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Abstract
Purpose Segmentation of liver tumours is an important part of the 3D visualisation of the liver anatomy for surgical planning.
The spatial relationship between tumours and other structures inside the liver forms the basis of preoperative surgical risk
assessment. However, the automatic segmentation of liver tumours from abdominal CT scans is riddled with challenges.
Tumours located at the border of the liver impose a big challenge as the surrounding tissues could have similar intensities.
Methods In this work, we introduce a fully automated liver tumour segmentation approach in contrast-enhanced CT datasets.
The method is a multi-stage technique which starts with contrast enhancement of the tumours using anisotropic filtering,
followed by adaptive thresholding to extract the initial mask of the tumours from an identified liver region of interest.
Localised level set-based active contours are used to extend the mask to the tumour boundaries.
Results The proposed method is validated on the IRCAD database with pathologies that offer highly variable and complex
liver tumours. The results are compared quantitatively to the ground truth, which is delineated by experts. We achieved an
average dice similarity coefficient of 75% over all patients with liver tumours in the database with overall absolute relative
volume difference of 11%. This is comparable to other recent works, which include semiautomated methods, although they
were validated on different datasets.
Conclusions The proposed approach aims to segment tumours inside the liver envelope automatically with a level of accuracy
adequate for its use as a tool for surgical planning using abdominal CT images. The approach will be validated on larger
datasets in the future.

Keywords Liver tumour · Automatic segmentation · Surgical planning · Abdominal CT

Introduction

Liver tumour segmentation is an important step in the visu-
alisation of liver anatomy for planning surgical treatment. A
precise measurement of the tumour size helps to determine
the required treatment options. Segmenting and defining the
tumour location enable the surgeon to make an accurate
assessment before deciding on the therapeutic choices. An
accurate 3D visualisation also guides the surgeons calculate
the size and volume of a tumour to perform an accurate resec-
tion of the liver affected. Besides removing the tumour, the

B Omar Ibrahim Alirr
eng.omarizi@siswa.ukm.edu.my

1 Department of Electrical, Electronic and Systems
Engineering, Faculty of Engineering and Built Environment,
Universiti Kebangsaan Malaysia (UKM), 43600 Bangi,
Selangor, Malaysia

surgical resection seeks to ensure a sufficient percentage of
the liver remains after resection [1].

Manual segmentation of tumours based on CT scans is
tedious and time-consuming. On the other hand, the auto-
matic liver tumour segmentation is a challenging task, due
to the small observable changes in the tumour and healthy
tissues especially at their borders. Such a task is even more
challenging for surgeons in the treatment room. The delin-
eation of tumours has to be performed on CT scans, which
are noisy and contain artefacts. Besides that, the tumours
vary greatly in terms of shape, size and texture. Moreover,
other surrounding organs like the gallbladder could affect
the automated tumour segmentation if these organs are not
excluded from the segmented liver envelope [2]. Despite
these challenges which complicate tumour segmentation, the
automated approach is desirable, as it is, ideally, more objec-
tive and removes dependence on human skill [3].
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Segmenting of liver tumours can be applied to different
image modalities like CT and MRI [4]. However, this study
focuses on segmenting tumours from the portal venous phase
contrast-enhanced CT scans. It introduces an automatic seg-
mentation method to detect and segment liver tumours. The
proposed method is based on an active contour deformable
model combinedwith tumour intensity estimation,with addi-
tional post-processing steps to extract the tumours. The full
automation of the tumour segmentation tasks enables sur-
geons to focus on more critical tasks, such as planning for
resection. In addition, it removes the bias of manual seg-
mentation. Accurate detection and segmentation of the liver
tumours play an essential role in deciding on the proper treat-
ments options and assessing the risk of liver resection.

Related works

Most liver tumour segmentation methods start by segment-
ing the liver envelope as a region of interest. In the literature,
automated segmentation of the liver, which is another impor-
tant task and affects tumour segmentation, has been applied
before segmentation of liver tumours [5–7]. For liver tumour
segmentation, a number of previous works have described
methods for segmenting liver tumours. They can be broadly
categorised into automatic and semiautomatic liver tumour
segmentation techniques. These methods are based on differ-
ent underlying approaches, such as region growing, level set
contours, multi-level thresholding and graph cut techniques.

Many region growing-based tumour segmentation meth-
ods have also been proposed. Anter et al. [3] proposed a
semiautomatic method of tumour segmentation using the
watershed transform to extract the clusters and define the ini-
tial seeds to be used by a region growing algorithm to segment
the lesions. Kumar et al. used a more precise technique based
on confidence-connected region growing for liver segmenta-
tion. After extracting the liver envelope, they used alternative
fuzzy C-means (AFCM) clustering for lesion segmentation.
However, the FCMmethod suffers fromnoisy data or outliers
[8]. Another semiautomatic region growing-based method is
proposed by selecting seeds manually to update the region
growingmethod iteratively. In their method, the region grow-
ing is constrained by the Bayesian rule and model-matching
rule [9].

Oliveira et al. [10] proposed another region growing
method, which starts by finding initial seeds using a Gaus-
sian mixture model (GMM) which are used in the region
growing technique to perform tumour segmentation. How-
ever, the method has some limitations, especially when the
tumours are located near the liver surface or when the tumour
has a similar intensity to the liver tissue. Zhou et al. [11]
proposed three semiautomatic tumour segmentation meth-
ods, namely a 2D knowledge-based region growing method,
a 2D voxel classification method with propagation learning

and 3D Bayesian region growing. However, the proposed
methods suffer in segmenting tumours with blurred bound-
aries.

On the other hand, machine-learning techniques are
utilised in tumour segmentation. Freiman et al. used an
SVM to classify clusters initialised by manually selected
seeds to generate another set of high-quality seeds. The
high-quality seeds are then propagated based on the affin-
ity between the pixels, controlled by an optimal propagation
map. The authors tried to minimise the of user interac-
tion; however, still there is a bias due to the expert who is
selecting the initial seeds [12]. Moltz et al. [13] proposed a
semiautomaticmethod startingwith an initial coarse segmen-
tation using adaptive thresholding, which is then followed by
model-based morphological operations to remove leaks to
the surrounding tissues. The method faced challenges in seg-
menting some types of tumours which required developing a
special solutions. Li et al. [14] used a new unified level set-
based algorithm that incorporates the image gradient, region
competition and prior information to segment tumours from
CT scans. The authors used to change the controlling param-
eters for different datasets to get a satisfactory results. Häme
and Pollari [15] proposed another semiautomatic method.
It is initialised by manual selection, followed by intensity
distribution estimation to classify voxels into classes, which
are passed to a hidden Markov measure aided by spherical
priori shape information to segment the selected tumours.
The method suffers with large tumours and high level of het-
erogeneity. Huang et al. proposed an automatic technique
for tumour detection and semiautomatic method for tumour
segmentation using kernel-based extreme learning machine
(ELM). They used ELM as class learning machine to detect
tumours. However, for the segmentation, they used tumour
sampling in 3D space and increased the feature representa-
tion of voxels. The method suffered in segmenting tumours
with voxels same like the vessels [16]. Weiwei et al. pro-
posed a deep learning approach to segment liver tumours.
A semiautomatic method combines an improved fuzzy c-
mean with graph cut, in which the graph cut labelling is
improved by incorporating the kernelised FCM in the energy
function. The authors required a low interaction to extract
the liver region of interest to reduce the computational time;
the method achieved high performance with small average
computational time; however, the method faces challenge in
segmenting the low contrast and blurred boundaries [17].

Linguraru et al. proposed a graph cut approach constrained
by shape and enhancement modes information. The method
does not address the heterogeneity of some tumours, which
make it struggle with unusual cases. The segmentation is
further enhanced by level set active contours [18]. Wu et
al. propose a graph cut method started by applying low-
level processing steps to generate a tumour threshold range.
They selected the seeds inside each tumour region manually,
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which are then used by the graph cut approach to segment
the tumours [19].

The highest scoring methods are those based on an inter-
active technique like the graph cut technique. In addition,
techniques that are based on adaptive thresholding and mor-
phological processing achieved high scores. In this paper,
we try to achieve high segmentation accuracy by propos-
ing a fully automatic technique that reduces the bias of user
interaction and the time required for segmentation.

The proposedmethod

Segmenting liver tumours from CT scans is as an important
task in the computer-aided diagnosis systems of preopera-
tive planning hepatic surgical treatments. The approach of
segmenting the liver tumours starts by characterising them
based on their intensity values. Liver tumours are classified
as hypervascular and hypovascular based on the scan timing.
Hypervascular tumours are arterial enhancing lesions, which
are rapidly filled by contrast during the arterial phase. Most
of the hypervascular lesions are benign and primary tumours.
On the other hand, the hypovascular tumours are more com-
mon than the hypervascular tumours. Hypovascular tumours
like malignant and metastases are the most common. The
hypovascular tumours are detected as hypodense lesions in
the portal venous phase [20]. This paper seeks to segment the
hypovascular tumours that appear in the portal venous phase
CT scans.

Wepropose an automaticmethod to segment hypovascular
tumours in CT scans, which are acquired in the portal venous
phase. The proposed liver tumour segmentation method is a
multi-stage segmentation framework approach comprising
five steps:

1. Pre-processing Tumour contrast enhancement.
2. Liver ROI construction Liver envelope construction.
3. Initial tumour segmentation Initial tumour mask extrac-

tion.
4. Localised active contour Tumour mask completion.
5. Check tumour circularity Exclude erroneous segmenta-

tions.

Pre-processing: tumour contrast enhancement

In this work, our main concern is the hypovascular tumours,
which appear darker in the portal venous phase scanning.
The CT scans for evaluation are acquired in the portal venous
phase. The tumours do not contain the same as contrast as
liver parenchyma. In the portal venous phase, the liver is
loaded with the contrast by the portal vein to detect the hypo-
vascular tumours. Despite that, tumours and the liver tissue
could have similar density values, especially where they bor-

Fig. 1 CT scan enhancement using EED filtering

der each other. In this step, the aim is to increase the contrast
between the liver tissue and the tumour to aid in the extrac-
tion of the tumour from the target CT scan. This step should
make the tumour appear darker compared to the liver tissue.

To enhance the tumour contrast in the liver parenchyma, an
edge-enhancing diffusion filtering technique (EED) is used.
We use an anisotropic diffusion filtering technique developed
by Mendrik et al. [21]. In anisotropic enhancing diffusion
filters, instead of using a scalar diffusion, they used a dif-
fusion tensor to adapt the diffusion along image structures.
Thus, diffusion filtering describes the image structure using
a structure tensor, which is based on the use of a structure
description such as structural features or local coherence of
structure, as a diffusion tensor to steer the diffusion [22].

The EED filter is designed to enhance the contrast, fil-
ters the noise in the homogeneous regions and preserves the
boundaries of the shape [21]. EEDfiltering enhances the con-
trast of tumours by enhancing the homogeneities inside the
liver and tumour tissue regions. In addition, it preserves the
boundaries between tumours and liver tissue. Figure 1 shows
an example of a CT scan before and after being enhanced
using EED filtering. The intensity of the liver parenchyma is
enhanced and appears brighter than the tumour regions,while
the tumours appear darker compared to the liver tissue.

Liver ROI construction

In most of the previously proposed tumour segmentation
techniques, the method starts by having a pre-segmented
liver envelope as a region of interest within which the liver
tumours are segmented. In liver segmentation, tumours that
are located inside the liver and surrounded by the liver tis-
sue can are segmented by extending an initial mask or using
region filling. However, in some datasets, the tumour could
exist near the liver surface. When this type of tumour is seg-
mented, it will result in a segmented liver envelope with a
concave on the surface of the segmented liver.

In this step of our proposed approach, the aim is to con-
struct a liver ROI that includes both tumours located inside
the liver tissue and the tumours located near the liver surface.
For this purpose, the results generated in our previous work
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Fig. 2 a Intensity-based segmented liver envelope and b constructed
liver ROI using mean shape registration

[23] are used. This liver ROI will be used in the next step to
extract the initial masks of the liver tumours.

In this step, a localised mean shape model is utilised to
create an enhanced liver ROI. The localised mean shape is
sought to be located within the liver region and covers most
of the liver organ. In order to enhance the construction of the
liver ROI, the localised shape model is improved upon and
deformed to better represent the liver envelope.

For this purpose, an intensity-based registration using the
mutual informationmetric is used. The localised shapemodel
is registered to a previously segmented livermask.As a result,
the liver shape model is deformed to match the surface of the
liver in the CT image without being affected by tumour con-
caves that may appear on the liver surface. Figure 2 shows an
example of the constructed liver ROI and demonstrates how
the registeredmean shape successfully includes the tumorous
regions in the resulting segmented liver.

Initial tumour segmentation

In this step, the aim is to find the range of tumour inten-
sities inside the liver region. After the enhancement step
(“Pre-processing: tumour contrast enhancement” section),
the contrast between liver tissue and tumours is improved.
Based on that, the liver ROI is assumed to include three
classes of tissues, which can be distinguished by their inten-
sities. The first class is liver tissue, which represents the
majority liver volume.The second class is higher intensity tis-
sue, which includes vessels or parts from surrounding organs
that are erroneously included in the ROI. These exist because
the focus of this paper is to segment hypovascular tumours
and hence slight errors in the constructed liver ROI are toler-
ated. The third class of tissue is those with lower intensities,
which include the tumour tissue. Again, due to the slightly
relaxed accuracy sought for the constructed liver ROI, this
third class of tissue has voxels from surrounding anatomy
such as muscles and other organs such as parts of the gall-
bladder, which have intensity values smaller than the tumour
intensities.
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Fig. 3 Tumour threshold calculation; intensities classification using
multiple thresholding inside liver ROI

Fig. 4 Initial tumour segmentation represents the classified tumours
intensities

Adaptive local thresholding is applied to automatically
perform intensity analysis in order to identify the main
intensity ranges for the three classes of tissue inside the
constructed liver ROI. The diagram in Fig. 3 represents the
process of the adaptive thresholding carried on the liver ROI.
The Otsu algorithm is used to implement the multiple local
thresholding, to find the estimated thresholds.With the range
of intensities in the ROI represented as e to d, the threshold-
ing steps are as follows:

1. A threshold f is found to divide theROI intensities (e−d)
into two classes.

2. A second threshold g divides the range f −d. The range
g− d is designated as the higher intensity class (vessels,
other anatomy).

3. A third threshold h, divides the range e − g. The range
h − g is designated as liver parenchyma.

4. A final threshold i , divides the range e − h. The range
i − h is designated as tumour tissue.

As shown in Fig. 3, only intensities between i to h are
assumed to be of tumour tissue. Lower intensity voxels are
assumed to be the surrounding muscles and other anatomy.

Figure 4 shows the initial segmentation of the tumours.
Their intensities are located within the estimated range of
tumours intensities (i − h), from the constructed liver ROI.
Figure 4 demonstrates that the tumour tissue is differentiated
from other tissue inside the ROI.
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Fig. 5 The extension of the initial mask using the active contour to
segment the whole tumour

Localised active contour

The previous step extracts an initial tumour mask from the
constructed liver ROI. However, this initial mask might only
include part of the tumour due to incorrect liver ROI con-
struction, as shown in Fig. 5, which is especially true for
tumours located at the liver surface.

In this step, a level set-based active contour method is
used to extend the initial tumour mask to the boundary of the
tumours in the CT image. In this work, in order to avoid the
problems of the global region-based active contour method
[17], a localised region-based active contour method is used,
as proposed by Lankton et al. [24]. Instead of modelling
the whole image, the contour is modelled by many neigh-
bourhood local regions, and each local region is considered
separately. The input for the localised active contour step is
the initial tumour mask. The localised active contour aims to
deform the tumours masks to the tumour regions that have
intensity values located within the estimated intensity range
of the tumours.

Theprocess ofmaskdeformation is applied to each tumour
separately to avoid overlap with other tumours. Figure 5
shows the tumour segmentation after applying the localised
active contour.

Tumour circularity check

Due to the relaxed accuracy of the constructed liver ROI in
the second step above, tissue which does not belong to the
liver is included in the ROI. These erroneously included tis-
sues may have intensity values within the estimated tumour
intensity range. Consequently, the initialmask of the tumours
may include parts from the surrounding tissue. Those non-
tumorous parts would also be deformed in the active contour
step and appear in thefinal tumour segmentation result. In this
step, the aim is to remove the erroneous segmented tumours,
by discriminating the non-tumour structures out from true
tumour tissue. For this purpose, we proposed a knowledge-
based discriminative metric based on the clinical feature that

Fig. 6 Minimum fitted circle

the hypovascular tumours have a spherical shape [25]. A cir-
cularity metric is used to check each segmented tumour. If
the segmented tumour adheres to this circularity metric, it
will be considered a true tumour.

The tumour discriminationmetric is based onfitting amin-
imum circle to enclose each part of the tumour that appears
in each slice as shown in Fig. 6. The area of the fitted circle
is computed for each slice. This step is repeated for all other
tumour parts. Finally, the fitted areas for all tumour’s parts
are summed up to find the minimum volume that represents
the tumour. The object is considered a tumour if the ratio
between the actual tumour volume, which we examined, to
the calculated fitted area is above a degree of circularity. In
this paper, we experimentally measured the accepted degree
of circularity, which is 0.42. The discrimination metric is
calculated based on Eq. 1 shown below;

Tumour Circularity Metric

= Tumour Volume/
∑

Tumourslices
(Fitted Circle Area) (1)

Results and discussion

The proposed method is validated on the challenging 3D
IRCAD dataset. These datasets offer highly variable and
complex liver tumours. The proposed method is validated
against datasets with pathology cases, which have 111
tumour cases residing inside the liver envelope. The method
outputs are compared to the manual ground truth tumours,
which are delineated by experts.

Segmentation results

Figure 7 shows a visualisation of the results of the proposed
tumour segmentation method for three different patients,
with the CT images shown in an intensity window of 0 to
150 Hounsfield values, in which the tumour and liver tissue
appear clearly. The first two columns (a and b) in Fig. 7 show
two different axial slices of the segmented tumours for each
dataset. The result of the proposed automatic segmentation
method is shown as a blue boundary, while the ground truth
segmentation is marked as a red boundary. It can be seen
that the proposed method successfully extracts the tumour
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Fig. 7 Tumour segmentation results; a, b two different axial slices showing the comparison between the proposed method (blue) and the ground
truth (red) and c 3D rendering of the segmented tumours

boundaries and is close to the ground truth delineation in the
CT images.

Column (c) in Fig. 7 shows the 3D rendering of the
segmented tumours inside a translucent liver envelope of
the selected datasets. The 3D rendering of the segmented
tumours visualises the location and size of the tumours with
respect to the liver. This visualisation would enable surgeons
to understand the geometry and location of the cancerous
lesion. In addition, the tumours could be labelled with differ-
ent colours to enable surgeons to interact with each tumour
separately during treatment.

It is clear from the three examples in the first two columns
in Fig. 7 that the difference between the proposed method
and the corresponding ground truth occurs on the tumour
surface, which indicates that the method under-segments the
tumours in some cases. However, the method segmentation
contour (blue) follows closely the tumour boundaries, which
appear very clear in the image, compared to themanual delin-
eation of the experts (red) which extend beyond the visible
boundary. Usually, for surgical purposes, the experts add a

Table 1 Quantitative evaluation results

Patient No. of tumours ARVD% JI % DICE %

1 7 7.11 72.53 84.07

2 7 15.3 59.13 74.31

3 20 11.25 66.46 79.81

4 1 13.38 56.09 71.86

5 8 17.22 55.48 71.36

6 20 5.16 54.08 70.19

7 2 0.07 58.43 73.76

8 46 0.22 59.09 74.28

Average 11.43 60.16 74.96

safety margin to their delineations to include those tumorous
tissues on the borders between clear tumours and healthy
tissues. These tumorous tissues have very similar density
values to the healthy liver tissue. Experts add the safety mar-
gin to ensure resecting all tumorous tissue during surgical
treatments to reduce the possibility of tumours regeneration.
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Table 2 The proposed method
compared against other previous
techniques

Method (dataset) No. of tumours Interaction ARVD JI DSC

Freiman et al. [12] (MICCAI) 10 Semi 22.64 67.2 NA

Linguraru et al. [18] (MICCAI + private) 79 Auto 12.4 NA 75.4

Moltz et al. [13] (MICCAI) 10 Semi 29.13 69.86 NA

Vorontsov et al. [26] (private) 27 Semi NA NA 81

Li et al. [14] (MICCAI) 10 Semi 10.64 73.69 NA

Qi et al. [9] (MICCAI) 10 Semi 43.01 57.9 NA

Zhou et al. [11] (private) 37 Semi 26.1 69.2 NA

Weiwei et al. [17] (IRCAD) 120 Semi 2.2 70.96 83

Proposed method (IRCAD) 111 Auto 11.43 60.16 74.96

This could make our method to under segment the tumours
compared to the manually segmented tumours, which would
affect the results in the quantitative assessment as presented
in the next section.

Quantitative evaluation

As mentioned above, the tumour segmentation is performed
on the 3D IRCAD dataset which contains a large number of
tumours. The results of the proposed method are evaluated
using a group of performance measures against the manually
segmented gold standards. These measures are the Absolute
Relative Volume Difference (ARVD), Jaccard Index (JI) and
Dice Coefficient (DICE).

Table 1 provides the quantitative evaluation of the results
of the proposed method. In addition, the table shows the
number of tumours that exist in each patient. A total of
111 tumours have been segmented in this study across all
patient. The average ARVD value is 11.43%, the average JI
is 60.16%, and the average DICE is 74.96%. As explained
in the previous section and shown by Fig. 7, the proposed
method results in contours that follow the tumours’ bound-
aries, compared to the ground truth delineationwhich appears
to slightly over segment the visible tumours’ boundaries.

The lack of reference datasets makes the quantitative
comparison between the different liver tumour segmentation
methods in the literature difficult. Many proposed methods
used their private datasets. On the other hand, the datasets
fromMICCAI 2008 liver tumour segmentation challenge are
not publicly available. Taking this into account, we attempt to
present the results of our proposed method along with other
techniques proposed to solve the problem of liver tumour
segmentation in Table 2.

As shown in Table 2, the presented methods have been
validated against a different number of tumours from dif-
ferent sources of data. We also present the amount of user
interaction for the methods shown in Table 2. The amount of
user interaction plays an important role in enhancing the seg-
mentation output. As the level of interaction increases, the

accuracy of the segmentation results may improve as shown
by some semiautomatic methods.We note that our results are
comparable to another automated approach [13] in the DSC
value. However, we produce a lowerARVD.The dataset used
in our evaluation (3D IRCAD) also has more tumours than
that used in [13].

Conclusion

In this paper, we described an automatic segmentation
method of liver tumours without the need for user inter-
action. The proposed framework combines multiple steps,
starting with anisotropic filtering, followed by the construc-
tion of an initial tumours mask using adaptive thresholding
which is improved upon by using localised active contours
to deform the tumour mask to their boundaries. The pro-
posed method is validated against a large number of tumours
(111), with different size, shape and number of tumours in
each patient dataset. The 3D visualisation and quantitative
evaluation using different measures show high accuracies,
demonstrating the effectiveness of the proposed method. We
propose that themethod can be used in larger computer-aided
systems for liver surgical planning, and we aim to evaluate it
against larger datasets in the future.
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