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Abstract
Purpose With the advent of robot-assisted surgery, the role of data-driven approaches to integrate statistics and machine
learning is growing rapidly with prominent interests in objective surgical skill assessment. However, most existing work
requires translating robot motion kinematics into intermediate features or gesture segments that are expensive to extract, lack
efficiency, and require significant domain-specific knowledge.
Methods We propose an analytical deep learning framework for skill assessment in surgical training. A deep convolutional
neural network is implemented to map multivariate time series data of the motion kinematics to individual skill levels.
Results We perform experiments on the public minimally invasive surgical robotic dataset, JHU-ISI Gesture and Skill
Assessment Working Set (JIGSAWS). Our proposed learning model achieved competitive accuracies of 92.5%, 95.4%, and
91.3%, in the standard training tasks: Suturing, Needle-passing, and Knot-tying, respectively. Without the need of engineered
features or carefully tuned gesture segmentation, our model can successfully decode skill information from raw motion
profiles via end-to-end learning. Meanwhile, the proposed model is able to reliably interpret skills within a 1–3 second
window, without needing an observation of entire training trial.
Conclusion This study highlights the potential of deep architectures for efficient online skill assessment in modern surgical
training.

Keywords Surgical robotics · Surgical skill evaluation · Motion analysis · Deep learning · Convolutional neural network

Introduction

Due to the prominent demand for both quality and safety
in surgery, it is essential for surgeon trainees to achieve
required proficiency levels before operating on patients [1].
An absence of adequate training can significantly com-
promise the clinical outcome, which has been shown in
numerous studies [2–4]. Effective training and reliable meth-
ods to assess surgical skills are thus critical in supporting
trainees in technical skill acquisition [5]. Simultaneously,
current surgical training is undergoing significant changes
with a rapid uptake of minimally invasive robot-assisted
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surgery. However, despite advances of surgical technology,
most assessments of trainee skills are still performed via
outcome-based analysis [6], structured checklists, and rat-
ing scales [7–9]. Such assessment requires large amounts of
expert monitoring and manual ratings, and can be inconsis-
tent due to biases in human interpretations [10]. Considering
the increasing attention to the efficiency and effectiveness of
assessment and targeted feedback, conventional methods are
no longer adequate in advanced surgery settings [11].

Modern robot-assisted surgical systems are able to col-
lect a large amount of sensory data from surgical robots or
simulators [12]. This high volume data could reveal valu-
able information related to the skills and proficiencies of
the operator. However, analyzing such complex surgical data
can be challenging. Specifically, surgical motion profiles,
by nature, are nonlinear, non-stationary stochastic processes
[13,14] with large variability, both throughout a procedure,
as well within repetitions of the same type of surgical task
(e.g., suture throws) [15]. In addition, the high dimension-
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ality of the data creates an additional challenge for accurate
and robust skill assessments [10]. Further, although several
surgical assessment methods have been developed, methods
to autonomously coach the trainee are lacking. Toward this
aim, there is a great need to develop techniques for quicker
and more effective surgical skill acquisition [11,16]. In this
paper,we are particularly interested in online skill assessment
methods that could pave the way for autonomous surgical
coaching.

Previous approaches in objective skill assessment

Different objective skill assessment techniques have been
reported in the literature [16]. Current approaches with a
focus on surgical motions can be divided into two main cat-
egories: (1) descriptive statistic analysis, and (2) predictive
modeling-based methods. Descriptive statistic analysis aims
to compute features from motion observations to quantita-
tively describe skill levels. Specifically, summary features,
such as movement time [17–19], path length [17], motion
jerk [18], and curvature [17], are widely used and have
shown to have high correlations with surgical skills. Other
novel measures of motion, such as energy expenditure [20],
semantic labels [21], tool orientation [22], and force [19], can
also provide discriminative information in measuring skills.
However, this approach involves manual feature engineer-
ing, requiring task-specific knowledge and significant effort
to design optimal skill metrics [23]. In fact, defining the best
metrics to capture adequate information and be generalized
enough to apply across different types of surgery or groups
of surgeons remains an open problem [16,17,24,25].

In contrast to descriptive analysis, predictive modeling-
based methods aim to predict surgical skills from motion
data. This method can be further categorized into (1) descrip-
tive, and (2) generative modeling. In descriptive modeling,
models are learnt by transforming raw motion data to inter-
mediate interpretations and summary features. Coupled with
advanced feature selection, these predefined representations
are subsequently fed into learning models as an input for
skill assessment. In the literature, machine learning (ML)
algorithms are commonly explored for modeling, such as k-
nearest neighbors (kNN), logistic regression (LR), support
vector machines (SVM), and linear discriminant analysis
(LDA). Such algorithms yielded a skill predictive accuracy
between 61.1 and 95.2% [24,26–28]. Forestier et al. devel-
oped a novel vector space model (VSM) to assess skills via
learning from thebagofword, a collectionof discretized local
features (strings) obtained from motion data [29]. In Brown
et al. [30], explored an ensemble approach, which combines
multipleMLalgorithms formodeling, andwas able to predict
rating scores with moderate accuracies (51.7–75.0%). More
recently, Zia et al. utilized nearest neighbor (NN) classifiers
with a novel feature fusion (texture-, frequency- and entropy-

based features) and further improved skill assessment with
accuracy ranging from 99.7 to 100% [31]. Although the
descriptive modeling-based approaches show their validity
in revealing skill patterns and underlying operation struc-
tures, the model accuracy and validity are typically limited
by the quality of extracted features. Considering the com-
plex nature of surgical motion profiles, critical information
has the potential to be discarded within the feature extraction
and selection process. Alternatively, in generative model-
ing, temporal motion data are usually segmented into a
series of predefined rudimentary gestures for certain sur-
gical tasks. Using generative modeling algorithms, such as
HiddenMarkovModel (HMM)and its variants, several class-
specific skill models were trained for each level and achieved
accuracy ranging from 94.4 to 100% [15,32]. However, the
segmentation of surgical gestures from surgeon motions can
be a strenuous process. HMM models usually require large
amounts of time and computational effort for parameter tun-
ing and model development. Further, one typical deficiency
is that the skill assessment is obtained at the global task level,
i.e., at the end of each operation. It requires an entire obser-
vation for each trial. This drawback potentially undermines
the goal of an efficient online surgical skill assessment.

Proposed approach

Deep learning, also referred to as deep structured learning, is
a set of learning methods that allow a machine to automati-
cally process and learn from input data via hierarchical layers
from low to high levels [33,34]. These algorithms perform
feature self-learning to progressively discover abstract repre-
sentations during the training process. Due to its superiority
in complex pattern recognition, this approach dramatically
improves the state of the art. Currently, deep learning models
have achieved success in strategic games [35], speech recog-
nition [36], medical imaging [37], health informatics [38],
and more. In the study of robotic surgical training, DiPi-
etro et al. first apply deep learning based on recurrent neural
networks for gesture and high-level task recognition [39].
Still, relatively little work has been done to explore deep
learning approaches for surgical skill assessment.

In this paper, we introduce and evaluate the applicability
of deep learning for a proficient surgical skill assessment.
Specifically, a novel analytical framework with deep surgi-
cal skill model is proposed to directly process multivariate
time series via an automatic learning. We hypothesize that
the learning-based approach could help to explore the intrin-
sic motion characteristics for decoding skills and promote
an optimal performance in online skill assessment systems.
Figure 1 shows the end-to-end pipeline framework. Without
performing manual feature extraction and selection, latent
feature learning is automatically employed on multivariate
motion data and directly outputs classifications. To validate
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our approach, we conduct experiments on the public robotic
surgery dataset, JIGSAW [40], in analysis of three indepen-
dent training tasks: Suturing (SU),Needle-passing (NP), and
Knot-tying (KT). To the best of our knowledge, it is the first
study to employ a deep architecture for an objective surgical
skill analysis. The main contributions of this paper can be
summarized as:

– An novel end-to-end analytical framework with deep
learning for skill assessment based on high-level anal-
ysis of surgical motion.

– Experimental evaluation of our proposed deep skill
model.

– Application of data augmentation leveraging the limita-
tion of small-scale JIGSAWS dataset, discussion on the
effect of labeling approaches on the assessment accu-
racy, and exploration of validation schemes applicable
for deep-learning-based development.

In the remainder of this paperwefirst present our proposed
approach and implementation details in “Deep surgical skill
classification model” section. We then conduct experiments
on JIGSAW dataset to validate the model in “Experiment
setup” section. Data preprocessing, training, and evalua-
tion approaches are given. Then, we present our results in
“Results” section and discussions in “Discussions” section.
Last, we conclude this paper in “Conclusion” section.

Deep surgical skill classificationmodel

Our deep learningmodel for surgical skill assessment ismoti-
vated from studies in multiple domains [34,41,42]. In this
section, we introduce a deep architecture using convolutional
neural network (CNN) to assess surgical skills from an end-
to-end classification.

Problem formulation

Here, the assessment of surgical skills is formalized as
a supervised three-class classification problem, where the
input is multivariate time series (MTS) of motion kinemat-
ics measured from surgical robot end-effectors, X , and the
output is the predicted labels representing corresponding
expertise levels of trainees, which can be one-hot encoded
as y ∈ {1 : “Novice”, 2: “Intermediate”, 3 : “Expert” }.
Typically, ground-truth skill labels are acquired from expert
ratings, crowdsourcing, or self-reporting experience. The
objective cost function for training the network is defined
as a multinomial cross-entropy cost, J , as shown in Eq. 1.

J (θ) = −
m∑

i=1

K∑

k=1

1{y(i) = k} log p(y(i) = k|x (i); θ) (1)

where m is the total number of training examples, K is the
class number, K = 3, and p(y(i) = k|x (i); θ) is the con-
ditional likelihood that the predicted label y(i) on a single
training example x (i) is assigned to class k ∈ K , given spe-
cific trained model parameters θ .

Model architecture

The architecture of the proposed neural network consists of
five types of layers: convolutional layer, pooling layer, flatten
layer, fully connected layer and softmax layer. Figure 2 shows
a 10-layer working architecture and parameter settings used
in the network. Note that the depth of the network is chosen
after trial-and-error from the training/validation procedure.

The network takes the slide of length W from C-channel
sensory measurements as input, which is a W × C matrix,
where C is the number of channels, or dimensions, of the
input time series. Then, input samples are first processed by
three convolution–pooling (Conv–pool) stages, where each
stage consists of a convolution layer and amax-pooling layer.
Each convolution layer has different numbers of kernels with
the size of 2 and each kernel is convoluted with the input
matrix of the layer with a stride of 1. Specifically, the first
convolution (Conv1) filters the W × 38 input matrix with 38
kernels; the second convolution with 76 kernels (Conv2) will
filter the corresponding output matrix of previous layer; and
the third convolutional layer (Conv3) filters with 152 kernels.
To reduce the dimensionality of the feature maps and avoid
overfitting, corresponding connections of each convolution
are followed by a max-pooling operation. The max-pooling
operations take the output of convolution layer as input, and
downsample the extracted feature maps, where each local
input patch is replaced by taking the maximum value of each
channel over the patch. The size of max-pooling is set as 2
with a stride of 2. In this network, we use the rectified linear
unit (ReLU) as the activation function to add nonlinearity
in all convolutional layers and fully connected layers [43].
Finally, we apply a softmax logistic regression to produce a
distribution of probability over three classes for the output
layer.

Implementation

To implement the proposed architecture, the deep learning
skill model is trained from scratch, which does not require
any pre-trained model. The network algorithm is imple-
mented using Keras library with Tensorflow backend based
on Python 3.6 [44].Wefirst initialize parameters at each layer
using the Xavier initialization method [34], where biases are
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Fig. 1 An end-to-end framework for online skill assessment in robot-assistedminimally invasive surgery. The framework utilizes window sequences
of multivariate motion data as an input, recorded from robot end-effectors, and outputs a discriminative assessment of surgical skills via a deep
learning architecture

Fig. 2 Illustrations of the proposed deep architecture using a 10-layer
convolutional neural network. The window widthW used in this exam-
ple is 60. Starting from the inputs, thismodel consists of three conv–pool
stages with a convolution and max-pooling each, one flatten layer, two

fully connected layers, and one softmax layer for outputs. Note that
the max-pooling dropout (with probability of 20%) and fully connected
dropout (with probability of 50%) is applied during training
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initialized as zeros, the weights at each layer are initialized
from a Gaussian distribution with mean 0 and a variance of
1/N , where N specifies the number of neurons in the previ-
ous layer.

During the optimization, our network is trained end-to-end
by minimizing the multinomial cross-entropy cost between
the predicted and ground-truth labels, as defined in Eq. 2, at
the learning rate, ε, of 0.0001. To train the net efficiently, we
run mini-batch updates of gradient descent, which calculate
network parameters on a subset of the training data at each
iteration [45]. The size ofmini batches is set to 600. A total of
300 epochs for training were run in this work. The network
parameters are optimized by an Adam solver [46], which
computes adaptive learning rates for each neuron parameter
via estimates of first and secondmoment of the gradients. The
exponential decay rates of the first and second moment esti-
mates are set to 0.9 and 0.999, respectively. Also, to achieve
better generalization and model performance, we apply a
stochastic dropout regularization to our neural network dur-
ing training time. Components of outputs from specific layers
of networks are randomly dropped out at a specific prob-
ability [47]. This method has proven its effectiveness to
reduce overfitting in complex deep learning models [48].
In this study, we implement two strategies of dropout: one
is the max-pooling dropout on the layers of max-pooling
after ReLU nonlinearity; another regularization is the fully
connected dropout on the fully connected layers. The prob-
abilities of dropout for the max-pooling and fully connected
dropout are set at 0.2 and 0.5, respectively. As mentioned
above, the hyper-parameters used for CNN implementation
include the learning rate, mini-batch size, epoch, number of
filters, stride and size of kernel, and dropout rates in the max-
pooling and fully connected layers. These hyper-parameters
are chosen and fine-tuned by employing the validation set,
which is split from training data. We save the best model, as
evaluated on validation data, in order to obtain an optimal
prediction performance.

Experiment setup

Dataset

Our dataset comes from the JHU-ISI Gesture and Skill
Assessment Working Set (JIGSAWS), the only public-
available minimally invasive surgical database, which is col-
lected from the da Vinci tele-robotic surgical system [40,49].

The da Vinci robot is comprised of twomaster tool manip-
ulators (MTMs) on left and right sides, two patient-side
slave manipulators (PSMs), and an endoscopic camera arm.
Robot motion data are captured (sampling frequency 30 Hz)
as multivariate time series with 19 measurements for each
end-effector: tool tip Cartesian positions (x , y, z), rotations

(denoted by a 3 × 3 matrix R), linear velocities (vx , vy ,
vz), angular velocities (ω′

x , ω′
y , ω′

z), and the gripper angle
θ . Details of the JIGSAWS kinematic motion data are sum-
marized in Table 1.

The dataset contains recordings from eight surgeons with
varying robotic surgical experience. Each surgeon performed
three different training tasks, namely Suturing (SU), Knot-
tying (KT), andNeedle-passing (NP), and repeated each task
five times. All three tasks are typically standard components
in surgical skill training curricula [40]. An illustration of
the three operation tasks is shown in Fig. 3. The two ways
in which skill labels are reported in JIGSAWS dataset are:
(1) self-proclaimed skill labels based on practice hours with
expert reporting greater than 100h, intermediate between 10
and 100h, and novice reporting less than 10h of total surgical
robotic operation time, and (2) a modified global rating scale
(GRS) ranging from 6 and 30, manually graded by an experi-
enced surgeon. In this study, we use the self-proclaimed skill
levels and GRS-based skill levels as the ground-truth labels
for each surgical trial, respectively. In order to label surgeons
skill levels using GRS scores, inspired from [24], thresholds
of 15 and 20 are used to divide surgeons into novice, interme-
diate, and expert, in tasks of Needle-passing and Knot-tying,
and thresholds of 19 and 24 are used in Suturing for skill
labeling.

Data preparation & inputs

Z-normalizationDue to differences in the scaling ranges and
offset effects of the sensory data, the data fed into the neural
network are first normalized with a z-normalization process.
Each channel of raw data, x , is normalized individually as
z = x−μ

σ
, whereμ and α are themean and standard deviation

of vector x . This normalization process can be performed
online by feeding the network with the batch of sensory data.

Data Augmentation One challenge for developing a robust
skill model with our approach comes from the lack of large-
scale data samples in JIGSAWS,where the number of labeled
samples is only 40 in total (8 subjects with 5 trial repeti-
tions) for each surgical task. Generally, deep learning might
suffer from overfitting if the size of available dataset is lim-
ited [33]. To overcome this problem, data augmentation is
introduced to prevent overfitting and improve generaliza-
tion of the deep learning model. This has been seen so far
mostly in image recognition, where several methods, such
as scaling, cropping, and rotating are used [50,51]. Inspired
from the computer vision community, similar augmentation
techniques were applied for time series data to enlarge small-
sized datasets and increase decoding accuracy [52–54]. In
this study, to support the network in learning, we adapted the
augmentation strategy and introduced a two-step augmen-
tation process before inputting data into our network. First,
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Table 1 Variables of sensory
signals from end-effectors of da
Vinci robot

End-effector category Description Variables Channels

Master tool manipulator (MTM)

MTM1 Positions (3), rotation
matrix (9), velocities
(6) of tool tip, gripper
angular velocity (1)

x , y, z, R ∈ R
3×3, vx ,

vy , vz , ω′
x , ω

′
y , ω

′
z , α

19 × 2

MTM2

Patient-side manipulator (PSM)

PSM1 Positions (3), rotation
matrix (9), velocities
(6) of tool tip, gripper
angular velocity (1)

x , y, z, R ∈ R
3×3, vx ,

vy , vz , ω′
x , ω

′
y , ω

′
z , α

19 × 2

PSM2

These variables are captured as multivariate time series data in each surgical operation trial

Fig. 3 Snapshots of operation tasks during robot-assisted minimally invasive surgical training. The operations are implemented using the da Vinci
robot and are reported in JIGSAWS [40]: a Suturing, b Needle-passing, c Knot-tying

followed by z-normalization, we viewed and separated the
surgical motion data from master (MTMs) and patient-side
manipulators (PSMs) as two distinct sample instances, while
the class labels for each trial were preserved. This proce-
dure is also appropriate in cases where the MTMs and PSMs
are not directly correlated (e.g. position scaling, or other
differences in robot control terms). Then, we carried out a
label-preserving cropping with a sliding window, where the
motion sub-sequences were extracted using crops, i.e., slid-
ing a fixed-size window within the trial. The annotation for
each window is identical to the class label of original trial,
from which the sub-sequences are extracted. One advantage
of this approach is that it leads to larger-scale sets for the
robust training and testing of the network. Also, this tech-
nique allows us to format time series as equal-length inputs,
regardless of the varied lengths of original data. The pseu-
docode of sliding-window cropping algorithm is shown in
Algorithm 1, where X is the input motion data, s is the out-
put crops (i.e., sub-sequences),W is the sliding-window size
and L is the step size. After experimenting based on trial-and-
error,we chose awindow sizeW = 60 and a step size L = 30
in this work. Overall, by applying the aforementioned data
augmentation process on the original dataset, it resulted in
6290, 6780, and 3542 crops for Suturing, Needle-passing,
and Knot-tying, respectively. All of these crops are new data

Algorithm 1 Sliding-window Cropping Algorithm
INPUT: raw time series X , stepSize L , windowWidth W
OUTPUT: sub-sequences s = SlidingWindow(X , L,W )

1: initialization m := 0, n := 0
2: s := empty
3: while m + W ≤ length(X) do
4: s[n] := X [m : (m + W − 1)]
5: m := m + L, n := n + 1
6: end while
7: return sub-sequences s

samples for the network. The overall numbers of obtained
crops are different since original recording lengths are var-
ied across each trial in JIGSAWS. As a result, we obtained
the total sample trials with the size of 6290, 6780, and 3542
for three tasks, respectively, according to the selected setting.

Training & testing

To validate the model classification, we adopt two individual
validation schemes in this work: Leave-one-supertrial-out
(LOSO) and Hold-out. The objective of the comparison is
to search for the best validation strategy suitable for system
development in the case of deep learning. Based on each
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cross-validation setting, we train and test a surgical skill
model for each surgical task, Suturing (SU),Knot-tying (KT),
and Needle-passing (NP).

Leave-one-supertrial-out (LOSO) cross-validation:This tech-
nique involves repetitively leaving out a single subset for
testing in multiple partitions. Specifically, a supertrial, i ,
defined as a subset of examples combining the i-th trials
from all subjects for a given surgical task [40], is left out
for testing, while the union of remaining examples is used
for training. This process is repeated in fivefold where each
fold consists of each one of the five supertrials. The average
of all fivefold performance measures (see “Modeling perfor-
mance measures” section for definitions) in each test set is
reported and gives an aggregated classification result. As a
widely used validation strategy, the LOSO cross-validation
shows its value in evaluating the robustness of a method for
skill assessment.

Hold-out: Different from the LOSO cross-validation, the
Hold-out strategy is implemented by conducting a train/test
split once, which is normally adopted in deep learning mod-
els when large datasets are presented. In this work, one single
subset consisting of one of the five trials from each surgeon,
for a given surgical task, is left out throughout the training
and used as a hold-out for the purpose of testing. Also, to
reduce the bias and avoid potential overfitting, we randomly
select a trial out of the five repetitions for each subject.

Modeling performancemeasures

To compare the model performance, classifications are eval-
uated regarding four common metrics (Eq. 2) [49,55,56]: the
average accuracy—ratio between the sum of correct predic-
tions and the total number of predictions; precision—ratio of
correct positive predictions (Tp) and the total positive results
predicted by the classifier (Tp+Fp); recall—ratio of positive
predictions (Tp) and the total positive results in the ground-
truth (Tp + Fn); and f1-score—aweighted harmonic average
between precision and recall.

precision = Tp
Tp + Fp

recall = Tp
Tp + Fn

f1-score = 2 ∗ (recall ∗ precision)

recall + precision

(2)

where Tp and Fp are the numbers of true positives and false
positives, Tn and Fn are the numbers of true negatives and
false negatives, for a specific class.

In order to assess the computing effort involved in model
classification, we measure the running time of skill models
to classify all samples in the entire testing set. In the LOSO

scheme, the running time is measured as the average value
from the fivefold cross-validation.

Results

We evaluate the proposed deep learning approach for self-
proclaimed skill classification and GRS-based skill classifi-
cation using the JIGSAWS dataset. The confusion matrices
of classification results are obtained from the testing set under
the LOSO scheme. We compare our results with the state-of-
the-art classification approaches in Table 2. It is important to
mention that in order to obtain a valid benchmarking analysis,
the classifiers investigated in this study are selected among
the skill assessment using JIGSAWS motion data and evalu-
ated based on the same LOSO validation. Figure 4a shows the
results of three-class self-proclaimed skill classification. The
proposed deep learning skill model achieved high-accuracy
prediction performance. Specifically, our model obtained
accuracies of 93.4%, 89.8%, and 84.9% in tasks of Sutur-
ing, Needle-passing and Knot-tying, respectively, using a
window crop with 2-second duration containing 60 time
steps (W = 60). In contrast to the per-window assess-
ment, highest accuracies reported in the literature range from
99.9 to 100% via a descriptive model using entropy features
based on the entire observation of full operation trial. For
the GRS-based skill classification, as shown in Fig. 4b, the
proposed approach can achieve higher accuracy than oth-
ers (92.5%, 95.4%, and 91.3% in Suturing, Needle-passing
and Knot-tying). Specifically, the deep learning model out-
performed k-nearest neighbors (k-NN), logistic regression
(LR), and support vector machine (SVM), with the accuracy
improvements ranging from 2.89 to 22.68% in Suturing, and
10.94–21.09% in Knot-tying.

To study the capability of our proposed approach for
online skill decoding, we further evaluate the performance of
proposed approach using the input sequences with varying
lengths. We repeated our experiment for the self-proclaimed
skill classification with different sizes of sliding window:
W1 = 30, W2 = 60 and W3 = 90. Modeling perfor-
mance of window sizes together with the average running
time taken for self-proclaimed skill classification is reported
in Table 3. The results show that our deep learning skill
model can offer advantages over traditional approaches with
highly time-efficient skill classification on the per-window
basis, without the full observation of surgical motion for each
trial (per-trial basis). Also, a higher average accuracy can
be found with an increase in sliding-window size. Specifi-
cally, the 3-second sliding window containing 90 time steps
(W3 = 90) can obtain better results compared to 2-second
window (W2 = 60), with average accuracy improvements
of 0.75% in Suturing, 0.56% in Needle-passing and 2.38%
in Knot-tying, respectively.
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Table 2 Comparison of existing algorithms employed for skill assessment using motion data from JIGSAWS dataset

Author Algorithm Labeling approach Metric extraction Accuracy Characteristics

SU NP KT

Tao et al. [32] S-HMM Self-proclaim Gesture segments 97.4 96.2 94.4 Generative modeling

Segment-based

Per-trial basis

Forestier et al. [29] VSM Self-proclaim Bag of words features 89.7 96.3 61.1 Descriptive modeling

Feature-based

Per-trial basis

Zia and Essa [31] NN Self-proclaim Entropy features 100 99.9 100 Descriptive modeling

Feature-based

Per-trial basis

Fard et al. [24] k-NN GRS-based Movement features 89.7 N/A 82.1 Descriptive modeling

LR 89.9 N/A 82.3 Feature-based

Two-class skill only

SVM 75.4 N/A 75.4 Per-trial basis

Current study CNN Self-proclaim N/A 93.4 89.8 84.9 Deep learning modeling

No manual feature

GRS-based 92.5 95.4 91.3 Per-window basis

Online analysis

We benchmark the results in terms of accuracy based on LOSO cross-validation. Models conducting classification on the trial level are categorized
as per-trial basis

Furthermore, in order to characterize the roles of two vali-
dation schemes, we repeat the above modeling process using
Hold-out strategy. Table 3 shows the comparison of self-
proclaimed skill classification under LOSO cross-validation
and Hold-out schemes.

Discussion

Recent trends in robot-assisted surgery have promoted a great
need for proficient approaches for objective skill assess-
ment [11]. Although several analytical techniques have been
developed, efficiently measuring surgical skills from com-
plex surgical data still remains an open problem. In this paper,
our primary goal is to introduce and evaluate the applicability
of a novel deep learning approach toward online surgi-
cal skill assessment. Compared to conventional approaches,
our proposed deep learning model reduced dependency on
the complex manual feature design or carefully tuned ges-
ture segmentation. Overall, deep learning skill models, with
appropriate design choices, yielded competitive performance
in both accuracy and time efficiency.

Validity of our deep learningmodel for objective
skill assessment

For results shown in Fig. 4a, b, we note that both Sutur-
ing and Needle-passing are associated with better results

than Knot-tying in both self-proclaimed skill classification
and GRS-based skill classification, indicting that Knot-tying
is a more difficult task for assessment. For self-proclaimed
skill classification, the majority of misclassification errors
occurred during the Knot-tying task where self-proclaimed
I ntermediate aremisclassified as actual Novice. As shown
in Fig. 4a, the distribution across I ntermediate is pro-
nounced with the probability of 0.34 being misclassified as
Novice. This could be attributed to the fact that the self-
proclaimed skill labels, which are based on hours spent in
robot operations, may not accurately reflect the ground-truth
knowledge of expertise. As evident, the classification using
GRS-based skill labels generally performs better than the
results using self-proclaimed skills. Our results indicate that
more accurate surgeon skill labels relative to the true surgeon
expertise might help to further improve the overall accuracy
of skill assessment.

As shown in Table 2, high classification accuracy can be
achieved by a few existing methods using generative mod-
eling and descriptive modeling. Specifically, a generative
model, sparse HMM (S-HMM), is able to give high predic-
tive accuracy ranging from 94.4 to 97.4%. This result might
benefit from a precise description of motion structures and
predefined gestures in each task. However, such an approach
requires prerequisite segmentation of motion sequences, as
well as different complex class-specific models for each skill
level [32]. Second, descriptive models sometimes may be
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A

B Needle-passing Knot-tyingSuturing

Needle-passing Knot-tyingSuturing

Fig. 4 Confusion matrices of classification results in three surgical
training tasks. a Self-proclaimed skill classification, b GRS-based skill
classification. Element value (i, j) and color represent the probability

of predicted skill label j , given the self-proclaimed skill label i , where
i and j ∈{1 : “Novice”, 2: “Intermediate”, 3 : “Expert” }. The diagonal
corresponds to correct predictions

superior to provide highly accurate results, such as the use
of novel entropy features. However, the deficiency is that
significant domain-specific knowledge and development is
required to define the most informative features manually,
which directly associate with the final assessment accuracy.
This deficiency could also explain why there exists a larger
variance in accuracy between other studies (61.1–100%),
which are sensitive to the choice of predefined features, as
shown in Table 2.

Another attention of our analysis is focused on the optimal
sliding windows needed to render an efficient assessment.
The duration of time steps in each window should roughly
correspond to the minimum time required to decode skills
from input signals. Usually, technical skill is assessed at the
trial level; however, a quicker and more efficient acquisi-
tion may enable immediate feedback to the trainee, possibly
improving learning outcomes. Overall, our findings suggest
that the per-window-based classification in this work is well-
applicable for online settings. Smaller window size can allow

for a faster running speed and less delay due to the light-
weight computing expense. In contrast, an lager window
size implies an increase in delay due to larger network com-
plexity and higher computing effort involved in decoding.
Specifically, as shown in Table 3, within the LOSO vali-
dation scheme, the network can classify the entire testing
dataset within 133.88ms forW1 and 172.87ms running time
for W2, while it required 214.14ms running time for W3 to
classify the samples. However, it is important to mention
that given an increase in window sizes, a higher accuracy
can be achieved. In particular, there seems to be more gains
in the Knot-tying analysis, where the highest 2.24% accu-
racy improvement was obtained fromW2 toW3. This result
might be due to the fact that more information of motion
dynamics are contained in larger crops, thus allowing for an
improved decoding accuracy. We suggest that this trade-off
between decoding accuracy and time efficiency could be a
factor of interest in online settings of skill assessment.
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Table 3 Summary table showing self-proclaimed skill classification performance based on different validation schemes and sliding windows

Task Validation scheme Window size F1-score Accuracy Running time (ms)

Novice Interm. Expert

Suturing LOSO W1 0.94 0.83 0.95 0.930 146.45

W2 0.94 0.83 0.97 0.934 185.40

W3 0.95 0.86 0.96 0.941 247.01

Hold-out W1 0.98 0.92 0.94 0.961 98.10

W2 0.99 0.94 0.96 0.972 146.40

W3 0.99 0.98 0.97 0.983 194.79

Needle-passing LOSO W1 0.95 0.73 0.88 0.889 153.36

W2 0.95 0.75 0.90 0.898 194.98

W3 0.96 0.76 0.89 0.903 248.03

Hold-out W1 0.97 0.80 0.91 0.919 113.49

W2 0.98 0.81 0.91 0.925 169.72

W3 0.98 0.86 0.94 0.945 207.12

Knot-tying LOSO W1 0.90 0.57 0.90 0.847 101.83

W2 0.90 0.62 0.92 0.849 138.25

W3 0.92 0.64 0.91 0.868 147.38

Hold-out W1 0.87 0.42 0.91 0.803 74.5

W2 0.88 0.48 0.92 0.817 113.55

W3 0.88 0.47 0.91 0.816 139.39

Window size is set as W1 = 30, W2 = 60 and W3 = 90. Running time quantifies the computing effort involved in classification. Bold numbers
denote best results regarding f1-score, accuracy, and running time

Comparison of validation schemes

We investigated the validity of two different validation
schemes for skill modeling. In this case, the differences
between both are non-trivial in the deep learning develop-
ment. Noticeably, LOSO cross-validation gives a reliable
estimate of system performance. However, the Hold-out
scheme, which uses a random subset of surgical trials as
a hold-out, demonstrates relatively larger variances among
results. This result can by explained by the differences among
these randomly selected examples in the Hold-out valida-
tion. Nevertheless, the Hold-out shows consistency with the
results in LOSO scheme across different tasks and window
sizes, as shown in Table 3. It is important to note that given
a large dataset, the LOSO cross-validation might be less effi-
cient for model assessment. In this scenario, the computing
load in LOSO modeling has been largely increased, which
maynot be suitable for complex deep architectures.However,
theHold-out only needs to run once and is less computation-
ally expensive in modeling.

Limitations

Despite the progress in present work, there still exist some
limitations of deep learningmodels toward a proficient online
skill assessment. First, as confirmed by our results, the clas-

sification accuracy of supervised deep learning relies heavily
on the labeled samples. The primary concern in this study lies
with the JIGSAWS dataset and the lack of strict ground-truth
labels of skill levels. It is important to mention that there is a
lack of consensus in the ground-truth annotation of surgical
skills. In the GRS-based labeling, skill labels were annotated
based on the predefined cutoff threshold of GRS scores, how-
ever, no commonly accepted cutoff exists. For future work, a
refined labeling approach with stronger ground-truth knowl-
edge of surgeon expertise may further improve the overall
skill assessment [57,58]. Second,wewill search for a detailed
optimization of our deep architecture, parameter settings,
and augmentation strategies to better handle motion time
series data and improve the online performance further. In
addition, the interpretability of automatically learned repre-
sentations is currently limited due to the black-box nature of
deep learning models. It would be interesting to investigate
a visualization of deep hierarchical representations to under-
stand hidden skill patterns, so as to better justify the decision
taken by a deep learning classifier.

Conclusion

The primary contributions of this study are: (1) a novel
data-driven deep architecture for an active classification of
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surgical skill via end-to-end learnings, (2) an insight in
accuracy and time efficiency improvements for online skill
assessment, and (3) application of data augmentation and
exploration of validation schemes feasible for deep skillmod-
eling. Taking advantage of recent technique advances, our
approach has several desirable proprieties and is extremely
valuable for online skill assessment. First, a key benefit is an
end-to-end skill decoding, learning abstract representations
of surgery motion data with automatic recognitions of skill
levels. Without a priori dependency on engineered features
or segmentation, the proposed model achieved comparable
results to previously reportedmethods. It yielded highly com-
petitive time efficiency given relatively small crops (1–3
second window with 30–90 time steps), which were com-
putationally feasible for online assessment and immediate
feedback in training. Furthermore, we demonstrated that an
improvement of modeling performance could be achieved by
the optimization of design choices. An appropriate window
size could provide better results in Knot-tying with a 2.24%
accuracy increase. Also, the development of deep skill mod-
els might benefit from the Hold-out strategy, which requires
less computing effort than the LOSO cross-validation, espe-
cially in the case where large datasets are involved.

Overall, the ability to automatically learn abstract rep-
resentations from raw sensory data with high predictive
accuracy and fast processing speed, makes our approach
well-suited for online objective skill assessment. The pro-
posed deep model can be easily integrated into the pipeline
of robot-assisted surgical systems and could allow for imme-
diate feedback in personalized surgical training.
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