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Abstract
Purpose: Minimally invasive beating-heart surgery is currently performed using endoscopes and without navigation. Regis-
tration of intraoperative ultrasound to a preoperative cardiac CT scan is a valuable step toward image-guided navigation.
Methods: The registration was achieved by first extracting a representative point set from each ultrasound image in the
sequence using a deformable registration. A template shape representing the cardiac chambers was deformed through a
hierarchy of affine transformations to match each ultrasound image using a generalized expectation maximization algorithm.
These extracted point sets were matched to the CT by exhaustively searching over a large number of precomputed slices of
3D geometry. The result is a similarity transformation mapping the intraoperative ultrasound to preoperative CT.
Results: Complete data sets were acquired for four patients. Transesophageal echocardiography ultrasound sequences were
deformably registered to a model of oriented points with a mean error of 2.3 mm. Ultrasound and CT scans were registered
to a mean of 3 mm, which is comparable to the error of 2.8 mm expected by merging ultrasound registration with uncertainty
of cardiac CT.
Conclusion: The proposed algorithm registered 3D CT with dynamic 2D intraoperative imaging. The algorithm aligned the
images in both space and time, needing neither dynamic CT imaging nor intraoperative electrocardiograms. The accuracy
was sufficient for navigation in thoracoscopically guided beating-heart surgery.

Keywords Cardiac surgery · Surgical navigation · Image registration · Transesophageal echocardiography · Cardiac CT

Introduction

Minimally invasive beating-heart surgery, such as ablation
for persistent atrial fibrillation (AF) [1], is a technically
challenging procedure that is currently performed without
computer navigation. Hybrid treatment of surgical AF abla-
tion has been shown to be effective and durable [2]. The
procedure is performed by thoracoscopic access from the
right chest wall, so the surgeon has no direct vision when
accessing the left atrium.Anopportunity for navigation arises
because of the extensive medical imaging involved: A preop-
erative cardiac computed tomography (CT) scan is routine,
as are the intraoperative use of transesophageal echocardiog-
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raphy (TEE) and fluoroscopy. The purpose of this work is to
register two of these common data sources—TEE and CT—
in support of beating-heart navigation. The complexity of
the surgical procedure and examples of routinely available
images are illustrated in Fig. 1.

We propose a method to register 2D TEE to 3D CT.Much
existing work has relied on dynamic CT [3–5] that used
electrocardiography (ECG) data captured with the TEE to
temporally align the two image sources. Desires to reduce
radiation exposure prompted interest in methods using static
CT images. Li et al. [6] proposed synthetic dynamic CT,
which fused a static CT with a preoperative dynamic 3D
TEE, to construct a temporally varying CT model; this pro-
duced synthetic images with registration results of similar
quality to those using dynamic CT, but required both pre-
operative and intraoperative 3D TEE. Other methods using
static CT typically have relied on CT gating and then used
ECGdata collected simultaneouslywith TEE to achieve tem-
poral alignment [7,8].

Instead, our approach relied on only two data sources: a
single static CT and a 2D TEE sequence. A 3D mesh model
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Fig. 1 Surgical approach and
routinely available image data. a
Drawing of a thoracoscopic
approach via three incisions in
the right chest wall. b Image
from a thoracoscope during
beating-heart surgery, showing
the ablation catheters and
minimal visible landmarks. c
TEE ultrasound image, acquired
intraoperatively. d Surface
models of the four cardiac
chambers

(a) (b)

(c) (d)

of the four cardiac chambers was derived by segmenting the
CT scan. The chamber walls were manually delineated in a
single image from the TEE sequence. Given these inputs, our
algorithm computed a similarity transformation that mapped
the 2D ultrasound image space to 3D CT space. This prob-
lem represents a 2D/3D slice-to-volume registration with an
added complication due to the dynamic nature of the 2D
imaging. It is worth noting that our reliance on segmenta-
tions of the preoperative image means that other modalities,
such as magnetic resonance imaging, could be used in place
of CT, as long as they can be segmented with sufficient accu-
racy.

Our algorithm first extracted a point set that represented
the visible cardiac chambers in each image of the TEE
sequence by deforming a template to model variations from
image to image. Using this deformed template, an ultrasound
image was registered to CT space by solving a set of rigid
2D/2D registration problems. This registration was done by
precomputing, from the 3D chamber models, a large number
of 2D slices along different axes and positions. The optimal
transformation from ultrasound to CT space was found by
an exhaustive search that registered each ultrasound image
to each precomputed 2D slice.

Methods in the literature for segmenting or registering
heart chambers in echocardiographic images include meth-
ods based on level sets, statistical shape or appearance
models, machine learning, optical flow, and nonrigid reg-
istration [9]. Our ultrasound data sets had properties that
limited the applicability of existing methods. Not all cardiac
chambers were visible in all images of a sequence, and some
chamberswere only partly visible. TheTEEultrasoundviews
differed significantly between patients, making it difficult
to generalize the appearance of the images across patients.
Also, because we were working with data sets from only a
few patients, we could not rely on statistical methods that
required large amounts of training data.

We used a template-based nonrigid registration technique
that was initialized for a single image. The template was a
deformable model that consisted of a set of oriented points,
with each point labeled as coming from a particular cardiac
chamber. The template could be deformed by a hierarchy of
affine transformations to capture the motion of the beating
heart: There was a transformation for the overall template,
written as A, followed by one independent affine transfor-
mation for each cardiac chamber, written as C1 . . .C4. The
hierarchy of transformations is illustrated in Fig. 2. Registra-
tion through this hierarchical transformation was formulated
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Fig. 2 A hierarchy of deformable models. The transformation A cap-
tures global deformation; A is applied to partitioned transformations
C1 . . .C4 that each model one cardiac chamber

with a hybrid mixture model similar to that used in other
recent work on oriented point registration [10,11], though
these works were limited to rigid/similarity transformations.
We optimized the transformation parameters using a novel
generalized expectation maximization (GEM) algorithm that
imposed temporal coherence on the extracted point sets by
regularizing the transformations between adjacent images in
the sequence.

These extracted ultrasound point sets were then exhaus-
tively registered to a set of precomputed slices of the
preoperative CT-derived geometry via a variant of the itera-
tive closest point (ICP) [12] algorithm operating in 2D. This
approach is in some sense a hybrid method, combining a
discrete search over the space of planes with a continuous
in-plane registration to obtain the complete 3D similarity
transform mapping ultrasound to CT.

Discrete methods of slice-to-volume 2D/3D registration
are enticing as they tend to be less prone to local minima
than continuous alternatives [13]. Typically, discrete meth-
ods are formulated as labeling problems on Markov random
fields (MRF). For nonrigid registration, the typical approach
is for the nodes of the MRF to represent control points of
a grid which are labeled by discrete parameters encoding
local details of the transformation [14–17]. These methods
interpret the deformed grid to infer a rigid transformation
and a 2D in-plane deformation field. Discrete methods for
linear transformations (such as rigid, similarity, and affine
transformations) are less easily encoded this way, because
all transformation parameters are inherently global. To solve
this problem, Zikic et al. [18] proposed an approximation to
the linear transform registration energy consisting entirely of
second-order terms on a fully connected graph with one node
per transformation parameter; however, their framework was
intended for monodimensional registration, or 2D/3D regis-

trationwith projective images, such as fluoroscopy. Porchetto
et al. [19] subsequently proposed a framework for rigid slice-
to-volume registrationusing a similarMRFencoding. In spite
of their promising results, none of the above-described slice-
to-volume registrationmethods also account for the temporal
alignment that we consider in the present work.

The primary contribution of this paper is a novel CT
to TEE registration pipeline relying on neither ECG for
temporal registration nor on ECG-gated dynamic CT. To
achieve this, we present a novel GEM algorithm for nonrigid
registration of ultrasound image sequences, and a simple dis-
cretized approach to dynamic slice-to-volume registration.
We present the results of our registration on data sets from
four patients who underwent minimally invasive epicardial
ablation.

Methods

This study was conducted in accordance with the princi-
ples outlined in the Declaration of Helsinki. With institu-
tional review board (IRB) approval for retrospective image
analysis, preoperative CT images and intraoperative TEE
sequences were acquired from four patients.

The CT images were acquired, during breath-hold, using
electrocardiography (ECG) gating at approximately 75%
of the RR cycle with an Aquilion ONE 320-slice scan-
ner (Canon Medical Systems, Tustin, CA, USA). The TEE
ultrasound images were acquired using a Vivid 9 scanner
(GE Healthcare, Milwaukee, WI, USA). The CT images in
DICOM format were imported into Slicer open-source soft-
ware; segmented; and the resulting surfaces were exported
as STL meshes. These meshes, and the TEE images in AVI
format, were imported into MATLAB (MathWorks, Natick,
MA, USA) and processed using custom software.

An overview of our entire registration pipeline is shown in
Fig. 3. Each preoperative CT scan was manually segmented
and used to generate a large number of precomputed slices of
3D geometry. We then extracted point sets from a sequence
of ultrasound images representing the visible parts of the
endocardium in each chamber across the cardiac cycle. We
exhaustively registered the ultrasound point sets to the pre-
computed slices of the CT to find the globally best matching
ultrasound–CT slice pair, ultimately retrieving a similarity
transform mapping from ultrasound to CT coordinates.

3D CT preprocessing

The four cardiac chambers were manually segmented from
the preoperative CT scan, which produced a mesh model
of each chamber. The 2D/3D registration found the optimal
feasible scan plane S that was in the CT coordinate frame. To
find such feasible scan planes, an initial estimate of a scan
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Fig. 3 Our registration pipeline
consisted of processing the
preoperative CT images to
precompute a large number of
slices of 3D geometry. We then
extracted the motion from an
ultrasound sequence and
registered the resulting
ultrasound frames to the
preoperative CT space. In an
actual clinical workflow,
processes inside the dotted box
would occur preoperatively,
while all other processes would
occur during perioperative
setup. Note trapezoidal
processes require manual input

plane was computed. Feasible scan planes were found by
varying the plane’s parameters from the initial feasible plane.

The mesh points of the cardiac chambers were assembled
into a single 3×NC matrix.An initial feasible planewas com-
puted from principal components analysis of this matrix. The
pose of each other feasible plane S was calculated by vary-
ing along the normal direction of the initial feasible plane
in 2 mm increments and by varying the initial normal direc-
tion in 1◦ increments. This produced a set of NP feasible
ultrasound planes. We used NP = 30 × 30 × 30 = 27,000
feasible planes in this study.

For subsequent registration, each feasible plane S was
intersected with each 3D surface model of each of the four
cardiac chambers. The precomputation produced a data set
that contained, for each slice S:

– {x Si }—a set of points obtained by intersecting each plane
S with the four chamber meshes

– RCT
S —a rigid transformation from the local coordinates

of slice S to the 3D CT space

Ultrasound processing by template deformation

We formulated the ultrasound processing problem as an
application-specific nonrigid registration between sets of ori-
ented points. For each t of NE TEE ultrasound images, we
extracted a point set {xti }Nt

i=1 using an edge detector. The ori-
entation x̂i of each extracted point xi was computed as the
normalized image gradient at that point, giving a set of ori-
ented points Xt = {(xi , x̂i )t } for each ultrasound image t .

We used a deformable template shape to represent the
chambers visible in the ultrasound image. The template shape
consisted of oriented point set Y = {(y j , ŷ j )}Mj=1 whereM is
the total number of points in the model. The points {y j }were
initialized by manually placing a set of points delineating
each chamber on the first ultrasound image in the sequence.
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Fig. 4 Manually placed points
that delineated the visible
chamber walls were used to
initialize the deformable model.
In the second example, the right
atrium was not fully imaged, so
K = 3

The orientation ŷ j at each y j was automatically computed
as an outward facing normal vector. Letting K be the num-
ber of visible chambers, a label map �US : {1, 2, . . . , M} →
{1, 2, . . . , K } mapped the index j of an oriented point to a
chamber index �US( j). An example of two manually instan-
tiated models is shown in Fig. 4.

Due to the nature of ultrasound imaging, the point sets
extracted by edge detection are noisy. To prevent overfitting,
and improve robustness, we opted to use a model of defor-
mation that limited the total degrees of freedom, while still
providing a reasonably high degree of deformability. In par-
ticular, to capture the beating-heart rhythm in the ultrasound
image sequence, we used hierarchical affine transformations
of the deformable template shape.Aglobal affine transforma-
tion A modeled the overall movement of the heart and there
were separate affine transformations {Ck} for the oriented
points in each cardiac chamber, so the total transformation
G = C1 ◦ · · · ◦ CK ◦ A partitioned the oriented points into
K sets. Each affine transformation T was represented as
T = (BT , dT ), where BT is a 2 × 2 matrix and dT is a
translation vector.

The transformation G, applied to an oriented point, had
the effect G(y j ) on position and G�ŷ j on the normal ŷ j . The
transformed deformable template model was thus G(Y ) =
{(G(y j ),G�ŷ j )}. The task was, for each ultrasound image t ,
to compute the transformationG that best aligned themodel’s
oriented point set G(Y ) to the target’s oriented point set Xt .

Formulating the registration The registration framework
was based on mixture models and the expectation maxi-
mization (EM) algorithm [20], which is common in point
set registration [21]. As is done in an expectation conditional
maximization (ECM) algorithm [22], our M-step separately
optimized the transformation parameters and the other statis-
tical parameters.However, tomake the transformation update
tractable, we only required that the algorithm be aGEMalgo-
rithm [20].

We chose the mixture components to take the form of a
product of a Gaussian distribution a von Mises distribution.
Let X = {(xi , x̂i )}Ni=1 be the N oriented points from the

current ultrasound image, N (·|μ, σ 2) represent a normal
distribution centered at μ with isotropic variance σ 2, and
f (·|ν, κ) represent a vonMises distribution with mean ν and
concentration parameter κ . An oriented point (x, x̂) had the
distribution

p(x, x̂ |G, κ, σ 2)

= ω

2π A
+ 1 − ω

M

M∑

j=1

N (q|G(p j ), σ
2) f (x̂ |G�ŷ j , κ)

(1)

where A is the area of a region containing all the points in the
target set and I0 is the zeroth-order modified Bessel function
of the first kind. The first term of Eq. (1) is a uniform distribu-
tion over the registration domain to capture outliers in the tar-
get point set, and the terms of the sum correspond to the mix-
ture model. The hyper-parameter ω represents the expected
proportion of points in the target point set that are outliers.

To avoid excessive deformations of the shape model
between successive ultrasound images, a regularization
function was incorporated by adding the prior P(G) ∝
exp(−Φ(G)). The regularization function affected only the
chamber transformations and took the form

Φ(G) = λ

K∑

k=1

||BCk − Bk0||2F

where BCk is the 2 × 2 transformation matrix from affine
transform Ck and Bk0 is the initial value of BCk at the
beginning of the registration. Registration of the deformable
template to the target oriented point set X could then be
achieved by maximizing the posterior

p(G|X , σ 2, κ) = P(G)

N∏

i=1

p(xi , x̂i |G, σ 2, κ) (2)

with respect to the transformation G and parameters σ 2

and κ .

123



960 International Journal of Computer Assisted Radiology and Surgery (2019) 14:955–966

We used an EM approach to optimize Eq. (2) by intro-
ducing a “hidden” variable Z = {zi }Ni=1, representing from
whichmixture component each oriented point in the target set
was sampled. For each i , zi = j meant the i th data point was
sampled from the j th cluster (or the outlier term if zi = 0).
The expected complete-data negative log-likelihood was

Q(G, σ 2, κ) =
N ,M∑

i, j=1

α j i

( ||xi − G(y j )||2
2σ 2 − κ x̂ Ti (G�ŷ j )

)

+ Nα log(σ
2) + Nα log(I0(κ)) + Φ(G)

(3)

where Nα = ∑
i, j α j i and constant terms have been

removed. The M × N matrix of coefficients α j i were poste-
riors, computed during the E-step as

α j i = p(zi = j |xi ,G, σ 2, κ)

= N (xi |G(y j ), σ 2) f (x̂i |G�ŷ j , κ)

2Mπ I0(κ)σ 2ω
A(1−ω)

+ ∑M
j=1 N (xi |G(y j ), σ 2) f (x̂i |G�ŷ j , κ)

Wedivided theM-step into two separate conditionalM-steps.
The first optimized the distribution parameters σ 2 and κ; the
second optimized the transformation G.

The distribution M-step Equation (3) could be optimized
independently with respect to σ 2 and κ . The variance σ 2

was optimized analytically giving update

σ 2 =
∑

i, j α j i ||xi − G(y j )||2
Nα

We adapted the truncated Newton approximation maximum
likelihood estimation for κ from hypersphere clustering
methods [23], giving the iterative solution

R̄ =
∑

i, j α j i x̂ Ti (G�ŷ j )

Nα

, A(κ) = I1(κ)/I0(κ),

κ ′ = κ − A(κ) − R̄

1 − A(κ)2 − A(κ)/κ

The transformation M-step To simplify the mathematical
expressions, the concept of virtual observations can be used
to derive an equivalent paired-point expression that can be
optimized in place of Eq. (3) when updating the transforma-
tion [24]. We extended the concept to the case of oriented
points, defining virtual weightsW = {(w j , ŵ j )}, and virtual
oriented points V = {(v j , v̂ j )} as

w j = 1

2σ 2

∑

i

α j i ; ŵ j = κ
∑

i

α j i ; v j =
∑

i α j i xi
Nα

;

v̂ j =
∑

i α j i x̂i
Nα

With these definitions, optimizing Eq. (3) with respect to G
is equivalent to optimizing

Q′(G) =
∑

j

[w j ||v j − G(y j ))||2 − ŵ j v̂
T
j (G�ŷ j )] + Φ(G)

(4)

Notice that this is effectively a weighted, regularized, paired-
point registration between the model point set Y and target
virtual point set V through transformation G.

We further decomposed the transformation M-step into
two conditional M-steps: The first updated only the global
affine transformation A, holding the others constant, and the
second independently updated each chamber transformation
Ck .

We did this decomposition in such a way that each
step was a solution to a weighted, regularized, paired-point
registration between oriented point sets through a single
affine transformation. Symbolically, let P = {(p j , p̂ j )} and
Q = {(q j , q̂ j )} be corresponding oriented point sets; let
U = {(u j , û j )} be a set of weights; let β be a regularization
weight; and let B0 be an initial matrix. Define an algorithm
to do a regularized paired-point affine registration between
these point sets as

A (P, Q,U , β, B0) = argmin
T

∑

j

[u j ||p j − T (q j ))||2

− û j p̂
T
j (T �q̂ j )] + β||BT − B0||2F .

(5)

Assuming a smooth underlying shape from which the ori-
ented points are sampled, an affine transformation T will act
on a normal q̂ as

T � p̂ = B−T
T q̂

||B−T
T q̂||

Equation (5) can be solved for the optimal transformation
matrix BT using a quasi-Newton solver directly on thematrix
components, with an analytically computed gradient. Given
the optimal matrix BT , the optimal translation can be com-
puted as

dT =
∑

j u j p j∑
j u j

− BT

∑
j u j q j∑
j u j

We will now describe our decomposed transformation
M-step in terms of applications of this algorithm A . First,
consider the update of the chamber transformations. Sup-
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posing the global transformation has already been updated
to some A′, Q′(C1 ◦ · · · ◦CK ◦ A′) can be decomposed into
separate terms for each chamber transformation

Q′
k(Ck) =

∑

j∈�−1
US(k)

[w j ||v j − Ck ◦ A′(y j )||2

− ŵ j v̂
T
j ((Ck ◦ A′)�ŷ j )] + λ||BCk − B0k ||2F

Q′(C1 ◦ · · · ◦ CK ◦ A′) =
∑

k

Q′
k(Ck)

With this decomposition, the optimal update for each cham-
ber transformation would be

C ′
k = argmin

Ck

Q′
k(Ck) = A (Vk, A

′(Yk),Wk, λ, Bk0)

where Vk , Yk , and Wk are, respectively, the set of virtual
points, model points, and virtual weights belonging to the
kth chamber.

In an ECM formulation, we would need to update the
global transformation by optimizing Eq. (4) with respect
to A, holding {Ck} fixed. However, the composition of the
chamber transformations with Amakes such an optimization
challenging. We instead only required our algorithm to be a
GEM algorithm. In the present context, this only required an
update from G to G ′ guaranteeing Q′(G ′) < Q′(G).

This guaranteewas achieved through a simple strategy.We
updated the global transformation, completely ignoring {Ck}
via A′ = A (V ,Y ,W , 0, 0). We then updated the chamber
transformations as described above. If this strategy failed to
improve Q′, we simply reverted the global transformation to
its initial value A and recomputed the chamber transforma-
tions. This was guaranteed to improve Q′, since the updates
toCk optimize Q′

k(Ck). The complete transformationM-step
is given in pseudocode in Algorithm 1.

Algorithm 1 An algorithm to update G, wherein the loop is
guaranteed to run at most twice
Input: data oriented points X , model oriented points Y , current trans-
form G = C1 ◦ C2 ◦ · · · ◦ CK ◦ A

Output: New transformation G ′
Compute virtual transformations V
E ← Q′(T )

E ′ ← E
A′ ← A (V , Y ,W , 0, 0)
while E ′ ≥ E do

for all Ck do
C ′
k ← A (Vk , A′(Yk),Wk , λ, Bk0)

end for
G ′ ← C ′

1 ◦ C ′
2 ◦ . . .C ′

K ◦ A′
Q′ ← Q′(T ′)
if E ′ ≥ E then

A′ ← A
end if

end while

Cardiac deformation over time After initializing the model
by manually placing points on the first ultrasound image,
for each image in the sequence we registered the model
using our described GEM algorithm, initializing the global
transformation G with the transformation that had been cal-
culated from the preceding image. For the first image, the
regularization matrices {Bk0} were set to the identity matrix.
Subsequently, for eachTEEultrasound image, the regulariza-
tion matrices were initialized to the transformation matrices
BCk from the converged computations of the previous image.
This initialization produced a relatively stable set of local
affine transformations Ck , which acted primarily as small
corrections to the global affine transformation A. The result
of this process was a set of NE transformations {Gt } and
deformed point sets {Ut = Gt (Y )} that represented each
TEE ultrasound image.

Managing poorly registered images Some TEE ultrasound
images were not well registered by our automated algorithm.
To detect these poorly registered images, we computed the
root mean square error between the ultrasound virtual points
and model points as

RMSEt =
√∑

j ||v j − Gt (y j )||2
M

.

Given this sequence, we used a peak detection algorithm
to compute the local maxima in RMSE. We found all out-
lier peaks, determined as peaks lying more than three scaled
median absolute deviations from the median peak, and used
them to compute a threshold RMSE as

RMSEthresh = min
t an outlier

RMSEt .

At the end of this ultrasound image registration process,
we had a set of N ′

E < NE ultrasound images that were reg-
istered with RMSE below the threshold. We kept only the
positional data from the registered images, which produced
a data set of N ′

E point sets Ut = {utj }Mj=1 representing the
ultrasound sequence.

Matching 3D slices to ultrasound images

We performed an exhaustive search that matched the NP

precomputed slices from the CT model with the N ′
E TEE

ultrasound point sets, finding the pair producing the globally
minimal RMSE. The match was computed by registering the
ultrasound point set {utj } to theCT slice {x Si }with a similarity
transformation.

The registration was initialized by creating a correspon-
dence between the center of each cardiac chamber in the
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feasible CT slice and the deformed ultrasound model. This
provided an approximate translation, orientation, and uni-
form scale factor between the point sets. Using this initial
estimate, the similarity transform was optimized using a
modified ICP algorithm [12], in which the nearest-neighbor
search was limited to points from the same cardiac cham-
ber. The registration was scored by the RMSE between the
registered ultrasound point set and the converged nearest
neighbors from the CT slice.

The exhaustive search resulted in a slice Ŝ and ultra-
sound image Û representing the optimal match, as defined
by least RMSE. The registration between this optimal ultra-

sound image and slice pair gave a similarity transform T Ŝ
US

mapping the ultrasound to the coordinates of slice Ŝ. Com-
bining this similarity transformation with the rigid transform

RŜ , we were able to compute the total transformation from
ultrasound to CT space

TCT
US = RCT

Ŝ
◦ T Ŝ

US

Data analysis

The RMS error of the deformed cardiac model to the edge-
detected points in the ultrasound image was tabulated for
each patient’s TEE sequence. The RMS error of the trans-
formed deformed model to the CT segmentation was also
tabulated. This transformation encoded scale factors for the
size of pixels in the ultrasound image, which could be used
to express the ultrasound RMS errors in millimeters.

The expected error was computed from the ultrasound
RMSEandavalue from the literature. InCTcoronary angiog-
raphy with ECG gating, blood vessels of a diameter less than
1.5 mm are routinely excluded [25]. The ultrasound RMS
error was the square root of a variance, as was the mini-
mum blood vessel diameter, so we computed the expected

error by adding the values in quadrature
√
RMSE2

t + 1.52.
We pooled two RMS errors for all patients: the over-
all RMS error of 2D/3D registration and the computed
expected error. The pools were compared with a two-sided
t-test.

Results

We processed a total of four data sets, manually segmenting
each patient’s preoperative CT scan and using it to gener-
ate a total of 27,000 slices. Of these slices, those which
did not contain a cross section from all four chambers were
discarded. For each patient, we sought to deform our manu-
ally initialized 2D model to each ultrasound image. The free
parameters of the registration, namely outlier weight ω and
registration weight λ, were tuned for each patient, but all
varied within a similar range. The initial values for σ 2 and
κ were consistently set to 250 and 1.5, respectively. After
deforming themodel to each ultrasound image in a sequence,
and automatically detecting and removing individual poorly
registered frames, we computed the RMS error between the
deformed model in each image and the points extracted from
the image. Table 1 summarizes these results for each patient
and documents the various settings used.

The exhaustive search produced a registration of the TEE
ultrasound sequence to the CT scan by seeking an optimally
matched 3D slice and ultrasound point set. The total number
of slices and images compared, along with the RMS error
between the best matching 3D slice and ultrasound image,
is reported in Table 2. The registration results are illustrated
for each patient in Fig. 5, which show the 2D slices and 3D
models plotted in ultrasound space.

From a t-test of the pooled RMS values in Table 2, there
wasno statistically significant difference (p ≈ 0.58) between
the overall registration error and the error expected from the
combination of the ultrasound model deformation error and
the uncertainty in the cardiac CT scan. A paired t-test also
showed no statistically significant difference (p ≈ 0.60).

Discussion

Minimally invasive arrhythmia surgery has gained popularity
over the past decade, especially in the most complex subset
of patients, such as those with persistent atrial fibrillation [1].
In particular, an epicardial approach has provided high rates
of success even when compared to a transcatheter one in per-
sistent atrial fibrillation [26] but with an increased incidence

Table 1 Model deformation settings and results for each of the four patients are shown

Patient index Total images NE ω λ Kept images N ′
E RMSE (mm) RMSE (pixels) All images RMSE (pixels)

1 104 0.7 2 88 2.1 ± 0.5 7.8 ± 1.7 8.3 ± 2.1

2 61 0.85 3 45 2.6 ± 0.8 6.7 ± 2.0 9.5 ± 5.6

3 111 0.9 2 110 2.7 ± 0.3 5.7 ± 0.6 5.7 ± 0.6

4 105 0.9 3 104 1.8 ± 0.3 6.1 ± 1.1 6.1 ± 1.1

RMSE values are reported in pixels and millimeters as the mean, plus or minus standard deviation, across all well-registered images in the sequence.
Millimeter values were estimated using the scale factors computed when transforming ultrasound to CT space. The final column reports the RMSE
when automatically rejected images are kept
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Table 2 The total number of
searched slices and images are
reported

Patient index No. slices NP No. of images N ′
E RMS (mm) Expected (mm)

1 21,972 104 2.5 2.6

2 24,215 61 2.3 3.0

3 24,235 111 4.2 3.1

4 22,515 105 3.0 2.3

The RMS error was for the best match. The expected error was calculated from the ultrasound RMS error and
the lower limit of 1.5 mm for vessels in CT coronary angiography, which represented the uncertainty in CT
cardiac imaging

Fig. 5 The best matching slices
and ultrasound images allowed
us to generate a transform for
each 3D model from CT space to
ultrasound space. The left-hand
side shows the best matching 3D
cross sections (circular
markers), with the ultrasound
image and model (plus
markers). On the right-hand side
are the same matches, with the
3D chamber models shown in
translucent 3D. Each row
corresponds to one patient
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of perioperative complications. In particular, the occurrence
of intraoperative bleeding complications has been reported in
a range from 0 to 10% across several reports [27]: Hence, the
possibility to identify strategies to improve surgical naviga-
tion andminimize damages to the heart or the nearby vascular
structures appears to be critical for a safer application of such
less invasive techniques.

Our ultrasound processing used a novel hierarchical affine
registration algorithm with oriented points, which provided
advantages for our data sets compared tomany existingmeth-
ods for segmentation or registration of TEE ultrasound image
sequences. The method made no assumptions about the TEE
viewing angles, or about the number of visible cardiac cham-
bers. Level set methods may be less well suited to partial
views because they are constrained to producing closed con-
tours. Meanwhile, methods based on statistical shape models
are typically constrained to a single view or topological con-
figuration as represented in the training data, or else require a
large amount of user interaction to construct a patient specific
model [28]. Unlike a statistical or machine learning method,
our method also did not require large amounts of training
data.

Our ultrasound registration made use of oriented points.
The addition of orientation information to point set regis-
tration has been found to benefit accuracy in both ICP-like
methods [29,30] and probabilistic methods [10,11,31]. In
our case, the primary benefit of orientations came from an
enhanced ability to distinguish between spatially close but
oppositely oriented points. For example, nearby points such
as those on either side of either septum were easily distin-
guished when using orientation information.

We registered the deformable model to each image using
a mixture model formulation. Although ICP-like formula-
tions may be more efficient—and can use probabilistic noise
models with oriented points [29]—our optimization step for
the transformation fundamentally relied on the formulation
as a GEM algorithm. It is possible that a sparse or incre-
mental approach to EM [32], or a threshold on the matching
likelihood [33], could be used to improve computational effi-
ciency. Such optimizations could be realized using a PD-tree
lookup for oriented points [29]. Furthermore, although GEM
algorithms offer weaker theoretical guarantees than the ECM
algorithms typically used for registration, in all our experi-
ments the algorithm converged in fewer than 70 iterations.
This experience is in linewith recentwork on statistical shape
model registration using a GEM algorithm [34].

To facilitate our oriented point-based registration, we
relied on a simple edge detector to extract features from each
ultrasound image in a sequence. In a noisy modality such
as ultrasound, this approach inevitably produces noisy data
and spurious features. We addressed this by using a proba-
bilistic registration method that is intended to be robust to
outliers, along with a transformation model that is inherently

limited in its total degrees of freedom to prevent overfitting.
Our mixture model might become more robust to outliers
by using a Student’s t distribution for the positional data,
rather than aGaussian [10,35,36]. Alternatively, an improved
feature detection method may reduce outliers and improve
robustness. Scale-invariant features, such as SIFT [37] or
SURF [38] features or their 3D variants [39], have been
shown to provide high-quality correspondences for ultra-
sound images [40,41] and have been successfully applied
in the domain of cardiac imaging [42].

Themain computational bottleneck in our methodwas the
exhaustive search for the 2D/3D match which, in our unop-
timized MATLAB implementation on an older PC, took a
few hours to run for each trial. This process is, however,
amenable to a number of possible optimizations to be con-
sidered in future work. The nature of this search makes it
very simple to be processed in parallel to whatever extent
the available hardware allows. The regular structure of our
generated slices, essentially forming a 3D grid along axis
height and two angle dimensions, leaves the approach open
to a coarse-to-fine search to reduce the number of required
2D registrations. Alternatively, it may be possible to adopt
more efficient discrete optimization methods by formulat-
ing our planar search in an MRF framework using a similar
approach to that of Porchetto et al. [19] adapted to feature-
based matching criteria. Restrictions on the TEE view could
also be used to reduce the degrees of freedom of possible
transformations [8], thereby reducing the dimensionality of
the search space. Finally, integration with ECGmight reduce
the number of ultrasound frames needing to be considered
by allowing us to select ultrasound images near the phase of
the cardiac cycle at which the preoperative CT was gated [8].
In fact, because the search time is proportional to the num-
ber of ultrasound images in the sequence—which in our data
sets was between 45 and 110 (see Table 1)—ECG integration
alone could speed the search by between one and two orders
ofmagnitude, whichmay be fast enough for execution during
perioperative setup.

For a deformable organ such as the heart, the restriction of
our method to the computation of a similarity transform may
seem limiting; however, allowing in-plane deformation of
the slice would make it difficult to differentiate frames of the
TEE sequence. Rigid slice-to-volume registration appears to
perform aswell as nonrigidmethodswhen the deformation of
the anatomy is low between the two image acquisitions and
less so otherwise [19]. Our algorithm relies on this disparity
to be able to compute both the temporal and spatial regis-
tration simultaneously; it assumes that temporally aligned
images should result in lower spatial registration error than
those that are temporally misaligned. However, additional
deformations may be present even in temporally well-
registered images due to factors such as irregular heart beats,
respiration, and positional differences. Though nonrigid reg-
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istration may help accommodate these differences, nonrigid
slice-to-volume registrations can also produce results which
are anatomically unsound, despite having low geometric
error [13]. Instead, remaining deformations alongwith uncer-
tainty in the computed transformation may be partially
ameliorated by adaptive visualization techniques [43].

After computing a similarity transform mapping ultra-
sound to CT coordinates perioperatively, it could be nec-
essary to refine the transform intraoperatively to account for
small changes in the relative placement of the probe. The
use of a tracked ultrasound probe would enable us to auto-
matically account for these movements without requiring
further registration computations. In this case, our perioper-
ative registration would serve to compute the mapping from
intraoperative world coordinates to preoperative CT coordi-
nates. Alternatively, the perioperative registration could be
used as an initialization for a more efficient intraoperative
registration to be executed online. The static nature of our
preoperative CT limits the opportunity for dynamic image
fusion beyond a simple similarity transform because we lack
a model of the 3D heart motion; however, in AF patients,
motion captured by preoperative dynamic CT may not be
representative of the motion observed intraoperatively due
to the irregular heart beats characterizing the condition.

It is important to note that the registration errors reported
in this study are based on the nearest neighbor between the
model and target point sets, as opposed to being based on spe-
cific anatomical landmarks. It is therefore possible to have
cases of poor registration with very low error values, espe-
cially when dealing with nonrigid transformations. Our goal
in this work was to demonstrate the overall feasibility of our
approach; in future work, it will be important to validate our
method with objective, landmark-based error metrics, pos-
sibly via synthetic data and/or a phantom study. In such a
study, we could better analyze which sources of error in our
pipeline, if any, need to be improved to reach clinical appli-
cability, and verify the strength and correctness of the global
minimum in our search.

Though most of our process is automated, we do rely
on human input for segmentation purposes both preopera-
tively andduringperioperative setup. In particular,we require
manual segmentation of the four cardiac chambers from the
preoperative CT, as well as perioperative manual delineation
of points outlining the chambers in the intraoperative ultra-
sound. It may be possible to automate some or all of this
work using modern automatic segmentation methods, such
as those based on deep learning.

Conclusion

We presented a way to register a preoperative 3D cardiac
CT scan to intraoperative 2D TEE ultrasound images. This

was done by first optimizing a hierarchy of affine transfor-
mations using a novel generalized expectation maximization
formulation and then solving a discretized slice-to-volume
registration. Our approach computed the registration in both
time and space, not relying onECGgating for temporal align-
ment. Results, computed from data of four surgical patients,
were quantitatively and qualitatively promising. Future work
may include ground-truth validation of our method, opti-
mization of our computations to reach sufficient speed for
clinical applications, and integration into a navigation sys-
tem for minimally invasive beating-heart cardiac surgery.
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