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Abstract
Purpose Retinal microsurgery requires highly dexterous and precise maneuvering of instruments inserted into the eyeball
through the sclerotomy port. During such procedures, the sclera can potentially be injured from extreme tool-to-sclera contact
force caused by surgeon’s unintentional misoperations.
Methods We present an active interventional robotic system to prevent such iatrogenic accidents by enabling the robotic
system to actively counteract the surgeon’s possible unsafe operations in advance of their occurrence. Relying on a novel
force sensing tool to measure and collect scleral forces, we construct a recurrent neural network with long short-term memory
unit to oversee surgeon’s operation and predict possible unsafe scleral forces up to the next 200ms. We then apply a linear
admittance control to actuate the robot to reduce the undesired scleral force. The system is implemented using an existing
“steady hand” eye robot platform. The proposed method is evaluated on an artificial eye phantom by performing a “vessel
following” mock retinal surgery operation.
Results Empirical validation over multiple trials indicates that the proposed active interventional robotic system could help
to reduce the number of unsafe manipulation events.
Conclusions We develop an active interventional robotic system to actively prevent surgeon’s unsafe operations in retinal
surgery. The result of the evaluation experiments shows that the proposed system can improve the surgeon’s performance.
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Introduction

High-precision manipulation is essential for retinal surgery
due to high level of safety required to handle delicate tissue
in a small constrained workspace. Factors such as phys-
iological hand tremor, fatigue, poor kinesthetic feedback,
patient movement, and the absence of force sensing could
potentially lead to surgeon’s misoperations and subsequently
iatrogenic injury. During retinal surgery, the surgeon inserts
small instruments (e.g., 25Ga, φ = 0.5mm) through the
sclerotomy port (φ < 1mm) to perform delicate tissue
manipulations in the posterior of the eye as shown in Fig.
1. The sclerotomy port continuously sustains variable tool-
to-sclera forces. Extreme tool maneuvers applied to the port
could result in excessive forces and cause scleral injury. One
example of such a challenging retinal surgery task is retinal
vein cannulation, a potential treatment for retinal vein occlu-
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sion. During this operation, the surgeon needs to pass and
hold the needle or micropipette through the sclerotomy port
and carefully insert it into the occluded retinal vein. After
insertion, the surgeon needs to hold the tool steadily for as
long as two minutes for clot-dissolving drug injection. In
such a delicate operation, any unintentional movements of
the surgeon’s hands may put the eye at high risk of injury.
Therefore, the success of retinal surgeries is highly dependent
on the surgeon’s level of experience and skills, a requirement
that could be relaxed with the help of more advanced robotic
assistive technology.

Continuing efforts are being devoted to the development
of the surgical robotic systems to enhance and expand sur-
geon’s capabilities in retinal surgery. Current technology can
be categorized into teleoperative manipulation systems [1–
3], hand-held robotic devices [4], untethered microrobots
[5], and flexible micromanipulators [6]. Recently, two robot-
assisted retinal surgeries have been performed successfully
on human patients [7,8], demonstrating the clinical feasibil-
ity of robotic microsurgery.

Our team developed the “steady hand” eye robot (SHER)
capable of human–robot cooperative control [9]. Surgical
tools can be mounted on the robot end-effector, and user
manipulates the tool in a collaborative way with the robot.
The velocities of SHER follow the user’s manipulation force
applied on the tool handle measured by an embedded end-
effector force/torque sensor. Furthermore, our group has
designed and developed a series of “smart” tools based on
fiber Bragg gratings (FBGs) sensors [10,11], in which the
multi-function sensing tool [12] can measure scleral force,
tool insertion depth, and tool tip contact force. Scleral force
and insertion depth are the key measurements employed in
this work. The measured force is used for force control, and
haptic or audio feedback to the surgeon to enhance safety
[13,14].

The aforementioned robotic devices can give passive sup-
port to surgeons, i.e., filtering hand tremor, improving tool
location accuracy, and providing operation force information
to surgeons. However, the existing robotic systems cannot
actively counteract or prevent iatrogenic accidents (e.g., from
extreme scleral forces) caused by surgeon’s misoperations or
fatigue, since it is generally difficult to quantify and react on
time to the surgeon’s next move.

Predicting the surgeon’s following movement based on
their prior motions can potentially resolve the above-
mentioned problems. The predicted information can be used
to identify unsafe manipulations that might occur in the near
future. Then, robotic system could actively take actions, e.g.,
retreating the instruments or pausing the surgeon’s opera-
tion to prevent high forces applied to delicate tissue. To
this end, we propose an active interventional robotic sys-
tem (AIRS) summarized in Fig. 2. For an initial study, we
focus on scleral safety. A force sensing tool is developed to

collect scleral force. A recurrent neural network (RNN) with
long short-term memory (LSTM) units is designed to pre-
dict and classify the impending scleral forces into safe and
unsafe, using the notion of a safety boundary. An initial linear
admittance control taking the predicted force status as input
is applied to actuate the robot manipulator to reduce future
forces. Finally, AIRS is implemented using SHER research
platform and is evaluated by performing “vessel following,”
a typical task in retinal surgery, on an eye phantom. The
experimental results prove the advantage of AIRS in robot-
assisted eye surgery, i.e., the unsafe force proportion is kept
below 3% with AIRS compared to 28.3% with SHER and
26.6% with freehand for all participated users.

Background

Fiber Bragg gratings sensors

FBGs [15] are a type of fiber optic strain sensors. The Bragg
gratings work as a wavelength-specific reflector or filter.
A narrow spectral component at this particular wavelength,
termed theBraggwavelength, is reflected,while the spectrum
without this component is transmitted. The Bragg wave-
length is determined by the grating period, which depends
on the strain generated in the fiber:

λB = 2neΛ

where λB denotes the Bragg wavelength, ne is the effective
refractive index of the grating, and Λ denotes the grating
period.

We use FBGs as force sensor, since they are small enough
(60–200µm in diameter) to be integrated into the tool with-
out significantly increasing the tool’s dimensions. Besides,
FBG sensors are very sensitive, and they can detect strain
changes of less than 1µε. They are lightweight, biocompat-
ible, sterilizable, multiplexable, and immune to electrostatic
and electromagnetic noise.

Force sensing tool

The force sensing tool was previously designed and fabri-
cated as shown in Fig. 3, which is employed to measure the
scleral force and insertion depth in this work. The tool is
composed of three parts: tool handle, adapter, and tool shaft
(sensing part). The tool shaft is made of a stainless steel wire
with the diameter of 0.635mm. It ismachined to contain three
longitudinal V-shaped grooves. An optical fiber is carefully
glued and positioned inside each groove. Each fiber contains
three FBG sensors (Technica S.A, Beijing, China) which are
separately located in segments I, II, and III. Hence, nine FBG
sensors are embedded in the tool shaft in total.
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Fig. 1 Illustration of retinal
microsurgery. a Two tools are
inserted into eyeball via
sclerotomy port, and the sclera
sustains constant manipulation
force. b The surgeon
manipulates the instruments
under the microscope to perform
retinal surgery

Fig. 2 Active interventional robotic system (AIRS). The roboticmanip-
ulator is activated tomove along the direction of scleral force at a certain
velocity once the predicted force status is unsafe. The RNN is trained

offline in advance as the predictor. A force sensing tool is developed to
measure scleral force (Fx and Fy) and insertion depth

The tool is calibrated using previously developed algo-
rithm [12] to measure sclera force and insertion depth. The
sclera force can be calculated using Eq. (1) :

Fs = MI I − MI

Δl
= KIIΔSI I − KIΔSI

Δl
(1)

where Δl = lI I − lI is the constant distance between
FBG sensors of segments I and II as shown in Fig. 3.
Fs = [Fx ,Fy]T is the sclera force applied at sclerotomy
port. Mi = [Mx ,My]T denotes the moment attributed to Fs

on FBG sensors of segment i. Ki (i =I, II) are 3× 2 constant

coefficient matrices, which are obtained through the tool cal-
ibration procedures. ΔSi = [Δsi1,Δsi2,Δsi3]T denotes the
sensor reading of FBG sensors in segment i, which is defined
as follows:

Δsi j = Δλi j − 1

3

3∑

j=1

Δλi j , (2)

where Δλi j is the wavelength shift of the FBG, i = I, II is
the FBG segment, j = 1, 2, 3 denotes the FBG sensors on
the same segment. The insertion depth can be obtained from
the magnitude ratio of the moment to the force:
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Fig. 3 Force sensing tool. aOverall dimension of the tool. The sensing
part contains nine FBG sensors, which are located on three segments
along tool shaft. b The radial positions of FBG fibers on tool shaft. c

The calibration results of scleral force. The measurement RMS errors
of sclera force are 3.8mN. d The calibration results of insertion depth.
The measurement RMS errors of insertion depth are 0.3mm

d = li − ||Mi ||
||Fs|| (3)

where || · || denotes the vector Euclidean norm. When the
magnitude of the sclera force Fs is small, the insertion depth
calculated using Eq. (3) can be subject to a large error, so
Eq. (3) is only valid when the sclera force Fs is bigger than
a preset threshold (e.g., 10mN).

Active interventional robotic system

Our proposed system consists of four main parts: the force
sensing tool, an RNN, an admittance control algorithm, and
the SHER research platform as depicted in Fig. 2. The tool
held by the user is attached to the robotwhich can alsomanip-
ulate it to intervene when needed. The scleral force and the
insertion depth are measured by the force sensing tool in real
time. These parameters along with the robot Cartesian veloc-
ities are recorded and fed into the RNN as input. The network
predicts the scleral force a few hundred milliseconds away
from the current moment. The predicted results are used to
implement the admittance control. If the predicted forces are
about to exceed the safe boundaries, the admittance control
is activated and the robot makes an autonomous motion to
reduce the forces.

RNN network design

RNNs are suitable for modeling time-dependent tasks such
as a surgical procedure. Classical RNNs typically suffer from
the gradient vanishing problemwhen trained with back prop-
agation through time, due to its deep connections over long
time periods. To overcome this problem, the LSTM model
[16] was proposed, which can capture long-range depen-
dencies and nonlinear dynamics and model varying length
sequential data, achieving good results for problems span-
ning clinical diagnosis [17], image segmentation [18], and
language modeling [19].

We assume that the scleral force characteristics can be cap-
tured through a short time history of sensor measurements
(e.g., the last few seconds). An LSTM network [16] is con-
structed to make predictions based on such history as shown
in Fig. 4. The network is based on memory cells composed
of four main elements: one input gate, one forget gate, one
output gate, and one neuron with a self-recurrent connection
(a connection to itself). The gates serve tomodulate the inter-
actions between the memory cell itself and its environment.
The input gate determines whether the current input should
feed into the memory, the output gate manages whether the
current memory state should proceed to the next unit, and the
forget gate decides whether the memory should be cleared.
The following standard equations describe recurrent alge-
braic relationship of the LSTM unit:
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Fig. 4 Proposed RNN. The network gets input from data history with h timesteps in past and outputs the probabilities of each force status at time
t+n, where t is the current timestep. Then, the one with the highest probability is selected as the final force status, which is further fed into the
admittance control

ft = σ(Wf · [ht−1, xt ] + bf), (4)

it = σ(Wi · [ht−1, xt ] + bi), (5)

C̃t = φ(WC · [ht−1, xt ] + bC), (6)

Ct = ft � Ct−1 + it � C̃t , (7)

ot = σ(Wo · [ht−1, xt ] + bo), (8)

ht = ot � φ(Ct ), (9)

where ht−1 stands for the memory cells at the previous
sequence step, σ stands for an element-wise application of
the sigmoid (logistic) function, φ stands for an element-wise
application of the tanh function, and � is the Hadamard
(element-wise) product. The input, output, and forget gates
are denoted by i, o, and f, respectively, while C is the cell
state. Wf , Wi, WC, and Wo are the weight for forget gate,
input gate, cell state, and output state, respectively. bf , bi,
bC, and bo are the bias for forget gate, input gate, cell state,
and output state, respectively. In this work, the LSTM unit
uses memory cells with forget gates but without peephole
connections.

To perform sensor reading predictions, a fully connected
(FC) layer with softmax activation function as shown in Eq.
(10) is used as the network output layer after the LSTMunits,
which outputs the normalized probabilities for each label.

yi = exi
∑n

j=1
ex j

(10)

where xi is the output of FC layer, yi is the normalized prob-
ability, and n is the number of classes, i.e., force status.

The proposed RNN network takes the scleral force, the
insertion depth, and the robot manipulator’s Cartesian veloc-
ities in past h timesteps as the input and outputs the prob-
abilities of the future scleral force statuses, i.e., safe/unsafe
t+n timesteps in the future, where t denotes the current time
and n is the prediction time in future. Then, the one with the

highest probability is selected as the final force status and
is further fed into the admittance control. The groundtruth
labels are generated based on the forces within a prediction
time window (t, t + n), as shown in Eq. (11):

label(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 Fx (t)∗ < Fgate and Fy(t)∗ < Fgate
1 Fx (t)∗ < Fgate and Fy(t)∗ > Fgate
2 Fx (t)∗ > Fgate and Fy(t)∗ < Fgate
3 Fx (t)∗ > Fgate andFy(t)∗ > Fgate

(11)

where Fgate is safety threshold of scleral force, which is set
as 60 mN referred to our previous work [20]. Labels that are
assigned as 0 represent safe status, otherwise unsafe status.
Fx (t)∗ and Fy(t)∗ are the maximum scleral forces within the
prediction time window shown as follows:

Fx (t)
∗ = max(|Fx (t)|, |Fx (t + 1)|, . . . , |Fx (t + n)|), (12)

Fy(t)
∗ = max(|Fy(t)|, |Fy(t + 1)|, . . . , |Fy(t + n)|) (13)

where | · | denotes the absolute value.

Admittance control method

An admittance robot control scheme is proposed using the
approach described in [21] as a starting point. During coop-
erative manipulation, the user’s manipulation force which is
applied on the robot handle is measured and fed as an input
into the admittance control law as shown in Eq. (14):

ẋhh = αFhh, (14)

ẋrh = Adgrh ẋhh, (15)

where ẋhh and ẋrh are the desired robot handle velocities in
the handle frame and in the robot frame, respectively. Fhh is
the user’s manipulation force measured in the handle frame,
α is the admittance gain tuned by the robot pedal, Adgrh is the
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adjoint transformation as shown below, and it is associated
with the coordinate frame transformation grh .

Adgrh =
[
Rrh p̂rhRrh
0 Rrh

]
(16)

where Rrh and prh are rotation and translation component of
the frame transformation grh and p̂rh is the skew symmetric
matrix that is associated with the vector prh .

The linear admittance control scheme is activated when
the predicted scleral forces turn to the unsafe status. The
desired robot handle velocities in Eq. (14) change as follows:

ẋhh = αWFhh + V (17)

where W is diagonal admittance matrices which can be set
as diag([0, 0, 1, 1, 1, 1]T ) and V is compensational velocity
to reduce scleral force and it can be written as follows:

V = [sign(Fx ) · c, sign(Fy) · c, 0, 0, 0, 0]T (18)

where c is set as a constant value.
The robot motion mode is switched back to the original

control mode as shown in Eq. (14) when the predicted forces
return to the safe status.

Experiments and results

Experimental setup

The experimental setup is shown in Fig. 5a and includes
SHER, the force sensing tool, and an eye phantom. Besides,
an FBG interrogator (SI 115, Micron Optics Inc., GA, USA)
is utilized to monitor signals of FBG sensors within the
spectrum from 1525 to 1565nm at 2kHz refresh rate. A
microscope (ZEISS,Germany) and amonitor are used to pro-
vide magnified view. A Point Grey camera (FLIR Systems
Inc., BC, Canada) is attached to themicroscope for recording
the user’s interactionwith the eye.A sharedmemory architec-
ture is implemented to integrate the RNN predictor running
in python into the robotic control system running in C++.We
focus on vessel following as a representative surgical task.

Force sensing tool calibration

The force sensing tool is mounted on SHER and used to col-
lect the scleral force and the insertion depth. It is calibrated
based on Eq. (1) using a precision scale (Sartorius ED224S
Extend Analytical Balance, Goettingen, Germany) with res-
olution of 1mg. The details of the calibration procedure were

presented in our previouswork [12]. The calibrationmatrices
used in Eq. (1) are obtained as follows:

KI =
⎡

⎣
0.1566 − 0.2113
0.1059 0.2273
− 0.2625 − 0.01605

⎤

⎦ ,KI I =
⎡

⎣
0.1853 − 0.2315
0.1114 0.2515

− 0.2967 − 0.0200

⎤

⎦ ,

The tool validation experiment is carried outwith the same
scale to test the calibration results. The validation results of
the calculated force and the groundtruth values are shown in
Fig. 3b, c. ThemeasurementRootMeanSquare (RMS) errors
of the sclera force and the insertion depth are calculated to
be 3.8mN and 0.3mm, respectively.

Eye phantom

An eye phantom is developed using silicon rubber and is
placed into a 3D-printed socket as shown in Fig. 5b. A printed
paper with four curved lines representing the retinal vessels
is glued on the eyeball inner surface. The curved lines are
painted with different colors, and all lines intersect at the
central point called “home” position.

Vessel following operation

Based on the recommendation of our clinical lead, “vessel
following” which is a typical task in retinal surgery was cho-
sen for the validation experiments. Vessel following can be
performed using the eye phantom and is mainly comprised of
6 phases as shown in Fig 5c: (1) moving the tool to approach
sclerotomyport, (2) inserting the tool into the eyeball through
sclerotomy port to reach the home point, (3) following one of
the colored curved vessels with the tool tip without touching
the vessel, (4) tracing the curve backward to the home point,
(5) retracting the tool to the sclerotomy port, and(6) move
the tool away from the eyeball.

Shared memory

TheRNNnetwork runs in python at 100Hz,while the robotic
system runs in C++ at 200 Hz. To integrate the RNN network
into the robotic systems, a sharedmemory architecture is used
as the bridge to transmit the actual user operation data and
network prediction results between two programs as shown
in Fig. 6. Considering the elapsed time per single prediction
Δt , the time of predicted results reaching robotic systems
turns out to be T = t + n − Δt , where n is the prediction
time.

Network training

The above-mentioned vessel following operation is per-
formed 50 times by a SHER familiar engineer, and the col-
lected data are used to train the RNN. The groundtruth labels
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Fig. 5 Experimental setup. a
The sensing tool is mounted on
the SHER end-effector, and the
eye phantom is attached on a
stage. b The eyeball is made of
silicon rubber and is fixed into a
socket. c The vessel following
task consists six phases
including approaching
sclerotomy port, insertion,
forward trace the curve,
backward trace the curve,
retraction, and move away from
the eyeball

Fig. 6 Data flow of the systems.
Real-time prediction is n-Δt
time ahead, where n is the RNN
prediction time and Δt is the
elapsed time in one prediction

are generated using Eq. (11). Successful training critically
depends on the proper choice of network hyper-parameters
[22]. To find a suitable set of the hyper-parameters, i.e.,
network size and depth, and learning rate, we apply cross-
validation and random search. The learning rate is chosen as
a constant number 2e−5, and the LSTM layer is set as 100
neurons. We use the Adam optimization method [23] as the
optimizer and the categorical cross- entropy as the loss func-
tion. Note that for training the network, we cannot shuffle
the sequences of the dataset because the network is learning
the sequential relations between the inputs and the outputs.
In our experience, adding dropout does not help with the net-
work performance. The training dataset is divided into mini
batches of sequences of size 500. We normalized the dataset
value into the range of 0 to 1. The network is implemented
with Keras [24], a high-level neural networks API. Train-
ing is performed on a computer equipped with Nvidia Titan
Black GPUs, a 20-cores CPU, and 128GB RAM. Single-
GPU training takes 90 minutes.

The performances of different RNN networks are shown
in Table 1, where accuracy is the true positive of prediction
result, and successful rate is the prediction result excluding
the false negative. Stacked LSTM model with the absolute
value of the input data has the highest accuracywhich is 89%,
but its single prediction takes longer time which is 25ms
than LSTM model, and the latter takes 11ms. We finally
apply LSTM model in our experiments to get the best trade-

off between prediction accuracy and timeliness. The chosen
LSTM model obtains 89% prediction successful rate.

Active interventional robotic system evaluation

The feasibility of AIRS is evaluated in real time by perform-
ing the vessel following operations. The research study was
approved by the Johns Hopkins Institutional Review Board.
Three non-clinician users took part in the study. With the
assistance of AIRS, users are asked to hold the force sensing
tool which is mounted on SHER to carry out vessel following
task on the eye phantom. The operation is repeated 10 times
by each user. Meantime, the benchmark experiments are also
performed in freehand operation and in SHER-assisted oper-
ation, respectively.

With the assistance of AIRS, the force landscape in one
typical vessel followingoperation is depicted as shown inFig.
7. The tool tip trajectory in the robot coordinate frame dur-
ing this operation is shown accordingly in Fig. 8. When the
label turns to be on, the scleral force in the next 200ms will
possibly run over the safety threshold Fgate. At this moment,
AIRS takes action to suppress the scleral force to prevent
the unsafe forces from happening. The evaluation results of
AIRS as well as two benchmark group are shown in Table 2.
Four metrics are calculated including the maximum scleral
forces, the unsafe force (force’s absolute value is larger than
the safety threshold) duration, the total duration of the exper-
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Table 1 Performance of the RNN networks

Model Input data Prediction time n (ms) Accuracy (%) Successful rate (%) Elapsed time/one
prediction t (ms)

Stacked LSTM Vanilla value 100 83 85 26

Stacked LSTM Derivative value 100 68 75 26

Stacked LSTM Absolute derivative value 100 76 78 26

Stacked LSTM Absolute value 100 89 92 26

LSTM Absolute value 100 87 91 10

LSTM Absolute value 200 85 89 10

Fig. 7 Forces landscape with predictions. When “label=1” is on, Fx in the imminent 200ms would possibly go over the safety threshold Fgate.
Same situation suits for “label=2” and Fy . The linear admittance control is activated to actuate the robot manipulator to reduce scleral force when
label emerges

iments, and the unsafe force proportion which is the ratio of
the unsafe force duration to the total duration. It should be
mentioned that the metrics are obtained from the conjunct
data of ten trails for each user in each condition. The results
show that the maximum forces, the unsafe force duration,
and the unsafe forces proportion with AIRS are less than the
ones with SHER for all three users and less than the ones
with freehand for user 1 and user 2. The total duration with
AIRS and with SHER is similar, but both of them are larger
than the one with freehand.

Discussion

Robotic assistance could help in eliminating hand tremor and
improving precision [7,8]. However, it could affect surgeon’s
tactile perception and in turn cause largermanipulation forces
compared to freehand due to mechanical coupling and stiff-
ness. Moreover, robotic assistant could prolong surgery time
compared to freehand maneuver because a robotic assistant

Fig. 8 Typical tool trajectory in vessel following operation. The six
phases of the tool tip motion, i.e., approaching the eyeball, insertion,
forward tracing the curve, backward tracing the curve, retraction, and
move away from the eyeball are drew in different colors
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Table 2 Evaluation results User Metrics Experimental conditions

Freehand With SHER With AIRS

1 Maximum (Fx, Fy) (mN) (124.5, 114.6) (113.1, 113.8) (78.7, 52.4)

Unsafe force duration (s) 32.6 56.1 9.5

Total duration (s) 165.7 313.1 318.7

Unsafe forces proportion 19.6% 17.8% 3.0%

2 Maximum (Fx, Fy) (mN) (124.8, 147.4) (75.5, 116.8) (74.5, 68.6)

Unsafe force duration (s) 38.1 100.9 3.2

Total duration (s) 143.0 356.5 370

Unsafe forces proportion 26.6% 28.3% 0.84%

3 Maximum (Fx, Fy) (mN) (61.4, 58.6) (96.6, 151.4) (65.2, 83.5)

Unsafe force duration (s) 2.5 106.1 9.9

Total duration (s) 309.2 434.4 397.6

Unsafe forces proportion 0.8% 24.4% 2.49%

could restrict the surgeon’s hand dexterity. This is evident
fromour empirical results,where the fraction of unsafe forces
with SHER are similar (for user 1) or even larger (for user
2 and user 3) than the ones with freehand, and the total
procedure durations are longer with SHER than those with
freehand for all users, as shown in Table 2. These results are
consistent with our previous study [25]. These phenomena
could potentially weaken the advantage of robotic assistance
in retinal surgery and lower the enthusiasm to robotic tech-
nology for users who possess unique ability and skills to
maintain steady motions with their hands (e.g, user 3).

However, the addition of our proposed AIRS system
could remedy the limitation of the existing robotic assistant
by capturing the user’s operation and eliminate potentially
imminent extreme scleral forces before they occur. As shown
in Table 2, the maximum forces and the unsafe force propor-
tion with AIRS decrease sharply compared to the ones with
robot and are comparable (for user 3) or less than (for user
1 and user 2) the value with freehand. These results demon-
strate that AIRS could enhance safety of manipulation using
robotic assistance.

We chose the LSTMmodel as the predictor inAIRSwhich
obtained 89% prediction successful rate. Although the pre-
dictor has 11% failure rate to capture the unsafe scleral force
in advance, whichmight lead AIRS to omit a small portion of
unsafe cases, AIRS significantly enhances the existing SHER
by keeping keep scleral force in a safe range as shown in
Table 2. Currently, only the manipulation data from a SHER
familiar engineer are used to train the network, which may
lead to improper output for a surgeon’s operation. There-
fore, a remaining limitation is that our system requires larger
datasets from multiple users including surgeons and further
the development of the learning models in order to provide
trustworthy confidence intervals during inference. This will
be the focus of future work.

Conclusion

We implemented AIRS by developing a force sensing tool
to collect scleral forces and the insertion depth, used along
with robot kinematics as inputs to an RNN network to learn
a model of user behavior and predict the imminent scleral
force unsafe mode, which are then used by an admittance
control method to enable the robot to take action to prevent
the sclera injury. The feasibility of AIRS is evaluated with
multiple users in a vessel following task. The results show
that AIRS could potentially provide safe manipulation that
can improve the outcome of the retinal microsurgery. The
presented method could also be applied in other types of
microsurgery.

This work was only considered sclera forces. Future work
will incorporate the predicted insertion depth together with
the predicted scleral force to implement multiple variable
admittance controls, to enable more versatile modeling of
potential tissue damage. It is also critical to involve a larger
set of users and different surgical tasks. Our force sensing
tool can also measure the force at the tool tip, which will also
be incorporated into the network training in future work to
provide more information for robot control. Finally, while in
this initial study we applied a linear non-smooth admittance
control in AIRS as the first step to evaluate the system feasi-
bility, nonlinear admittance control method will be explored
in the future to achieve smooth robot motion.
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