as 
pulsation and breathing.

Recently, deep learning-based methods using convo-
lutional neural networks (CNNs) have shown promise for 
detection of the needle in static 2D US [16] and 3D US data 
[17, 18]. In our recently published work [16], we demon-
strated a robust approach for needle detection. However, it 
was difficult to detect all needle pixels, and thus, tip localiza-
tion required a computationally expensive post-processing 
step. Hence, although the needle detection step could be 
performed in real time, the overall needle localization pro-
cess could not.

In this paper, we propose a robust needle tip localization 
strategy in 2D US that combines a computationally efficient 
tip enhancement framework and a deep learning approach 
that captures the expected tip shape and variation. By learn-
ing the expected features associated with the needle tip, 
the model successfully localizes the tip in the presence of 
motion artifacts arising from low-amplitude perturbations. 
The main contributions of this paper are: (1) a novel digital 
subtraction algorithm that performs differencing of consecu-
tive image frames within the US sequence. Thus, we are 
able to extract salient motion from temporal relationships 

in the US sequence with a dynamic background model; (2) 
an augmentation technique for the needle tip, in which we 
extend the split Bregman approach to solve a spatial total 
variation (TV) problem for the tip-enhanced image; and (3) a 
single-shot detector deep learning framework optimized for 
needle tip detection from end-to-end learning. The detector 
learns contextual patterns associated with the needle tip and 
outputs static bounding boxes, from which the needle tip 
position is estimated.

The proposed method achieves both in-plane and out-
of-plane needle localizations, as well as localization of thin 
needles since it does not depend on full needle visibility. 
This is achieved at significantly faster computational accu-
racy than state of the art. Our method is suitable for mini-
mally invasive procedures where there is minimum tissue/
organ motion, for example in spinal/epidural and peripheral 
nerve blocks. Since the method is resilient to low-ampli-
tude perturbations, it would work if there is motion from 
breathing during needle insertion. It is also insensitive to 
high-intensity artifacts from anatomical structures or other 
instruments. The proposed method could be utilized in a 
smart computer-assisted interventional system to facilitate 
needle localization in challenging US-guided interventions.

Methods

The proposed method is designed for handheld 2D US 
probes during in-plane and out-of-plane needle insertion. 
The problem of motion-based needle localization is split 
into two main components: (1) detecting moving objects in 
each frame and (2) associating the detections corresponding 
to the needle over time. Consequently, the proposed method 
consists of three main stages illustrated in Fig. 1: (1) we 
detect scene changes caused by needle motion in the US 
image scene (“Needle tip enhancement model” section). In 
each frame of the US sequence, the needle tip is treated as 
the foreground, while the rest of the image is designated as 
background data. Needle enhancement is performed from 
logical subtraction of the dynamic reference US frame from 
the current US frame. This step does not require a priori 
knowledge of needle insertion side or angle; (2) we aug-
ment the appearance of the enhanced needle tip, obtained 
from step 1, using a spatial regularization filter (“Needle 
tip augmentation” section); and (3) we localize the needle 
tip using a deep learning approach adapted from the YOLO 
architecture [19] (“Needle tip detection” section). Next, we 
describe how these three major processes are achieved.

Needle tip enhancement model

Consider a US frame sequence with temporal continu-
ity, represented by the function p(x, y, t) , where t  denotes 
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the position in the time sequence and (x, y) are the spa-
tial coordinates. We propose a dynamic background sub-
traction model which quickly adapts to changes in the 
US scene based on logical differencing between adjacent 
frames. For the first frame, the background is denoted as: 
b
(
x, y, t0

)
= p

(
x, y, t0

)
 . For all subsequent frames, the back-

ground is modeled as the previous frame in the sequence, 
i.e., b

(
x, y, tn

)
= p

(
x, y, tn−1

)
. We then determine the bitwise 

complement of the background image. Considering only 
spatial variation, for b(x, y) = (x, y)|b(x, y) ≠ 0 , the comple-
ment is bc(x, y) = (x, y) ∈ ℤ

2|(x, y) ∉ b(x, y) . For an 8-bit 
image, the complement of each pixel (an unsigned integer) 
is equal to itself subtracted from 255. For any current frame 
p(x, y) , the needle-enhanced image is given by:

where ∧ denotes the pointwise AND logical operation. (1) 
yields only the objects in the US data that moved between 
two successive frames and thus gives an enhanced current 
tip location. Although it is plausible that tissue surrounding 
the needle tip moves concurrently, we consider collocated 
motion of the tissue and tip to be more significant than any 
other motion. Depending on the needle visibility profile, 
q(x, y) may also contain shaft pixels.

Needle tip augmentation

The output of (1) q(x, y), may contain artifacts caused by 
brightness variations, motion artifacts and speckle. We need 
to further enhance q(x, y) to minimize the effect of this noise. 
This step is crucial before the employment of the deep learn-
ing framework explained in “Needle tip detection” section. 
Without it, our model may attempt to overfit the noise at the 
expense of needle features. Therefore, we first devise means 
of denoising q(x, y) . First, q(x, y) is passed through a median 
filter with an 8 × 8 kernel. We denote the resulting image as 
r(x, y) . While speckle noise is multiplicative, we formulate 
an additive noise model to aggregate the effect of speckle, 

(1)q(x, y) = bc(x, y) ∧ p(x, y),

motion artifacts and any other stochastic or deterministic noise 
sources: r(x, y) = e(x, y) + n(x, y) , i.e., a sum of two compo-
nents; the desired image e(x, y) and the aggregate noise, n(x, y) . 
We consider e(x, y) to be a function of bounded variation. 
Going forward, we will adopt a notation where the images are 
represented by vectors. The image restoration model becomes:

where � ∈ ℝ
mn×1 is the desired augmented needle tip image 

(of size m × n ), � ∈ ℝ
mn×1 is the corrupted image obtained 

from the previous step, while � ∈ ℝ
mn×1 is the noise. In this 

notation, � , e and n are vectors containing all the pixel val-
ues in the respective image matrices in lexicographic order. 
Conceptually, this problem necessitates recovering low-rank 
matrices from under-sampled measurements, and it can be 
solved using total variation (TV)-based methods [20, 21]. 
Problems of this nature are ill-conditioned and solving them 
directly is difficult due to noise sensitivity. Since pixels in 
the segmented image have spurious detail and possibly high 
TV, we formulate a TV regularization problem of the form:

where  �  i s  a  regular iza t ion  parameter  and 
‖�‖

TV
= ‖Dx�‖1 + ‖Dy�‖1 is the anisotropic TV norm, 

defined by Dx and Dy , the spatial first-order forward finite 
difference operators along the horizontal and vertical direc-
tions, respectively. (3) is a constrained formulation of a non-
differentiable optimization problem. This problem can be 
efficiently solved with the split Bregman approach [22], in 
which the main problem is reduced to a sequence of uncon-
strained optimization problems and variable updates. We 
first transform (3) into a constrained equivalent problem by 
introducing intermediate variables � and � , i.e.,

(2)� = � + �,

(3)min
�

�

2
‖� − �‖2

2
+ ‖�‖TV ,

min
�,�,�

�

2
‖� − �‖2

2
+ ‖�‖1 + ‖�‖1

(4)subject to � = Dx�

� = Dy�.

Fig. 1  Block diagram of the proposed framework for needle tip localization from two successive US frames
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The formulation in (4) can be converted into an uncon-
strained convex optimization problem (5) by use of augmented 
Lagrangian and split Bregman techniques [21], where the con-
straints in (4) are weakly enforced by introducing quadratic 
penalties:

where � is an additional regularization parameter, and b1 and 
b2 are Bregman relaxation variables which are determined 
through Bregman iteration. Inclusion of the last two aug-
mented Lagrangian terms in (5) improves algorithm robust-
ness since we do not have to strictly reinforce the equality 
constraint. (5) can be split into three subproblems, solved by 
fixing one variable and minimizing over the other in turn:

(6) and (7) decouple over space and have closed-form solu-
tions as vectorial shrinkages (soft thresholding):

(5)

min
�,�,�

�

2
‖� − �‖2

2
+ ‖�‖

1
+ ‖�‖

1
+

�

2
‖� − Dx� − b

1
‖2
2

+
�

2
‖� − Dy� − b

2
‖2
2
,

(6)min
�

‖�‖
1
+

�

2
‖� − Dx� − b

1
‖2
2

(7)min
�

‖�‖1 +
�

2
‖� − Dy� − b2‖22

(8)
min
�

�

2
‖� − �‖2

2
+

�

2
‖� − Dx� − b

1
‖2
2
+

�

2
‖� − Dy� − b

2
‖2
2

(9)� = sign
(
Dx� + b1

)
× max

{
||Dx� + b1

|| −
1

�
, 0
}

(8) is a simple least square problem (Tikhonov regulari-
zation) which can be solved analytically using a gradient 
descent algorithm. First, we derive the pertinent normal 
equation:

(10) is solved using LSMR [23], an iterative least 
squares solver. b1 and b2 are initialized to zero and updated 
between every consecutive iteration of the subproblems: 
bi+1
1

= bi
1
+ Dx� − � , bi+1

2
= bi

2
+ Dy� − �. The enhancement 

process is summarized in Algorithm 1. Figure 2 illustrates 
the result of needle tip augmentation.

� = sign
(
Dy� + b2

)
×max

{|||Dy� + b2
||| −

1

�
, 0
}
.

(10)
�

[
λ� − �

{
DT

x
Dx + DT

y
Dy

}]
= λ� + �DT

x

(
� − b1

)
+ �DT

y

(
� − b2

)
.

Fig. 2  Needle augmentation in three consecutive frames with in-
plane insertion of a 17G needle in a bovine tissue phantom (I–III) and 
one frame with out-of-plane insertion of a 17G needle in a porcine 
shoulder phantom (IV). a Original images before tip enhancement 
and augmentation. Identifying the needle in these images is difficult. 

b Tip-augmented image e(x, y) (color-coded). Circle surrounds the 
augmented tip. The proposed method achieves accurate enhancement 
of the tip despite low tip intensity in the original image or the pres-
ence of high-intensity artifacts
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Needle tip detection

From the preceding sections, we have achieved a needle tip-
enhanced image e(x, y) in which the tip exhibits a high inten-
sity. However, we still need to localize the tip. Usually, the 
needle tip will not move in each US frame because the speed 
of needle actuation by hand may not match the US frame rate 
or the operator may intermittently stop moving the needle. 
Therefore, we need to identify frames in which no signifi-
cant motion has occurred. Further, despite the prior enhance-
ment process, there could still be high-intensity interfering 
artifacts not associated with needle motion. Therefore, we 
cannot rely on the tip to always exhibit the highest intensity 
in e(x, y). For these reasons, we sought to formulate a deep 
learning framework for efficient needle tip detection. Next, 
we describe elements of the deep learning framework that 
are unique to our method.

CNN architecture The proposed deep learning frame-
work is shown in Fig. 3 and is built based on YOLO [19], a 
state-of-the-art single-shot object detection CNN architec-
ture. The framework outputs 2D bounding box predictions 
consisting of five components: x, y,w, h and � , where (x, y) 
coordinates represent the center of the box, w and h are the 
width and height, respectively, and � is the confidence that 
the box contains an object and that the object is the needle 
tip. The new framework consists of a 256 × 256 image input 
layer, unlike the one in [19] which has a 416 × 416 input. To 
further reduce computational complexity toward real-time 
performance, we use only eight convolutional layers. We 
implement a pixel-level fusion layer in which the current US 
image p(x, y) and its tip-enhanced counterpart e(x, y) are con-
catenated before inputting to the CNN. Since the needle tip 
is a fine-grained feature, we configure the convolution layers 
to maintain spatial dimensions of the respective inputs, thus 
mitigating reduction in resolution. More so, CNN neurons 
at deeper layers always have large receptive fields that will 
ensure incorporation of image-level context pertinent to nee-
dle tip appearance.

Uniquely, each of the first seven convolution layers is fol-
lowed by an exponential linear unit (ELU) [24] with � = 0.5 . 
The YOLO implementation in [19] utilizes leaky rectified 
linear unit (leakyReLU) activations. In [24], it is shown 
that with ELU, activations close to zero mean and unit vari-
ance always converge toward zero mean and unit variance 
even under the presence of noise and perturbations. This 
informed our choice of ELU. In Sect. 3, we will present 
comparative analysis of the proposed model’s performance 
with and without ELU. The first five convolution layers are 
followed by a 2 × 2 max pooling layer with a stride of 2. 
All the other physical attributes of the YOLO architecture 
in [19] are unchanged. At test time, the model is malleable 
to any input size. Two advantages accrue from treating our 
challenge as a detection problem. Inherently, needle tip fea-
tures will be learned end to end, thus eliminating the need 
to explicitly encode them. It is expected that frames where 
no needle tip has moved will exhibit no detectable features, 
while the learned model will accurately extract the tip when 
it is present.

Training details The model is initialized with weights 
derived from training on the PASCAL VOC dataset [25]. 
The ground-truth bounding box labels are defined using 
an EM tracking system and an expert radiologist with over 
30 years of experience in interventional radiology. The 
ground-truth tip location becomes the center of the bound-
ing box (x, y) , and the thickness w × h is chosen to be at most 
20 × 20 pixels in all images. We use an initial learning rate 
of  10−4, a batch size of 4 and train for 60 epochs. Our choice 
of optimizer is Adam.

Data acquisition and experimental validation

To train and evaluate our model, we collected a dataset of 
2D B-mode US images using materials and settings speci-
fied in Table 1. Two imaging systems: SonixGPS (Analogic 
Corporation, Peabody, MA, USA) with a handheld C5-2/60 
curvilinear probe and 2D handheld wireless US (Clarius C3, 

Fig. 3  Block diagram of the needle tip detection CNN architecture. In the output, the needle tip is enclosed in a bounding box (green) annotated 
with a confidence score; a measure of classification and localization accuracy
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Clarius Mobile Health Corporation, Burnaby, BC, Canada) 
were used. Experiments were performed on a freshly excised 
bovine tissue, a porcine shoulder phantom and chicken 
breast, with insertion of a 17G (1.5 mm diameter, 90 mm 
length) Tuohy epidural needle (Arrow International, Read-
ing, PA, USA), a 17G SonixGPS vascular access needle 
(Analogic Corporation, Peabody, MA, USA) and a 22G spi-
nal Quincke-type needle (Becton, Dickinson and Company, 
Franklin Lakes, NJ, USA). In all our experiments, the probe 
was handheld. Small amplitude perturbations not associated 
with needle motion were simulated by manually pressing the 
probe against the imaging medium and rotating it slightly 
about its long axis. Further, the chicken breast overlaid on a 
lumbosacral spine model was immersed in a water bath dur-
ing needle insertion to simulate fluid motion in the imaging 
medium. With the SonixGPS needle, we collected ground-
truth needle tip localization data using an EM tracking sys-
tem (Ascension Technology Corporation, Shelburne, VT, 
USA). In-plane insertion was performed at 40°–70°, and the 
needle was inserted up a depth of 70 mm. Fifty (35 in-plane, 
15 out-of-plane) sequences of US images, each containing 
more than 400 frames, were collected.

Performance of the proposed method was evaluated by 
comparing the automatically detected tip location (center of 
the detected bounding box) to the ground truth determined 
from the EM tracking system for data collected with the 
SonixGPS needle. For data collected with needles without 
tracking capability, the ground truth was determined by our 
expert radiologist. By retrospectively inspecting the frame 
sequences, we obtained the ground-truth tip location from 
intensity changes and tissue deformation. (This is more dif-
ficult in the real-time clinical setting.) To account for large 
EM tracking errors (since the sensor does not reach the nee-
dle tip), the radiologist performed manual labeling of the 
dataset obtained with the SonixGPS needle and compared 
the EM data with the manual data. In scenarios where the 
tip intensity is low, the EM system provides annotation on 

the US frames which acts as a visual cue to the approxi-
mate tip location, and the expert used this information to 
label the tip. If the difference in tip localization was 4 pixels 
(~ 0.7 mm) or greater, the localizations were not included in 
our computation. Tip localization accuracy was determined 
from the Euclidean distance between the ground truth and 
the localization from our method.

We implemented our methods on an NVIDIA GeForce 
GTX 1060 6 GB GPU, 3.6 GHz Intel(R) Core™ i7 16 GB 
CPU Windows PC. The needle tip enhancement and aug-
mentation methods were implemented in MATLAB 2018a. 
For the subproblems in (9) and (10), we empirically deter-
mined � = 2 and � = 5 as optimum values. Throughout the 
validation experiments, these values were not changed. The 
tip detection framework was implemented in Keras 2.2.4 
(on the Tensorflow 1.1.2 backend). In total, 5000 images 
from 20 video sequences were used for training, while 1000 
images from 10 other sequences were used for validation. 
Lastly, 700 images from 20 sequences not used in training or 
validation were used for testing. The images were purposely 
selected from continuous sequences where there is needle 
motion.

Experimental results and discussion

Qualitative Results Figure 4 shows needle detection results 
for four consecutive frames for both in-plane and out-of-
plane insertions. Note that the tip is accurately localized 
despite the presence of other high-intensity interfering arti-
facts in the B-mode US data. In case there is a point cloud 
arising from partial enhancement of the shaft, the detection 
CNN learns to automatically identify the tip at the distal end 
of the cloud in the enhanced image e(x, y). For out-of-plane 
insertion, the temporal window for needle tip visibility is 
limited, but our method can be useful for tracking small 
movements of the needle tip close to the target. Meanwhile, 

Table 1  Materials and 
experimental settings for 2D US 
data collection

IP in-plane insertion, OP out-of-plane insertion

Imaging system Needle type, dimensions and insertion profile # of videos Pixel size (mm)

Bovine tissue
SonixGPS 17G SonixGPS (1.5 mm, 70 mm), IP 5 0.17

17G Tuohy (1.5 mm, 70 mm), IP 10 0.17
17G Tuohy (1.5 mm, 70 mm), OP 3 0.17
22G BD (0.7 mm, 90 mm), IP 5 0.17
22G BD (0.7 mm, 90 mm), OP 7 0.17

Porcine tissue on spine phantom
Clarius C3 17G SonixGPS (1.5 mm, 70 mm), IP 5 0.24

17G Tuohy (1.5 mm, 70 mm), IP 5 0.24
22G BD (0.7 mm, 90 mm), IP 5 0.24
22G BD (0.7 mm, 90 mm), OP 5 0.24
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Fig. 4  Needle detection and localization in four consecutive frames 
with a in-plane insertion of the 17G SonixGPS needle into chicken 
breast tissue and b out-of-plane insertion of the 22G needle into the 
porcine shoulder phantom. (I) Original image. The white box is the 
annotated ground-truth label, determined with an electromagnetic 
tracking system for (a) and an expert sonographer for (b). (II) Detec-

tion result with bounding box (white) overlaid on enhanced image 
e(x, y) . The inset number alongside the box annotation is the detection 
confidence. (III) Localized tip, the center of the detected bounding 
box (red star) overlaid on original image. Our method achieves high 
detection and localization accuracy
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our method is agnostic to the type and size of needle used if 
the tip appears in the enhanced US image and needle motion 
is available in the B-mode data. However, increasing the 
training data size for each needle type would improve the 
performance of the proposed method.

Model comparison Ablation studies, where the struc-
tural configuration of a deep learning framework is altered 
to assess the impact on model performance, are used to jus-
tify design choices. In line with this standard approach, we 
compare efficiency of our needle tip detection framework to 
that from alternative implementation approaches. We evalu-
ate accuracy of detection using the mean average precision 
(mAP) metric on the validation dataset. mAP is calculated as 
the average value of the precision across a set of 11 equally 
spaced recall levels [25], yielding one value that depicts the 
shape of the precision–recall curve. Table 2 shows the mAP 
for different configurations of the detection CNN. First, we 
examine performance of the proposed CNN with the raw 
US image p(x, y) as an input. As expected, the detection effi-
ciency is very low (20.2%). This is because without our tip 
enhancement algorithm, tip features are barely discernible 
and are overshadowed by other high-intensity artifacts in 
the cluttered US image. We also consider only the enhanced 
image e(x, y) as the input. A high mAP of 86.7% is achieved, 
showing that our enhancement algorithm is efficient. Fur-
thermore, we show that fusion of e(x, y) and p(x, y) achieves 
the highest mAP of 94.6%

With the fusion input, and with other hyperparameters 
maintained constant, we compare performance of the pro-
posed method against a similar model with leakyReLU 
activation layers as is the case in [19] instead of ELU. The 
proposed method outperforms this configuration. It is worth 
mentioning that we chose a batch size of 4 in all our experi-
ments because of the memory constraints of the GPU. It is 
expected that a bigger batch size would have resulted in an 
even higher mAP from the proposed model.

Runtime performance On the NVIDIA GeForce GTX 
1060 GPU, our framework runs at 0.094 ± 0.01 s per frame 
(0.014 s for enhancement, 0.06 for augmentation and 0.02 s 
for detection). This is ~ 10 frames per second (fps), and to 
the best of our knowledge, the fastest needle tip localization 

framework reported so far. Certainly, the processing speed 
can be increased with more computing resources. In frames 
where the needle tip is salient, the augmentation step is 
unnecessary, and the runtime speed increases to 29 fps.

Mitigating false detections Since YOLO is a multi-object 
detection framework, it is possible that several bounding 
boxes with different confidence scores can be detected on 
the same input image. We sought to minimize these false 
positives by selecting the bounding box with the highest 
confidence score and using a hard threshold of 0.35 for the 
score, a value which was empirically determined and kept 
constant throughout validation. With this threshold, we 
achieved an overall sensitivity and specificity of 98% and 
91.8%, respectively. It is expected that the robustness of tip 
detection would further be improved if a bigger training 
dataset was used. To mitigate the effect of the false positives 
on tip localization, we estimate the needle trajectory using 
the technique illustrated in Fig. 5. We assume that the tip 
detection framework has already accurately localized two 
previous spatial positions A

(
x1, y1

)
 and B

(
x2, y2

)
 in succes-

sive frames that are at least 30 pixels (~ 5 mm) apart. From 
A and B, we approximate the needle trajectory 
�1 = tan−1

(|||
(
y2 − y1

)
∕
(
x2 − x1

)|||
)

 . Then for each subse-
quent detection with a bounding box at F

(
xf, yf

)
 , we estimate 

the trajectory angle �2 using points A and F, with A as a 
static reference. If ||𝛼1 − 𝛼2

|| > 10◦ , the new detection is 
deemed to be skewed from the correct trajectory (and thus a 
false positive), and the localization result is not utilized in 
calculating localization error. During the localization pro-
cess, false positives and true negatives lead to maintenance 
of the current tip position. In so doing, our method is robust 
to spatiotemporal redundancies.

Table 2  Comparing detection accuracy from the proposed method 
versus alternative approaches

Bold characters denote performance of the proposed method, which 
is the best when compared to alternative methods

Method mAP

Detection CNN +  p(x, y) 0.202
Detection CNN +  e(x, y) 0.867
Detection CNN (with leakyReLU) +  p(x, y) + e(x, y) 0.914
Detection CNN (with ELU) +  p(x, y) + e(x, y) 0.946

Fig. 5  Eliminating false positives from trajectory estimation. Points A 
and B lie along the correct trajectory. The bounding box with center F 
is a false positive
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Tip localization accuracy Overall, the tip localization 
error was 0.72 ± 0.4 mm. Direct and fair comparison to 
state-of-the-art methods is difficult since our dataset is col-
lected to suit evaluation of a method that does not require 
initial needle visibility. Although the method in [14] local-
izes imperceptible in-plane inserted needles with good accu-
racy (0.82 mm), their computation time of 1.18 s per frame 
(~ 1 fps) is significantly inferior to ours (10 fps).

We compared the proposed method to the method in 
[16] by evaluating the two on the same set of 200 randomly 
selected US images with only in-plane needle insertion. The 
results are shown in Table 3. Note that the proposed method 
outperforms the method in [16] in both tip localization accu-
racy and computational efficiency. For a fair comparison, 
localization errors above 2 mm (56% of the data) were dis-
carded. A one-tailed paired t test shows that the difference 
between the localization errors from the proposed method 
and the method in [16] is statistically significant (p < 0.005). 
The localization accuracy obtained from [16] is worse than 
previously reported because we used a more challenging 
dynamic dataset with very low shaft intensity, unlike [16] 
where static US images were used for validation. We also 
compared the proposed method to an intensity-based method 
that directly localizes the needle tip using the Hough trans-
form and RANSAC [10]. This method achieved success in 
only 18% of the dataset (neglecting errors > 2 mm), with an 
overall localization error of 1.2 ± 0.32 mm.

Furthermore, we determined needle localization from the 
maximum intensity in e(x, y) , i.e., the proposed method with-
out the tip detection step. The results are shown in Table 4 

and demonstrate that the localization accuracy is worse 
without the detection framework. This is expected because 
without the benefit of implicitly learning heuristic features 
associated with the tip via deep learning, there is a higher 
likelihood of localizing artifacts with similar intensity to 
the tip.

Conclusions

We have demonstrated a novel approach for needle tip 
localization in 2D US, suitable for challenging imaging 
scenarios in which the needle is not continuously visible. 
The main strength of our work is in the robust and accurate 
tip localization at a close to real-time processing rate of 
10 fps. This is better than reported in previous methods 
[9–18]. The proposed method does not require the needle 
to appear as a high-intensity, continuous linear structure in 
the US image. Therefore, both in-plane and out-of-plane 
needle localizations are possible. We used the thinner 22G 
needle in our experiments to demonstrate the robustness 
of our method. Typically, such thin needles are prone to 
bending and the shaft has limited visibility, but this did not 
affect the accuracy of tip localization. Therefore, it is pos-
sible that our method can localize bending needles. How-
ever, we will further investigate this in our future work.

The detection component in our method mitigates 
motion artifacts arising from small amplitude perturba-
tions simulated from probe pressure, probe rotation and 
fluid motion. Generally, any method reliant on motion 

Table 3  Comparison of 
localization accuracy for only 
in-plane insertions

Bold characters denote performance of the proposed method, which is the best when compared to alterna-
tive methods

Method Success (%) Localization error 
(mm)

Overall 
processing 
time (s)

Proposed method (with detection CNN) 100 0.72 ± 0.04 0.094
Method of [16] 44 1.04 ± 0.36 0.56
Hough transform + RANSAC 18 1.2 ± 0.32 0.74

Table 4  Comparing tip 
localization errors for the 
proposed method with 
and without the detection 
framework. Results are 
presented as 95% confidence 
interval of the mean

Bold characters denote performance of the proposed method, which is the best when compared to alterna-
tive methods

Localization approach Ground truth # of images Error (mm)

Proposed method (with detection CNN) Tracking system 250 0.76 ± 0.03
Proposed method (with detection CNN) Expert 450 0.69 ± 0.05
Proposed method (with detection CNN) (overall) 700 0.72 ± 0.04
Highest intensity in e(x, y) (without detection CNN) Tracking system 250 0.94 ± 0.04
Highest intensity in e(x, y) (without detection CNN) Expert 450 1.12 ± 0.05
Highest intensity in e(x, y) (without detection CNN)(overall) 700 1.06 ± 0.04
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detection is prone to drastic motion between consecu-
tive frames, for example due to abrupt changes in probe 
alignment or rapid physiological motion, such as pulsation 
and breathing. In the clinical scenario, needle advance-
ment is often paused if major probe re-orientation is to 
be undertaken, so this would not be a major hindrance to 
our method. Further, while we postulate that our method 
is robust to physiological activity such as breathing and 
pulsation, we will further investigate this in future clini-
cal studies.
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