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Abstract
Purpose Many diagnostic or treatment planning applications critically depend on the successful localization of bony struc-
tures in CT images.Manual or semiautomatic bone segmentation is tedious, however, and often not practical in clinical routine.
In this paper, we present a reliable and fully automatic bone segmentation in whole-body CT scans of patients suffering from
multiple myeloma.
Methods We address this problem by using convolutional neural networks with an architecture inspired by the U-Net [17].
In this publication, we compared three training procedures: (1) training from 2D axial slices, (2) a pseudo-3D approach
including axial, sagittal and coronal slices and (3) an approach where the network is pre-trained in an unsupervised manner.
Results We evaluated themethod on an in-house dataset of 18whole-body CT scans consisting of 6800 axial slices, achieving
a dice score of 0.95 and an intersection over union (IOU) of 0.91. Furthermore, we evaluated our method on the dataset used
by Peréz-Carrasco et al. (Comput Methods Progr Biomed 156:85–95, 2018). The data and the ground truth have been made
publicly available. The proposed method outperformed the other methods, obtaining a dice score of 0.92 and an IOU of 0.85.
Conclusion These promising results could facilitate the evaluation of bone density and the localization of focal lesions in
the future, with a potential impact on both disease staging and treatment planning.

Keywords Bone segmentation · U-Net · Deep learning · Computed tomography · Multiple myeloma

Introduction

High-quality and fast automatic bone segmentation in CT
images is important for analysis, staging and treatment plan-
ning of many diseases like multiple myeloma. The various,
irregular shapes of bones and their homogeneous internal
structure make automatic bone segmentation a significant
challenge, despite several years of research already invested
into the topic [9]. This is aggravated by the fact that CT scans
in clinical routine are often capturedwith a low radiation dose
which leads to inferior image quality.

In general, one differentiates between four categories of
bone based on its shape: long bones, short bones, flat bones
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and irregular bones [4]. Regardless of the category, various
tissue types are referred to as bone. We differentiate between
cortical (compact) bone, cancellous (trabecular, spongy)
bone and bone marrow, as shown in Fig. 1. The density of
bone tissue ismeasured inHounsfield units (HUs), which can
vary significantly between the tissue types described above.
Cortical bone is the most dense and solid part of the bone,
represented by high HU. Cancellous bone and bone marrow
are less dense, with HU being more similar to those of soft
tissue like muscle. Pathological changes in the bone, as they
occur in patients suffering frommultiplemyeloma, can influ-
ence the density and therefore the HU of bone tissue [6].

The gold standard, slice-by-slice hand contouring, is very
time-consuming, tedious and error-prone [2]. Reliable fully
automatic bone segmentation has therefore been of great
interest to research for a long time. Despite the large num-
ber of different approaches and studies regarding the topic,
bone segmentation is still considered an ongoing problem in
several aspects [9].

In some approaches, it is considered as a local prob-
lem, concentrating on specific bones or body regions. Long
bones like the femur, for example, are focused on by var-
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Fig. 1 CT scan of the femur. The cortical bone appears white and
surrounds the less dense cancellous bone and the bone marrow

ious authors, such as Krčah et al. [9] and Younes et al.
[9]. Younes et al. proposed primitive shape recognition and
statistical shape models. Pinheiro et al. took a more gen-
eral approach by not focusing on a specific bone but on a
user-defined region of interest. They apply a level-set-based
protocol [16]. In addition, there are also approaches that deal
with whole-body scans. Pérez-Carrasco et al. applied contin-
uous max-flow optimization [15] as well as histogram-based
energy minimization [14]. Further approaches are based on
region growing, intensity thresholding [2], energy minimiz-
ing spline curves, edge detection or combinations of these
algorithms. Sometimes, expensive pre- and post-processing
steps are necessary or the algorithms are dependent on a spe-
cific initialization [12].

Deep learning algorithms have become the methodol-
ogy of choice in many areas of automatic medical image
segmentation issues [10]. Yet, their performance on bone
segmentation tasks remains to be evaluated. Some initial
work can be found in the “Bone Segmenter” project byKevin
Mader.1

In this paper, we present our most recent efforts on bone
segmentation on whole-body CT images. We propose a net-
work based on the U-Net architecture by Ronneberger et al.
[17] as it has become a commonly used benchmark in medi-
cal image segmentation. We compare three different training
strategies with the goal to locate and segment cortical and
cancellous tissue as well as the bone marrow in whole-body
scans of patients with multiple myeloma, regardless of their
shape.

Materials andmethods

Data

In this paper, we rely on an in-house dataset as well as a
publicly available one. We train and evaluate our method on
both datasets independently.

In-house dataset The in-house dataset consists of 53 low-
quality low-dose whole-body CT scans that were captured

1 https://github.com/4Quant/Bone-Segmenter.

as part of a PET/CT study during standard assessment for
patients with multiple myeloma. The acquisition device was
a Biograph 128 PET/CT Scanner by Siemens. The spacing
is equal for all scans (0.98× 0.98× 4mm3). Axial slices are
512× 512 pixels, while each scan has between 380 and 450
slices. For 18 of these scans, a ground truth segmentation
was performed by a medical expert using the segmentation
plug-in of the Medical Imaging Interaction Toolkit (MITK)
[13]. The expert adapted a base segmentation created for each
scan by an intensity threshold. We perform a sixfold cross-
validation using 12 scans for training (≈4800 axial slices), 3
for validation (≈1200 axial slices) and 3 for testing (≈1200
axial slices). The unlabeled scans are used for pre-training
as described in “Training” section.

Publicly available dataset For better comparison of our
method, we trained and validated our network on 2D axial
slices from the publicly available dataset by Peréz-Carrasco
et al. [14]. The dataset is comprised of 27 CT volumes from
20 patients. It was acquired by a Helical CT by Philips Med-
ical Systems, with a slice size of 512× 512 and a spacing of
(0.78 × 0.78 × 5mm3). Fifteen CT volumes were used for
training, 3 for validation and 9 for testing.

Architecture

The convolutional neural network we use is an adapted ver-
sion of the U-Net that was initially proposed by Ronneberger
et al. [17]. The architecture follows the encoding–decoding
principle. It comprises an analysis pathway for context aggre-
gation of increasingly abstract input representations and a
synthesis pathway that combines the semantic information
from deeper layers with spatial information from shallower
layers. Our model is shown in Fig. 2. We designed the net-
work to process 2D input images of 512 × 512 pixels. Our
model uses padded convolutions with a kernel size of 3 and
input stride 2 to keep the spatial output dimensions equal
to the input. We replace the rectified linear units (ReLU)
with leaky ReLU nonlinearities [11] with a negative slope of
10−2 [8]. This selection is based on empirical experiences
and needs to be validated in the future.

Training

In this chapter, we present three different training strategies:
(1) training from 2D axial slices, (2) a pseudo-3D approach
including axial, as well as sagittal and coronal slices and (3)
an approach, where the network is pre-trained in an unsuper-
vised manner. All of them use data augmentation to prevent
our network from overfitting and to more efficiently train
given the amount of training data [17].Wemake use of± 10◦
rotations around the axial axis, as well as randomly verti-
cal mirroring and scaling from 60 to 140%. Furthermore,
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Fig. 2 The architecture is based
on the U-Net architecture as
proposed by Ronneberger et al.
[17]. It consists of an analysis
path that captures semantic
information and a symmetric
synthesis path that enables
precise localization information
[17]

we apply random elastic deformations. After consulting
a medical expert, we chose the augmentation parameters
to be as aggressive as possible [8], while still ensuring
realistic augmented medical images. All the augmentation
techniques are applied on-the-fly with our own in-house
framework which is publicly available at https://github.com/
MIC-DKFZ/batchgenerators. The network is trained with a
batch size of 8 and input patches of 512 × 512. In the field
of bone segmentation, the amount of foreground and back-
ground pixels is imbalanced.We approach this issue by using
a combination of cross-entropy and dice loss:

Ltotal = LCE + Ldice (1)

The dice loss is implemented as follows [7]:

Ldice = − 2

| K |
∑

kεK

∑
i ui,kvi,k∑

i ui,k + ∑
i vi,k

(2)

where u is the softmax output of the network and v is a one-
hot encoding of the ground truth segmentation map [7]. u
and v are the same size (i × k), with i being the number
of pixels in the training patch and kεK being the number
of classes. We use an ADAM optimizer with a learning rate
of 10−4, β1 = 0.5 and β2 = 0.999 for our training. Our
network is trained for 100 epochs.

2D training fromaxial slices Weuse axial slices of 512×512
pixels as input (see Fig. 3). The slices are extracted randomly
from whole-body CT scans.

Pseudo 3D training The standard training does not take into
account any 3D information. To achieve that, we train our
model in what we call a “pseudo-3D” way. We alternate the
input batches between batches of axial, sagittal and coro-
nal slices. This way the network learns to segment bony
structures independent of the viewing direction. This training
procedure is inspired by the work ofWasserthal et al. [18]. In
contrast to their work, our 3D datasets are not equally spaced.
We resample the input images to a 1 × 1 × 1mm3 spacing.
In dealing with whole-body scans, the datasets are usually
> 512 pixels in cranial–caudal direction. We extract input
images of 512×512 pixels from the whole sagittal and coro-
nal slices. During training, the position of the extracted patch
is chosen randomly. For testing, we use a 512 × 512 sliding
window to segment the whole image (see Fig. 4). A separate
segmentation is done for each viewing direction. The three
outputs per volume are merged using the mean to generate
the final segmentation.

Unsupervised pre-training As shown by Erhan et al., unsu-
pervised pre-training has a regularization effect and adds
robustness to deep architectures [5], thus reducing model
variance [19]. We pre-train our model as an auto-encoder
by disabling the skip connections, as they could potentially
act as shortcuts, leading to a decreased pre-training effect on
deeper levels. Furthermore, we replaced the output softmax
layerwith an output reconstruction layer that performs a 1×1
convolution. The goal of this end-to-end pre-training is for
the network to learn to reconstruct the received input image.
For the pre-training, we use a mean-squared-error loss as
proposed byWiehmann et al. [19]. We pre-train our network
for 30000 iterations.
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Fig. 3 Our pipeline: (1) Extracting batches of 512× 512 images and corresponding ground truth from 3D CT volumes. (2) Training the model. (3)
Segmentation of 512 × 512 images with the trained model. (4) Generation of 3D whole-body bone segmentation from 2D slices

Fig. 4 For the pseudo-3D
training, we extract either axial,
sagittal or coronal batches from
our whole-body CT scans.
Because the scans were
resampled to a 1 × 1 × 1mm3,
we crop patches of size
512 × 512 from the slices to fit
our network architecture

Segmentation

To test our method, we segment sequential batches extracted
froma testCT scan and concatenate them to awhole-bodyCT
bone segmentation. The result is then compared to the ground
truth. For the pseudo-3D approach, the test scans have to be
segmented three times: in axial, sagittal and coronal orienta-
tion.Doing this,we end upwith three different segmentations
for the dataset. To generate the final whole-body segmenta-
tion, we calculate the mean likelihood for each pixel from
the values of the output softmax layer.

For the comparisonof ourmethodon thepublicly available
dataset, we only trained and segmented on 2D axial slices,

as the difference between the proposed training procedures
was minimal.

Results

We compare the segmentation of our networks to the ground
truth by calculating the following metrics: dice score, IOU
(Jaccard index), sensitivity, specificity, positive predictive
value (PPV) and accuracy. Each of these metrics highlights
a different aspect of the quality of the segmentation [3].

In-house dataset For our in-house dataset, we further com-
pare the results to a naïve approach of thresholding and a
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set of morphological operations. The results of the proposed
segmentation algorithms are shown in Fig. 5. Because the in-
house dataset is rather small, we chose to calculate statistics
across all CV folds, i.e., test set predictions of each fold were
collected and fused to a final test set containing all patients.
The confidence bounds show the inter-patient standard devi-
ation. The network, trained from 2D axial slices, performed
best, achieving a dice score of 0.95± 0.01 and an intersection
over union (IOU) of 0.91 ± 0.02. Pre-training our network
with unlabeledwhole-bodyCT scans did neither improve nor
worsen the results. It can be observed, though, that the pre-
training helps the network to converge after fewer iterations.
The validation loss with pre-training converges at a plateau
of about 0.96 after about 40 epochs. Without pre-training,
the validation loss converges at the same value after about
80 epochs. The pseudo-3D network achieved a dice score of
0.92 ± 0.01 and an IOU of 0.85 ± 0.02. In comparison, the
naïve approach achieved a dice score of 0.70 ± 0.05 and an
IOU of 0.54 ± 0.07.

To emphasize the effect of the pre-training, we trained the
2D networks with a lower amount of training data (n = 3
scans and n = 6 scans). The gain in the results on our test
set is minimal when increasing the amount of training data.

The proposed networks, as well as the naïve approach,
work well for cortical bone due to its high HU values. Exam-
ples for the naïve approach are shown in the second columnof
Fig. 6. The main issues arise when segmenting spongy bone
and bone marrow. As these tissues are less dense, their HU
values are more similar to those of soft tissue. As expected,
a thresholding-based approach does not segment these tis-
sues well. It also often mistakes the table in the images as
bony structures (see Fig. 6). The results of the segmenta-
tion strongly depend on the chosen threshold. Thementioned
issues are partly solved by our learning-based approach as it
does not rely on HU values alone. However, the performance
on more complex body regions like the skull and the chest is
still challenging (see Fig. 5).

We compared the metrics of different body regions. Our
networks achieve the best results on the legs, followed by
the pelvis and the upper body. The results for the head are
slightly worse. This is due to very thin bone structures in the
skull and artifacts caused by tooth crowns. Another difficult
task for all approaches was patients with artificial joints, such
as hips or knees, as they also cause artifacts in the CT scans.

Training time was approximately two days per network.
The segmentation of awhole-bodyCT scan (512×512×400)
slices took about 50 s for the 2D axial and about 9min and
30s for the pseudo-3D segmentation on an NVIDIA Titan X
GPU.

Publicly available dataset We compared our proposed
method with the state-of-the-art techniques on the publicly
available dataset by Peréz-Carrasco et al. [14]: thresholding,

pixel-value-based convex relaxation [1,14], histogram-based
convex relaxation, hybrid-level-set model technique [20] and
histogram-based energy minimization [14].

Table 1 shows a comparison of the performance metrics
evaluated for the proposedmodel and benchmark algorithms.
As can be seen, the proposed method outperformed the other
methods in five out of six metrics. The only exception was
sensitivity, in which the histogram-based energy minimiza-
tion achieved the highest score. We assume that the proposed
method achieves a higher specificity than the histogram-
based energy minimization. Due to rounding inaccuracy, this
cannot be observed in Table 1. Sensitivity and specificity rely
on the total amount of pixels. Because of the class imbalance
in the segmentation task, a few pixels cause a rather big dif-
ference in sensitivity, but a minimal difference in specificity
results. This is substantiated by the fact that the proposed
method performs better in the other metrics.

Discussion

In this paper, we present a deep learning approach for the
simultaneous segmentation of long, short, flat and irregular
bones including cortical, spongy andbonemarrow structures.
We use a deep convolutional neural network inspired by U-
Net that we train from scratch using an in-house dataset, as
well as a publicly available one, extensive data augmentation,
and a combination of a cross-entropy and a dice-loss formu-
lation. Furthermore, we examine the effect of unsupervised
pre-training and pseudo-3D training on the segmentation
results.

We evaluated six different metrics for the proposed train-
ing procedures. However, metrics like sensitivity, specificity
and accuracy do not take into account the class imbalance
prevalent in the data. We achieve dice scores of 0.95 and
IOU 0.91 on whole-body CT scans for our best network. We
evaluated the performance on different body regions for our
in-house whole-body dataset. The best results were achieved
on large bones like the femur. As expected, the segmentation
of smaller bones like the ribs is more challenging. This is
related to the fact that only small pieces of each rib are visible
on each slice and that they are surrounded by more complex
tissue combinations in comparison with the femur (see the
third row of Fig. 6). Additionally, the placement of the arms
during the CT scan can lead to attenuation of the signal in
some areas and thereby cause segmentation errors. A com-
mon practice is to arrange the arms—which is angled next
to the head, to prevent such attenuation effects. Because we
took CT scans of patients suffering from multiple myeloma,
the positioning of the patient had to be adjusted in a way that
is comfortable and does not cause pain.

Themost challenging body region for our networks to seg-
ment is the skull. This is caused by various small and irregular
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Fig. 5 Comparison of dice, IOU, sensitivity, specificity, PPV and accuracy of for different approaches and different body regions

shapedbones in that area. Furthermore,most of the patients in
our dataset have tooth crowns. These cause strong artifacts
that make the segmentation of bone very challenging not
only to our algorithm but to the medical expert as well. The
ambiguous image information leads to noisy labels, because
the medical expert cannot annotate the data is a well-defined
way. Although these artifacts are present in many patients,
they present a significant problem because evaluation of the
segmentation is hard due to label noise. On slices like the
one shown in the second row of Fig. 6, the upper jaw was not
segmented because the artifacts make it nearly impossible
to distinguish between bone and surrounding tissue. While

the naïve approach based on an intensity threshold clearly
over-segments, the segmentation of our network looks like a
possible segmentation of the jaw bone. Because of the noisy
ground truth in these areas, such circumstances complicate
the validation of our approach.

Another source of artifacts is artificial joints. Only two out
of 18 patients in our in-house training dataset had these (see
the fifth rowof Fig. 6).Artificial jointswere not segmented by
our medical expert in our ground truth as they do not consist
of bone tissue. The artifacts often have similar HU values
as cortical bone which makes the task of bone segmentation
difficult on the according slices. As these problematic slices
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Fig. 6 Qualitative results for body regions
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Table 1 Comparison of performance metrics evaluated for the proposed model and benchmark algorithms

Thresholding Pixel-value-based
relaxation [1]

Histogram-based
convex relaxation

Hybrid-level-set
model [20]

Histogram-based energy
minimization [14]

Proposed

Dice 0.79 ± 0.12 0.82 ± 0.19 0.83 ± 0.19 0.73 ± 0.12 0.88 ± 0.14 0.92 ± 0.05

Jaccard (IoU) 0.66 ± 0.15 0.73 ± 0.23 0.73 ± 0.16 0.61 ± 0.21 0.80 ± 0.19 0.85 ± 0.08

Sensitivity 0.71 ± 0.14 0.78 ± 0.23 0.85 ± 0.17 0.85 ± 0.09 0.94 ± 0.15 0.91 ± 0.08

Specificity 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00

PPV (precision) 0.91 ± 0.11 0.90 ± 0.14 0.84 ± 0.10 0.69 ± 0.25 0.90 ± 0.15 0.94 ± 0.04

Accuracy 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00

The proposed method outperformed the other methods in five out of six metrics. The best result for each metric is highlighted in bold
The comparison results presented in this table were taken from the paper of Peréz-Carrasco et al [14]. The methods were not re-implemented for
this paper

are not represented sufficiently frequent in our dataset, it is
difficult for the proposed method to learn how to adequately
handle such situations.

We compared the mean metrics of each patient, perform-
ing a t test, to determine whether there is a significant
difference between the results. Themargin between the train-
ing strategies with and without pre-training is minimal (p
value=0.99). We expected the effects of the unsupervised
pre-training to be more prominent if the networks are trained
with less training data. This was not the case probably due to
the fact that the results of the 2D axial approach are already
at a level of saturation. The pseudo-3D approach performed
worst compared to the other two deep learning methods (p
value � 0.01). This, however, might be related to the acqui-
sition of the ground truth: The medical expert created the
ground truth segmentations on axial slices. The spacing of
our in-house dataset in cranial–caudal direction is four times
bigger, causing the ground truth segmentation on coronal and
sagittal slices to bemuch noisier than the axial ones. All three
training strategies perform significantly better than the naïve
approach of thresholding and morphological operations (p
value � 0.01).

Many different bone segmentation approaches have been
published so far. It is not easy to provide a fair comparison
of the different algorithms, as a lot of the work is focused on
restricted problems like the segmentation of specific bony
structures. We compared our method to benchmark algo-
rithms on the publicly available dataset by Peréz-Carrasco
et al. The dataset is very small for a deep learning approach,
but the results were still very promising.

We plan to evaluate the possibility to transfer our method
to the clinic. For this, the robustness must be further evalu-
ated. Both datasets used in this paper were acquired with
a single scanner—each. To ensure the robustness of our
method, we would need a more heterogeneous dataset to
train on. Such a dataset could be established in the future
to establish a more general bone segmentation method that
applies to a variety of scanners and different levels of image

quality. Furthermore—on our in-house dataset—we trained
on scans of patients suffering frommultiple myeloma. As the
disease decomposes the bone, this could also affect the bone
segmentation. We plan to validate our approach on a wider
range on image data and we will continue to further expand
our reference dataset.
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