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Abstract
Purpose To develop and validate a fully automatic method for segmentation of paraspinal muscles from 3D torso CT images.
Methods We propose a novel learning-based method to address this challenging problem. Multi-scale iterative random
forest classifications with multi-source information are employed in this study to speed up the segmentation and to improve
the accuracy. Here, multi-source images include the original torso CT images and later also the iteratively estimated and
refined probability maps of the paraspinal muscles. We validated our method on 20 torso CT data with associated manual
segmentation. We randomly partitioned the 20 CT data into two evenly distributed groups and took one group as the training
data and the other group as the test data.
Results The proposed method achieved a mean Dice coefficient of 93.0%. It took on average 46.5 s to segment a 3D torso
CT image with the size ranging from 512 × 512 × 802 voxels to 512 × 512 × 1031 voxels.
Conclusions Our fully automatic, learning-based method can accurately segment paraspinal muscles from 3D torso CT
images. It generates segmentation results that are better than those achieved by the state-of-the-art methods.

Keywords Paraspinal muscles · CT · Segmentation · Random forest

Introduction

The paraspinal muscles play an important role in trunk
movement and spinal stability. Several studies [2,3,6,8] have
demonstrated an association between imaging parameters of
the paraspinal muscles such as cross-sectional area (CSA)
size, shape, density, and volume, and spinal degeneration
and low back pain (LBP). The measurements of these imag-
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ing parameters in clinical practice, however, are not reliable
enough as they are usually measured in a 2D axial CT image,
which can be chosen differently from hospital to hospital.
Although measuring the paraspinal muscles in 3D holds the
potential to improve the accuracy, it has not become common
as it requires expertise- and time-intensive manual segmen-
tation. The integration of more automated procedures for the
reliable 3D segmentation of paraspinal muscles may reduce
the label-intensiveness associated with manual methods and
provide reliability and reproducibility of the acquired imag-
ing parameters with respect to segmentation bias and tempo-
ral drift, especially for multicenter, longitudinal studies.

Figure 1 (left) shows the entirety of theparaspinalmuscles,
which run along almost the entire spine. There is a pair of the
muscles on both sides of the body. Automatic 3D segmenta-
tion of paraspinalmuscles fromCT images is challenging due
to the size of the data, the large variability of muscle shape
and appearance, and the close contact of paraspinal muscles
with the surrounding muscles which appear with almost the
same intensities as shown in Fig. 1(right).

Despite the fact that there are significant progresses made
in automatic segmentation of muscles from MR images
[5,11,13,15,17–19,22,28,30], only a few methods have been
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Fig. 1 Left: the paraspinal muscles (red) and bone (gray) in the 3D image. The paraspinal muscles are quite large and run along almost the complete
spine. Right: the paraspinal muscles seen in an axial slice (top) and the expert manual segmentation (red contours in the bottom image)

introduced before to address the problem of automatic seg-
mentation of muscles from CT data [9,10,12,20,20,29]. The
publishedCTmuscle segmentationmethods can be classified
into two categories: 2Dmethods and 3Dmethods. The meth-
ods in the former categoryusuallyworkon2Dcross-sectional
images taken at specific skeletal landmarks instead of 3D
scans. For example,Wei et al. [29] presented a 2D atlas-based
method for segmenting paraspinal muscles from 2D axial CT
images. Another 2D method was introduced in [20], where a
finite element method (FEM)-based deformable model was
developed to incorporate a priori shape information via a
statistical deformation model (SDM) within the template-
based segmentation framework for automatic segmentation
of skeletal muscle. Recently, Kume et al. [12] have inves-
tigated deep convolutional neural networks (CNN)-based
approaches for automatic segmentation of paraspinal mus-
cles at the level of the twelfth thoracic vertebrae in torso CT
images. An average Dice coefficient of 86.3% was reported.
In contrast, the methods in the latter category work directly
on 3D scans. Along this line, Kamiya et al. proposed an rule-
based expert system for the segmentation of the psoas major
[9] and rectus abdominis [10] muscles from CT images,
where the shape of themuscleswas approximated by a simple
quadratic function.An average JaccardSimilarityCoefficient
(JSC)of 0.841was reported in [10]. Inoue et al. [7] introduced
a method to segment psoas major muscle using higher-order
shape prior and reported an average JSC of 76.5%.

In this paper, we propose a novel learning-based method
to address the challenging problem of fully automatic seg-
mentation of paraspinal muscles from 3D torso CT images.
In comparison with previous work, our contribution is as fol-
lows:

– To speed up the segmentation and to improve accuracy,
we propose a novel multi-scale iterative random forest
(RF) classification method for fully automatic segmen-
tation of paraspinal muscles from CT images.

– Inspired by the auto-contextmodel [21,25],wepropose to
employ features derived from multi-source information,
including the original torso CT images and later also the
iteratively estimated and refined probability maps of the
paraspinal muscles.

– We conduct experiments to evaluate the performance of
the present method and to compare the accuracy of the
present method with a deep learning-based method.

The paper is organized as follows. In the next section, we
will describe the method. “Experimental design and results”
sectionwill present the experimental results, followed by dis-
cussions and conclusions in “Discussions and conclusions”
section.

Materials andmethod

We formulate the segmentation of paraspinal muscles as a
two-class classification problem. To solve such a classifica-
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Fig. 2 A schematic illustration of how the training procedure works.
The appearance features extracted from down-sampled CT images are
used to train “Classifier 1,” and then, both appearance features and the

context features from probability maps are used to train the subsequent
classifiers. We also employed a multi-scale strategy to speed up the
training in high resolution

tion problem, we propose to employ random forests [1] and
auto-context model [25], and conduct the classification in
multiple scales.

Multi-scale random forest classification with
auto-context model

Ourmethod is inspired byQian et al. [21] andTuandBai [25].
It is a supervised learning method consisting of training and
testing stages. In the training stage,wewill train a sequenceof
classification forests, as shown in Fig. 2. In the first iteration,
we extract only the appearance features from the CT images
to train a classification forest (“Classifier 1” in Fig. 2). By
applying the trained forests in the first iteration, each training
subject will produce tissue probability maps for paraspinal
muscles or background, respectively. In the subsequent itera-
tions, the tissue probability maps obtained from the previous
iteration will be used as additional source information for
training, thus getting a subsequent classification forest (e.g.,
“Classifier 2” in Fig. 2). It was demonstrated in [21] that
the context features could encode the spatial constraints into
the classification, thus improving the quality of the estimated
tissue probability maps.

Similarly, in the testing stage, given a target CT image,
we can obtain the initial tissue probability maps by applying
“Classifier 1” using only the appearance features, as shown
in Fig. 3. In the subsequent iterations, along with the appear-
ance features, the tissue probability maps obtained from the

previous iteration are also fed into the subsequent classifier
for refinement.

In theory, we can apply RF classification method directly
to get 3D segmentation. In practice, however, due to the large
size of the torso CT data (the size of the data ranges from
512×512×802 voxels to 512×512×1031 voxels), directly
applying RF classification method will lead to long train-
ing and testing time. In this paper, we propose a multi-scale
strategy to address this issue. We conduct both training and
testing in multiple scales. More specifically, during training,
we first train two classifiers (“Classifier 1” and “Classifier
2” as shown in Fig. 2) following the above procedure on
down-sampled training images. For the high-resolution train-
ing images, instead of training a classifier from appearance
features extracted from high-resolution data to get the initial
tissue probability maps, we up-sample the probability maps
obtained from classifiers in low resolution. We empirically
found that the up-sampled probability maps from “Classifier
1” led to more accurate segmentation results. Furthermore,
for each training data, we extract a region of interest of the
paraspinal muscles by dilating the associated ground-truth
segmentation and randomly sample training data points only
from this region in order to train a classifier in high resolution
(“Classifier 3” inFig. 2). Similarly, during testing,we alsoup-
sample the probability maps obtained from “Classifier 1” to
provide an initial tissue probability maps in high resolution.
We then up-sample and dilate (in this study, we dilate 10 vox-
els along each axis) the binary segmentation results obtained
from the probability maps of “Classifier 2” by thresholding
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Fig. 3 A schematic illustration of how the testing procedure works.
We used “Classifier 1” to get the tissue probability maps of the down-
sampled test image. Then, in the later iterations, the tissue probability

maps obtained fromprevious iteration are also fed into the next classifier
for refinement. Multi-scale strategy is used to speed up the testing

and morphological operations to provide a mask, which will
then constrain the test region for “Classifier 3,” i.e., we only
apply “Classifier 3” to every voxel inside the masked region
in order to compute the tissue probability maps in high reso-
lution. Thresholding, followed by morphological operations
to remove isolated small volumes and internal holes, is used
to get the binary segmentation from the probability maps of
“Classifier 3,” which is then taken as the segmentation output
of the present method.

Appearance features and context features

Considering the size of the data, we use the randomHaar-like
features as introduced in [27] for both appearance features
and context features. Specifically, as shown in Fig. 4, for
each voxel x , its Haar-like features are computed as the local
mean intensity of any randomly displaced cubical region R1

or as the mean intensity difference over any two randomly
displaced cubical regions (R1 and R2) within the cubic image
patch R around the voxel x in a source image I .

f (x, I ) = 1

|R1|
∑

p∈R1

I (p) − b
1

|R2|
∑

q∈R2

I (q), b ∈ [0, 1]

(1)

where R is the patch centered at voxel x , I is any kind of
source image, and the parameter b ∈ [0, 1] indicates whether
one or two cubical regions are used (as shown in Fig. 4, for
b = 0 and b = 1).

To accelerate the feature extraction within each cubical
region, we use the well-known integral image technique as
introduced in [26]. Details about how to compute the inte-
gral image of a quantity can be found in [26]. The quantity
can be the voxel intensity value or the estimated tissue prob-
ability value. Advantage of using integral image lies in the
fact that once we obtain an integral image of the quantity
over the complete CT volume, the sum of the quantity in
any sub-volume or cubical region can be calculated quickly
in constant time no matter how big the size of the cubical
region is [26].

Data description

After local institution review board (IRB) approval, the
present method was evaluated on torso CT data with asso-
ciated manual segmentation of 20 subjects. CT images used
in this study are non-contrast torso CT images taken at Light
Speed Ultra 16 scanner (manufactured by GE) at Gifu Uni-
versity Hospital. We randomly partitioned the 20 subjects
into two evenly distributed groups.We then took one group as
the training data and the other group as the test data. Table 1
shows the demographic data of all 20 subjects used in our
study.

All the CT data have an isotropic voxel resolution of
0.625 mm. The manual segmentation for each of data was
created byMr.Masanori Kume using a graph cut-based inter-
active method implemented in the common software plat-
form called “PLUTO” (http://pluto.newves.org/trac) [16].
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Fig. 4 A schematic illustration of how the Haar-like features as defined by Eq. (1) are computed for two different situations: when b = 0 (left) and
when b = 1 (right)

Table 1 Demographic data of
20 subjects included in our study

Training group Test group

Training case Gender Age Test case Gender Age

#01 M 49 #01 M 65

#02 F 84 #02 M 52

#03 M 71 #03 M 73

#04 M 40 #04 M 88

#05 M 68 #05 M 60

#06 F 74 #06 F 76

#07 M 53 #07 M 73

#08 M 68 #08 M 58

#09 M 70 #09 M 65

#10 F 61 #10 M 41

Average NA 63.8 ± 13.1 Average NA 65.1 ± 13.3

The obtained segmentation was then verified and corrected
slice by slice by an anatomical specialist.

Implementation details

We trained and tested the random forest classifiers in two dif-
ferent scales. In order to train “Classifier 1” and “Classifier 2”
in low resolution, we first down-sampled each training data
into its one fourth of its original resolution along each axis.
During training, we always sample evenly distributed data
points from each training data, i.e., half of the data points
sampled from the paraspinal muscle region and the other
half from background. Specifically, in training “Classifier
1,” we randomly sampled 20,000 points from each training
data and compute 10,000 Haar-like features for each data
point. The size of R was chosen to be 25 voxels. In train-
ing “Classifier 2,” again we randomly sampled 20,000 data
points from each training data. For each data point, we com-
puted 10,000multi-source Haar-like features with 5000 from
the appearance and the other 5000 from the initial probabil-
ity maps obtained from “Classifier 1.” The size of R was
chosen to be 45 voxels. “Classifier 3” was trained with data

in the original resolution. We constrained the region to sam-
ple the data points for each training data to be within a ROI
computed from the ground-truth segmentation. Again, we
sampled 20,000 evenly distributed data points, and for each
data point, we computed 10,000 multi-source features for
each data point where 5000 features were computed from
the training data and the other 5000 features from the up-
sampled probability maps as shown in Fig. 2. The size of
R for computing Haar-like features in high resolution was
chosen to be 180 voxels.

Evaluationmetrics

Assuming the automatically segmented set of voxels as AS
and the manually defined ground truth as GT, we used both
volume overlap metrics and distance-based metrics to eval-
uate the present method.

Volume overlap metrics

We computed following volume overlap metrics:
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– Dice Coefficients (DC) It quantifies the match of two
sets by normalizing the size of their intersection over the
average of their sizes and is defined as follows:

DC = 2|AS ∩ GT|
|AS| + |GT| (2)

where the operator | · | returns the number of voxels con-
tained in a region.

– Jaccard Similarity Coefficients (JSC) It is defined as
the number of common voxels of the automatically seg-
mented and ground-truth regions over their union:

JSC = |AS ∩ GT|
|AS ∪ GT| (3)

– Precision (PR) It is defined as the fraction of all automat-
ically segmented voxels that are correct:

PR = |AS ∩ GT|
|AS| (4)

– Recall (RC) It is defined as the fraction of all ground-
truth voxels that have been corrected segmented by an
automatic method:

PR = |AS ∩ GT|
|GT| (5)

Distance-based metrics

Before we present the definitions of different distance-based
metrics, we first define a distance measure for a voxel x from
a set of voxels A as:

d(x, A) = min
y∈A

d(x, y) (6)

where d(x, y) is the Euclidean distance of the voxels incor-
porating the real spatial resolution of the volume data.

We further define the directed Hausdorff measure from a
point set A to a point set B as the maximum distance, for all
points in A, to the closest point in B. Mathematically, this is
given as:

−→
d H (A, B) = max

x∈A
(min
y∈B(d(x, y))) (7)

The directed percent Hausdorff measure, for a percentile
r , is the r th percentile distance over all distances from points
in A to their closest point in B. For example, the directed
95% Hausdorff distance is the point in A with the distance
to its closest point in B is greater or equal to exactly 95%
of the other points in A. Mathematically, denoting the r th

percentile as Kr , this is given as:

−→
d H ,r (A, B) = Kr (min

y∈B d(x, y)),∀x ∈ A (8)

With these definitions,we can define a number of distance-
based metrics to quantify the dissimilarity of the automatic
segmentation from the ground truth:

– Average Surface Distance (ASD) It is defined as the aver-
age of all the distances frompoints on the boundary ofAS
(we denote them as BAS) to the boundary of GT (BGT):

ASD = 1

|BAS|
∑

x∈BAS
d(x, BGT) (9)

– Average Symmetric SurfaceDistance (ASSD) It is defined
as the average of all the distances from points on the
boundary BAS to the boundary BGT and from points on
BGT to BAS:

ASSD = 1

|BAS| + |BGT|

×
⎛

⎝
∑

x∈BAS
d(x, BGT) +

∑

y∈BGT
d(y, BAS)

⎞

⎠

(10)

– Modified Hausdorff Distance (MHD) It is defined as the
undirected 95 percentile Hausdorff measure [4]:

MHD =
−→
d H ,95(AS,GT) + −→

d H ,95(GT,AS)

2
(11)

Experimental design and results

Experimental design

We conducted two different studies in order to evaluate the
efficacy of the present method. For the first study, the seg-
mented result of each test data obtained by the presentmethod
was compared with the associated manual segmentation. For
the second study, due to the large size of input data, we
implemented a 2D fully convolutional network (FCN) [14]
based on the network structure of VGG 16 [24]. In this
FCN, the fully connected layer in VGG 16 is replaced by
a convolutional layer, which is then followed by a 1× 1 con-
volutional layer to generate segmentation in a down-sampled
resolution. In order to get the segmentation in full resolution,
up-sampling is done via deconvolutions [23].
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Table 2 Segmentation results of the 10 test torso CT data

Case JSC (%) DC (%) RC (%) PR (%) ASD (mm) ASSD (mm) MHD (mm)

#1 84.4 91.5 93.3 89.8 0.99 1.02 3.35

#2 87.0 93.1 97.5 89.0 0.74 0.83 2.98

#3 79.0 88.3 96.4 81.4 1.22 1.25 4.0

#4 85.1 92.0 97.3 87.2 0.89 0.98 3.19

#5 91.7 95.7 97.7 93.8 0.51 0.57 1.88

#6 88.8 94.0 95.0 93.1 0.64 0.73 2.58

#7 87.4 93.3 95.9 90.9 0.73 0.78 2.65

#8 87.9 93.6 98.0 89.5 0.79 0.85 2.80

#9 89.2 94.3 95.7 92.9 0.70 0.78 2.65

#10 89.8 94.6 97.5 91.9 0.72 0.75 2.50

Average 87.0 ± 3.5 93.0 ± 2.1 96.4 ± 1.5 89.9 ± 3.6 0.79 ± 0.20 0.85 ± 0.19 2.85 ± 0.56

Fig. 5 Segmentation of the best (top, test case 05) and the worst (bottom, test case 03) cases. From left to right, the input image, the probability
map from “Classifier 1,” the probability map from “Classifier 2,” the probability map from “Classifier 3,” the final segmentation result, and the
ground truth segmentation

Results

Quantitative segmentation results of the 10 test data is shown
inTable 2.Our approach achieved ameanDCof 93.0±2.1%,
a mean JSC of 87.0 ± 3.5%, a mean RC of 96.4 ± 1.5%, a
mean PR of 89.9 ± 3.6%, a mean ASD of 0.79 ± 0.20 mm,
a mean ASSD of 0.85 ± 0.19 mm and a mean MHD of
2.85±0.56mm. Figure 5 shows the segmentation procedures
for the best case (top row) and the worst case (bottom row).
Qualitatively, it can be found that without incorporating con-

text features, the probability maps (the second column) from
“Classifier 1” show high values in relatively large portion of
false positive regions. After integrating context features, the
area of false positive regions is reduced as reflected by the
probability maps (the third column) from “Classifier 2” but
not completely removed. By incorporating the up-sampled
context features with the constrained region of interest in
the high-resolution image space, “Classifier 3” generates
probability maps (the forth column) that have significantly
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Table 3 Comparison of the results obtained by a 2D FCN and our
method

Methods JSC DC RC PR

2D FCN 81.7 ± 3.2 89.9 ± 2.0 92.8 ± 5.0 87.5 ± 4.3

our method 87.0 ± 3.5 93.0 ± 2.1 96.4 ± 1.5 89.9 ± 3.6

reduced false positive regions, demonstrating the efficacy of
the present method.

Implemented on amachinewith a 3.5GHz Intel(R) i7CPU
with 12 cores and 64 GB RAM, it took on average 46.5 s
to segment a torso CT image with the size ranging from
512 × 512 × 802 voxels to 512 × 512 × 1031 voxels. In
contrast, without using the proposed multi-scale strategy, we
have to test each voxel in a given 3D scan, which leads to an
average test time of 205.0 s.

The results of the second study are shown in Table 3. In
comparison with the 2D FCN method, our method demon-
strated better performance. More specifically, the 2D FCN
method achieved a mean DC of 89.9± 2.0%, a mean JSC of
81.7 ± 3.2%, a mean RC of 92.8 ± 5.0% and a mean PR of
87.5 ± 4.3%. In contrast, our method achieved a mean DC
of 93.0 ± 2.1%, a mean JSC of 87.0 ± 3.5%, a mean RC of
96.4 ± 1.5%, and a mean PR of 89.9 ± 3.6%.

Discussions and conclusions

Manual and automated segmentation of individualmuscles in
CT images has been recognized as a challenging task, given
the high variability of shapes between muscles and subjects
and the discontinuity or lack of visible boundaries between
the target muscles and surrounding muscles. In this paper,
we proposed a novel learning-based method for automatic
segmentationof paraspinalmuscles from3D torsoCT images
and conducted a validation study to confirm the efficacy of
the proposed method.

The results achieved by our method are better than those
reported in previous work. For example, based on deep learn-
ing techniques, Kume et al. reported a mean DC of 86.3%,
while our method achieved a mean DC of 93.0%. Using
higher-order shape prior, Inoue et al. [7] reported an aver-
age JSC of 76.5% in segmenting psoas major muscles which
is lower than what our method achieved. The reason why
our method achieved better results than others is probably
due to the integration of the multi-source information in a
multi-scale learning-based framework. As shown in Fig. 5,
the integration of multi-source information and the adoption
of the multi-scale strategy progressively refine the probabil-
ity maps obtained in different stages, leading to an accurate
segmentation at the final stage. To get a fair comparison, we
implemented a 2D FCN method. Our experimental results

showed that the results achieved by our method were better
than those achieved by the 2D FCN method.

The present method is not only accurate but also fast,
largely due to the proposed multi-scale strategy. It is known
that for random forest classification, the test time is propor-
tional to the number of voxels in the test data. The initial
segmentation obtained from “Classifier 2” at low resolution
allows us to define a mask to constrain the test at high res-
olution to a smaller region of interest. This can not only
improve the learning efficacy, as we concentrate on a smaller
region than the complete image space, but also lead to faster
algorithm aswewill test on less number of voxels. Our exper-
imental results demonstrate that our algorithm is four times
faster than the one without using the multi-scale strategy.

It is worth to compare the method introduced in [21] with
the present method. First, both methods are based on random
forest classification with auto-context model [25]. Second,
both studies confirm the effectiveness of incorporating con-
text features for refined segmentation, despite the fact that
the method introduced in [21] is applied to multi-parametric
prostate MR images while the present method is evaluated
on torso CT data. The differences between these two meth-
ods, however, are also apparent. More specifically, due to the
purpose of the study reported in [21], which aims to localize
prostate cancer from in vivo MR images, the resolution of
their data is relatively low, leading to small data dimension
along the out of plane direction. For example, the highest
resolution of the multi-parametric MR images used in [21]
is 0.3125 × 0.3125 × 3mm3. Additionally, their data were
cropped around the prostate,which is a relatively small organ,
in order to localize the prostate cancer from the cropped MR
images. This is the reason why they can repeatedly apply the
random forest classification with auto-context model in the
original data space to get refined results. In contrast, the res-
olutions of our data are high in all three axes, leading to large
data dimensions. Additionally, as we shown in Fig. 1, the
paraspinal muscles are quite large, running along almost the
complete spine. Furthermore, we did not purposely crop our
torso CT data around the paraspinal muscles, which com-
plicated the learning task for our problem. This has been
demonstrated in the second and third columns of Fig. 5,
where false positive predictions appear above and below
the paraspinal muscles. By combining information extracted
from the outputs of two classifiers that are trained in low
resolution, we focus the third classifier on learning impor-
tant multi-source features in a constrained region instead of
the whole volume. As demonstrated in the fourth column of
Fig. 5, such a strategy significantly reduced the false positive
prediction, leading to refined segmentation.

There are limitations in our study. First, the dataset used
in our study is relatively small. We are expecting to enlarge
the dataset to include torso CT data of over 50 subjects, but
the main challenge is to get the ground-truth annotations.
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Second, all the CT data used in this study were acquired with
the same scanner from Gifu University Hospital. It would
be interesting to apply our trained model to CT images from
other scanners in order to test the inter-scanner robustness.
Considering the fact that unlikeMR image values, CT values
are correlatedwith tissue attenuation coefficients,we hypoth-
esize that we can directly apply our trained model to CT data
acquired from other scanners. Such a hypothesis needs to be
verified in our future work. Last but not least, the present
method was evaluated on CT data collected with a standard
clinical protocol. Whether it will work or not on heteroge-
neous data acquired in clinical routine needs to be further
checked in the future.

In summary, we proposed a novel learning-based method
to address the challenging problem of automatic segmenta-
tion of paraspinal muscles from 3D torso CT images. Our
method is based on multi-scale iterative random forest clas-
sifications with multi-source information. The experimental
results demonstrated the efficacy of our proposed approach.
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