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Abstract
Purpose Deep convolutional neural networks (DCNN) are currently ubiquitous in medical imaging. While their versatility
and high-quality results for common image analysis tasks including segmentation, localisation and prediction is astonishing,
the large representational power comes at the cost of highly demanding computational effort. This limits their practical
applications for image-guided interventions and diagnostic (point-of-care) support using mobile devices without graphics
processing units (GPU).
Methods We propose a new scheme that approximates both trainable weights and neural activations in deep networks by
ternary values and tackles the open question of backpropagation when dealing with non-differentiable functions. Our solution
enables the removal of the expensive floating-point matrix multiplications throughout any convolutional neural network and
replaces them by energy- and time-preserving binary operators and population counts.
Results We evaluate our approach for the segmentation of the pancreas in CT. Here, our ternary approximation within a
fully convolutional network leads to more than 90% memory reductions and high accuracy (without any post-processing)
with a Dice overlap of 71.0% that comes close to the one obtained when using networks with high-precision weights and
activations. We further provide a concept for sub-second inference without GPUs and demonstrate significant improvements
in comparison with binary quantisation and without our proposed ternary hyperbolic tangent continuation.
Conclusions We present a key enabling technique for highly efficient DCNN inference without GPUs that will help to bring
the advances of deep learning to practical clinical applications. It has also great promise for improving accuracies in large-scale
medical data retrieval.

Keywords Deep learning · Pancreas · Segmentation · Sparsity · Model compression · Hamming distance

Introduction

Deep convolutional neural networks (CNNs) have been
shown to substantially improve common image analysis
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tasks in computer vision and (bio-)medical imaging. They
have in particular advanced research in automatic segmen-
tation and image classification. Dense prediction based on
fully convolutional network (FCN) architectures [20] enables
very accurate voxel-wise segmentation by a single forward
pass of the input image through a trained CNN architec-
ture [6]. However, FCNs also comewith tremendous demand
for memory and computational resources that can rarely be
satisfied in clinical scenarios—in particular when envision-
ing a mobile application of computer-assisted diagnosis and
interventions. Furthermore, the translation of deep learning
into interactive clinical workflows will require processing
times of few seconds, which up-to-date were only achievable
using power-demanding GPUs. Surprisingly little research
has been undertaken in deep learning formedical image anal-
ysis that attempts to limit model complexity. In this work,
we address these challenges and present a new technique to
advance state-of-the-art CNN and FCN approaches by intro-
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ducing theTernaryNet—aversatile end-to-end trainable deep
learning architecture that drastically reduces computational
and memory demand for inference. We achieve this goal by
replacing floating-point matrix multiplications with ternary
convolutions (based on sparse binary kernels), with both
activations and weights restricted to values of {−1, 0,+1}.
They can be calculated using a masked Hamming distance,
a XOR/XNOR operation followed by a popcount, and
reduce computational demand by up to a factor of 16. Our
approach is not merely motivated by gains in computational
performance, but also to explore the theoretical advantages of
explicit sparsity promotion to reduce the risk of overfitting (as
detailed in the following subsection) and learnmore plausible
neural network models. Our work extends recent approaches
from computer vision that relied on binary convolutions [25],
ternary weight networks [18], hashing by continuation [2]
and our initial work on sparse binary convolutions [10]. The
presented approach is to the best of our knowledge the first
to use binary convolutions for semantic segmentation and
the very first to propose ternary convolutions (and not only
ternary weights since activations are also restricted) based on
masked Hamming distances.

The TernaryNet can be employed for any given image
analysis task, e.g. landmark regression or image-level clas-
sification, but we chose to demonstrate its applicability to
medical imaging for the automatic voxel-accurate segmen-
tation of the pancreas in CT scans, which is a particularly
demanding task. Pancreas segmentation is very important for
computer-assisted diagnosis of inflammation (pancreatitis)
or cancer and furthermore to provide image-based naviga-
tional guidance for interventions, including endoscopy [6]. In
the following, we will motivate the use of sparse binary ker-
nels in deep convolutional networks and discuss related work
for the use of quantisation in image analysis in particular
in deep networks. Section 2 contains the detailed explana-
tion of ternary quantisation and convolutions. Starting with
a short discussion of current work on CT pancreas segmen-
tation, we describe our experimental set-up in Sect. 3 and
compare different strategies and choices for model complex-
ity reduction. We discuss our results, potentials for further
research and future implications of our novel ternary con-
volution concept in Sect. 4 and end with some concluding
remarks.

Motivation for sparse binary kernels: Convolutional neu-
ronal networks excel in image recognition tasks by mimick-
ing the visual cortex of mammals. The visual information
is detected by photoreceptor cells and transmitted and pro-
cessed using multiple layers of neurons interconnected by
synapses. Computational models have the capacity to repli-
cate these mechanisms and can furthermore represent neural
activations up to extremely high numerical precision (up to
8 decimal points). However, in nature the simple structure of
neural cells and environmental influences severely limit the

accuracy of subtle changes in activation and in addition the
need to conserve energy may lead to a sparse as possible use
of neural activity. Ohlshausen and Field [24] and Lee et al.
[17] therefore established the idea of sparse coding for pattern
recognition and neural networks. Those works demonstrate
that powerful convolutional filters can be learned using few
nonzero values by means of sparsity inducing L1 norms and
a feature sign searching algorithm. Furthermore, we observe
that the nonzero elements of these synthetic models of V1
cells tend to be close to values +1 and−1.Therefore, a ternary
approximation of weights leads to only minor degradation of
representational power (see Fig. 1).

Related work: Due to their computational efficiency,
binary codes and their comparison using the Hamming dis-
tance (which counts the number of dissimilar bits in a
long binary vector) are becoming increasingly popular for
demanding image analysis tasks. They have been employed
for hashing-based large-scale image retrieval [3,35], nearest-
neighbour-based segmentation [7] and image registration [8].
In computer vision, binary descriptors are frequently used for
real-time applications, e.g. tracking using BRIEF features
[1]. There are, however, also cases where binarisation led to
inadequate loss in representation quality as, e.g. reported for
lung nodule classification in [5].

In our recent prior work [10], we proposed the use
of sparse binary kernels with very large receptive fields
inspired by BRIEF features and dilated convolutions [30,34]
that enabled highly accurate segmentations without complex
network architectures. Similarly and concurrently, [14] pro-
posed local binary convolutions that are derived from local
binary patterns. A key limitation of these works is, how-
ever, that their design does not allow us to automatically train
nonzero elements within binary kernels. Instead, they have
to be chosen once at random (with a similar manual design
as proposed in [1]). We also did not realise binary or ternary
activations thus the use of efficient computations without
floating-point arithmetic was not possible. An alternative
solution that has recently been proposed is the use of trained
ternaryfilterweights [18,37]. In particular ternaryweight net-
works [18] use a very simple, yet powerful, approximation
and learning strategy based on the mild assumption of Gaus-
sian statistics. They generalise the earlier ideas of [4,25] for
learning binary weights and clearly demonstrate that ternari-
sation drastically reduces the accuracy gap to high-precision
weights. Another related approach by Liu et al. [19] employs
decomposition methods for sparsification of convolution fil-
ters and proposes a new implementation for fast sparsematrix
multiplication.

While weight quantisation has quickly matured, another
important aspect that has so far been only insufficiently
addressed is the quantisation or sparsification of activations.
Setting approximately half of the activations to zero using
a rectifying linear unit (ReLU) is common practice in deep
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Fig. 1 Left: Visual example of learned synthetic receptive fields (reproducing the results of [17]) using sparse coding techniques. Right: Ternarisation
of weights demonstrates the low approximation error for these naturally inspired sparse filters

learning. Yet more drastic quantisation, e.g. using the sign
function

sgn(x) := (x ≥ 0 → 1) ∧ (x < 0 → −1) (1)

as nonlinear activation leads to strong artefacts during
forward passes and no gradient for backpropagation. Cour-
bariaux et al. [4] therefore proposes an ad hoc solution that
employs a rectangle (boxcar) function

∂ sgn /∂x ≈ (|x | ≤ 1 → 1) ∧ (|x | > 1 ≤ 0 → 0) (2)

as a replacement, which was later also used in [25]. The
downside of this approach is the fact that since two different
functions are used during forward and backward propagation
the training behaviour is ill-defined and potentially unstable.
Cao et al. [2] propose a more justifiable approach based on
the continuation of the hyperbolic tangent, which approaches
the sign function with increasing slope β in its limit:

lim
β→∞ tanh(βx) = sgn(x) (3)

They prove the convergence of this optimisation when
employing a sequence of increasing values of β during train-
ing. They limit the use of this function to the final layerwithin
a framework for supervised hashing. In our work, we extend
this concept to a ternary hyperbolic tangent as explained in
detail in the following section and apply this function as
nonlinearity throughout—for every activation—in our deep
network models.

Method

We aim to automatically segment the pancreas in regions
of interest extracted from CT volumes. For this purpose, a
fully convolutional U-Net architecture [26] is chosen. How-
ever, a V-Net [21] or multi-path network will most likely
lead to similarly good segmentations and would also support
our findings. The U-Net model can contain several million
free parameters rendering it computationally demanding and
prone to overfitting. Furthermore, as common for FCN archi-
tectures an efficient inference requires an unexpectedly large
amount of memory due to the use of the im2col operations.
They are necessary to perform multichannel convolutions of
all elements in the feature maps in parallel using matrix mul-
tiplications between activations of preceding layers with a
current filter bank [13]. We propose a ternary quantisation of
weights and activations that is generic and therefore appli-
cable to reduce complexity for any (convolutional) neural
network architecture including FCNs.

Ternary weights: In order to limit the memory demand,
reduce model complexity and enable inference of CNNs
in practical clinical environments, it is desirable to reduce
the precision of both activations and weights. Following the
recent work of Li et al. [18], we aim to find the best approx-
imation to the filter weights W ≈ αW̃ where α describes
a (floating-point) scaling parameter and W̃ consists of only
ternary values {−1, 0, 1}. It is shown in [18] that the minimal
quantisation error can be obtained by calculating:
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Fig. 2 Visualisation of proposed ternary hyperbolic tangent as defined in Eq. 5 showing varying β values for increasing steepness of slopes. The
analytical derivative of our new nonlinearity is shown for β = 3 on the right
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and α = 1
n�

∑
i |W̃i ||Wi | with n� = ∑

i |W̃i |. When
employing quantisedweights during the training of a network
using stochastic gradient descent with mini-batches (i.e. in
virtually any case of deep learning), it is strongly advisable
[4] to accumulate gradient updates with full precision (while
using W̃ for both forward and backward passes); otherwise,
they would usually not exceed the threshold (according to
Eq. 4) necessary to flip individual bits. This simple and
straightforward ternary weight approximation already yields
excellent accuracies for classification tasks (only 3.6% lower
top-1 scores for ImageNet compared to full-precision net-
works [18]).

Ternary activations: The use of ternary weight approxi-
mations alone, however, cannot reduce the hugememory and
computational demand required to store and process interme-
diate feature maps, since the resulting activations will still be
full precision. The key contribution of our work is therefore
the introduction of a new activation function that enables
an accurate ternarisation of intermediate features in a neu-
ral network, which we coin ternary hyperbolic tangent. This
proposed function ternTanh(x) combines twohyperbolic tan-
gents to form plateaus around zero and beyond +1 and -1:

ternTanh(x) = 1

2
tanh(2βx − β) − 1

2
tanh(−2βx − β) (5)

In contrast to a sign function, the ternary hyberbolic tangent is
fully differentiable and can therefore be used without custom
changes to the learning procedure of deep networks. The
parameter β controls the slope and can be varied throughout
the process of learning. In earlier iterations, it is beneficial
to use smaller values for β to enable sufficient gradient flow

and avoid “dying” neurons. Eventually, we aim for a discrete
step function tern(x) that can be defined as:

tern(x) =

⎧
⎪⎨

⎪⎩

+1 if x > 0.5

0 if |x | ≤ 0.5

−1 else

(6)

Similar as above for the binary case covered in [2], the follow-
ing continuation holds true (see Fig. 2 for visual example):

lim
β→∞ ternTanh(βx) = tern(x) (7)

Ternary convolutions and complexity analysis: In com-
bining both ternary weights and ternary activations, we
can realise important avoidance of time-consuming floating-
point multiplications, which were at the core of classical
deep learning architectures. In [4,25], the idea of replacing
full-precision inner products of an input tensor I and a filter
bank W by Boolean operations and bit counting (popula-
tion count) was explored for binary valued operands, i.e.
I,W ∈ {−1,+1}c, where c denotes the size of a kernel
(including both spatial extend and number of features). It is
straightforward to show that a matrix multiplication and its
inner products can be efficiently calculated in the Hamming
space:

IiW j = c − 2Ξ{Ii ⊕ W j } (8)

where ⊕ defines an exclusive OR (XOR) operator and Ξ a
bit-count over the c bits in the rows of I and W. Modern
CPUs, FPGAs or embedded SoCs all contain instructions
for efficiently calculating population counts of 64-bit strings
in few cycles (using AVX extensions Intel CPUs achieve
a throughput of 0.5 cycles [23]). This means that each
bit-count replaces 64 floating-point multiplications and addi-
tions. Even when considering the highly optimised fused
multiply addition (FMA) instructions on 256 bit wide regis-
ters (mm256-fmadd-ps), which are employed on modern
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Fig. 3 Visual example for the computation of ternary convolutions
without floating-point operations. Ternary values are encoded by sign
and value, i.e. +1 → (�,�), -1 → (�,�) and 0 → (�,�). The approxi-
mation for a ternary filter bank provides scaling parameters α see below

Eq. 4. Ternary convolutions can be computed by masked XOR and
XNOR operators followed by a bit-count according to Eq. 9. The out-
put is batch normalised and passed on to the nonlinearity visualised in
Fig. 2

Intel CPUs and that can process 8 packed FMAs in parallel
in 0.5 cycles, we can gain a speed up of a factor of 8. When
considering equal power consumption (floating-point oper-
ations require more complex logic), the improvements are
even much higher.

Since previous work on binary quantisation of deep
learning architectures [4,25] has led to severely reduced accu-
racy of 12–20% for image classification tasks, we aim to
extend the concept of bit counting as replacement for matrix
multiplications to ternary valued networks with I,W ∈
{−1, 0,+1}c. As shown in Fig. 3, we can store ternary ten-
sors using 2 bits per entry that encode the sign and value,
respectively. We denote these two tensors as Is, Iv ∈ {0, 1}c
and Ws,Wv ∈ {0, 1}c. The inner product calculation can
then be realised using two bit-counts in Hamming space:

IiW j = Ξ
{
(Isi ⊕ Ws

j )&(Ivi + Wv
j )

}

−Ξ
{
(Isi ⊕ Ws

j )&(Ivi + Wv
j )

}
(9)

Here, & defines an AND operator, + the Boolean OR and
A ⊕ B the negated XOR. A more intuitive interpretation is
that all operations involving a zero value are excluded and the
first part of the equation calculates all positives elements of a
dot product, i.e. +1 · +1 and −1 · −1, while the second part
subtracts the number of times an opposing sign multiplica-
tion occurs. The complete concept of an individual building
block for ternary convolutions in deep networks is shown in
Fig. 3. In practice further speed-ups (halving the number of
bit-counts) are possible when training the weight quantisa-

tion to follow a specified degree of sparsity, e.g. by replacing
the rule derived in Eq. 4 and specify � so that in each kernel
exactly 50% of entries are zero.

In summary, each module in our proposed TernaryNet
architecture comprises a ternary approximation of filter
weights together with a ternarisation of activations to
enable low-power, high-speed ternary convolutions with-
out floating-point operations. During training both weight
updates for mini-batch optimisation and the activations using
the new ternary hyperbolic tangent ternTanh are kept at full
precision to enable gradient flow and precise learning. By
extending the strategy of [2] to ternary activations and apply-
ing a continuously increasing slope β during training, the
network learns to cope with sparse and quantised activa-
tions, which is vital in order to avoid diverging objectives
between training and testing.Batch-normalisation layers [12]
are inserted between ternary convolutions and activations
to accelerate the learning process and keep a zero mean of
feature responses as well as an approximately unit normal
distribution to ensure the nonlinearity is not easily saturated.
A trained model can be stored using only 2 bits per weight
and one (full-precision) scalar weighting value per feature
channel—reducing the required memory by more than an
order of magnitude. During model inference on unseen data,
we employ the hard quantisation of Eq. 6 and thereby enable
the use of Hamming distances for ternary convolutions. It
is important to note that all common architectural design
choices of modern deep networks, such as skip connections
[26], dilated kernels [10,34] or dense feature concatenation
[6,11] are useable with ternary convolutions.
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Experiments

To demonstrate the usefulness of TernaryNets for highly effi-
cientmedical image analysis,we explore the dense prediction
(semantic segmentation) of the pancreas in CT. The exten-
sion of our model to multi-organ labelling is straightforward.
Providing image guidance for interventional tasks relies on
fast inference executed on common clinical workstations or
even mobile devices. We therefore also analyse in detail the
computational operations and memory requirements in our
experiments. The highly variable shape and a relatively poor
contrast of the pancreas as well as confusable neighbouring
abdominal anatomies make this segmentation very difficult.
Therefore, networks with large receptive fields are required
to robustly capture sufficient regional context, while at the
same timean automaticmethod shoulddelineate local objects
boundaries accurately and avoid oversegmentation of similar
neighbouring structures within the field-of-view. Our experi-
ments are based on the public NIH dataset that was described
in [27]. It comprises 82 high-resolution CT scans along with
accurate manual segmentations for training and validation.

Comparison to state of the art: Several approaches have
been evaluated in the last few years on the NIH dataset and
a similar corpus of abdominal CT scans (the BCV challenge
data described in [32]). Accuracies for pancreas segmen-
tation without CNNs are often relatively low, e.g. overlap
scores of 40 and 49% have been reported for two different
multi-atlas techniques in [31]. Employing discrete registra-
tion within multi-atlas label fusion [9] improved accuracies
for pancreas segmentation to 74% Dice, ranking first at
the MICCAI 2015 BCV challenge. The approach of [16]
reached 60% overlap within the same challenge by comb-
ing registration-based localisation with deep CNNs. Roth et
al. achieved a Dice score of 71% [27] on the NIH dataset
when combining supervoxel-based deep region regression
with CNN patch classification and could further improve
their accuracy to 78% [28] using holistically nested net-
works together with random forest classifiers. Very recently,
Zhou et al. [36] achieved an astonishing performance of
82% on the NIH data by training an iterative sequence of
multiple (coarse-to-fine) deep CNNs. The use of densely
connected layers within a V-Net architecture (Dense V-Net
[6]) resulted in a Dice overlap of 66% (on both NIH and
BCV datasets), which is also the only of the mentioned deep
learning approaches that did not rely on a combination of
classifiers or registration. In our own previous work [10],
we reached 65% Dice for the BCV dataset using (untrained)
sparse binary convolutions that enabled huge receptive fields
but no binary (or ternary) convolutions.

Baseline model: Our aim is not necessarily to surpass
current state-of-the-art accuracies, but to demonstrate and
analyse the effects of network model quantisation. We
therefore employ a four-level fully convolutional U-Net

architecture [26] as an exemplary baseline. To fairly assess
the influence of binarisation and ternarisation, we employ the
same number of channels and convolution filters for all com-
pared models and hyperbolic tangents (except for the final
prediction layer) as baseline activation function. Table 1 lists
the details of the chosen architecture, including the num-
ber of floating-point operations (FMAs) required per layer.
The resulting receptive field of our networks is 36 voxels.
Using floating-point precision, the network requires 2.6 mil-
lion weights and thus 10.6 MBytes of storage for the model
weights. During training, the model requires more than 5
GBytes of memory (using a mini-batch size of 10). For infer-
ence, this can be reduced to approximately 1 GByte.

Compared models: We have analysed in total seven vari-
ants of our baseline network to explore the effect of sparsity
and quantisation to both activations and filter weights. Start-
ing from the same baseline model, we define our TernaryNet
by approximating weights using the ternary quantisation of
Eq. 4 as proposed in [18]. The first layer always acts on
continuous input and similar to previous work on binarisa-
tion [4,25] we performed no weight quantisation for it. As
evident from the layer details in Table 1 the computational
demand of this layer, with 1.76% of total MFlops and 0.17%
of all weights, is negligible. During training we varied the
value of β in Eq. 7 linearly (and evenly with epochs) from
3.0 to 8.0 following the principal of continuation of [2]. The
variant no continuation uses a fixed β = 3 for all epochs. To
quantify whether our approach successfully reduces quanti-
sation loss, we also compare a variant without quantisation
that does not realise ternary convolutions. For binary con-
volutional networks (termed XNORnet [25], see Eq. 8), we
explore the ad hoc gradient approximation according to the
seminal work in [4]. As alternative, we adopt the continua-
tion (see Eq. 3) for a classical tanh nonlinearity. Finally, the
full-precision network is compared with ReLU activations
for completeness.

Data processing: We resampled the original scans of the
NIH dataset that had axial dimensions of 512 × 512 and
181–466 slices with thicknesses between 0.5 to 1.0 mm to
isotropic voxel sizes of 1.0mm3.We then performed a region-
of-interest cropping with bounding boxes of dimensions
194 × 122 × 138 around the pancreas, yielding an approxi-
mate density of 2% for organ voxels (and 98% background).
There exist several accurate algorithms that automatically
predict bounding boxes and/or organ locations, e.g. [29,33],
which could be employed for this task so it was consid-
ered out of scope for our study. Subsequently, we applied
a zero mean unit variance transformation on the cropped
CT volumes. Following related work on pancreas segmenta-
tion using CNNs [27,36], we employ only 2D convolutions,
but provide a stack of several neighbouring slices (15 in our
experiments) to each network. The output for each stack will
be a probabilistic map of foreground and background proba-
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Table 1 Description of baseline
U-Net model

Layer (Out)-Size Kernel # Channels MFlops Skip

Input 236 × 172 × 15

#1 Conv3D 234 × 170 3 × 3 × 15 32 172

#2 Conv2D 232 × 168 3 × 3 64 718 →#13

#3 Conv2D 228 × 164 3 × 3 64 345

AvgPool2D 114 × 82 2 × 2

#4 Conv2D 112 × 80 3 × 3 128 661 →#11

#5 Conv2D 108 × 76 3 × 3 128 303

AvgPool2D 54 × 38 2 × 2

#6 Conv2D 52 × 36 3 × 3 256 552 →#9

#7 Conv2D 52 × 36 1 × 1 256 31

AvgPool2D 26 × 18 2 × 2

#8 Conv2D 26 × 18 1 × 1 256 31

Upsample2D 52 × 38 2 × 2

#9 Conv2D 50 × 34 3 × 3 256 2005 #6 →
#10 Conv2D 48 × 32 3 × 3 128 453

Upsample2D 96 × 64 2 × 2

#11 Conv2D 94 × 62 3 × 3 128 1719 #4 →
#12 Conv2D 92 × 60 3 × 3 64 407

Upsample2D 184 × 118 2 × 2

#13 Conv2D 180 × 116 3 × 3 64 1583 #2 →
#14 Conv2D 176 × 110 3 × 3 64 770

Prediction 176 × 110 3 × 3 2 2

Number of million fused multiply add (floating-point operations) is given as MFlops. To reduce the number
of trainable parameters the convolutions in the lowest resolution level are 1× 1. Outgoing and incoming skip
connections are noted in the last column

bilities for the given central slice. No form of post-processing
is employed, which could potentially further increase accu-
racy, but also influences the assessment of differences across
methods.

Training and implementation details:Weuse amini-batch
size of 10 and Adam as optimiser with an initial learning
rate of 0.0025. Each network is trained for 40 epochs with
150 iterations (1500 3D input stacks) without early stopping.
The hyperparameters are not specifically optimised and kept
same for all variants. Since we encountered a huge class
imbalance, we use a weighted cross-entropy loss with 0.5
for background and 2.5 for organ pixels, but alternatively
a Dice loss function [21] could automatically deal with it.
We trained 5 separated folds of training and validation splits
using 65–66 scans for training and 16–17 for testing. The
derivatives of our ternary activation and the equivalent binary
tanh(x) can be found analytically (using automatic differen-
tiation), for the ad hoc approximation of binary activations in
Eq. 2 we implemented a custom forward and backward pass.
When approximating filter kernels, we keep a copy of the
full-precision weights, perform the quantisation before for-
ward pass and restore the original values after the backward
pass and before calling the optimiser that performs a gradi-

ent step. To enable a reproduction of our results and further
research, our pytorch implementation and pre-trainedmodels
will be made publicly available after submission at https://
github.com/mattiaspaul/TernaryNet.

Results and discussion

The performance of the seven compared models is evaluated
quantitatively in terms of Dice overlap between automatic
prediction (without further post-processing) and manual
annotation. Average Dice values (and standard deviations)
are compared in Table 2 alongside with statistical signifi-
cance tests and memory usage for model parameters.

It can be seen that our proposed ternary convolutions
performonparwith full-precision networks reaching an aver-
age Dice of 71.0%. This demonstrates the robustness and
high accuracy of our proposed ternary quantisation scheme.
The results are also comparable to a number of recent deep
learning approaches that all relied on full precision and thus
much larger and more complex models. When replacing the
tanh(x) nonlinearitywith aReLU in the full-precisionmodel,
its accuracy can be further improved by 3.8%. However,
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Table 2 Dice overlap measures
of pancreas for 82 CT scans
(fivefold cross-validation)

Architecture Avg. Dice stddev p value weight memory (MBytes)

Binary XNORnet

(continuation Eq. 3) 48.4% ±20.1 
0.001 (–) 0.33

(adhoc gradients Eq. 2) 66.9% ±10.5 0.01(–) 0.33

TernaryNet

(using β → ∞ in Eq. 5) 71.0% ±9.5 * 0.66

(without quantisation) 71.8% ±10.7 0.60 (o) 0.66

(no continuation in training) 56.3% ±19.3 
0.001 (–) 0.66

Full-precision U-Net 71.9% ±10.2 0.54 (o) 10.6

ReLU instead of tanh 75.7% ±9.0 0.001 (+) 10.6

Paired t tests are performed for significance analysis against TernaryNet, where (-) indicates that our method
performed significantly better
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Fig. 4 Top row: A visual comparison of case # 12 of the NIH
demonstrates small but significant advantages of the ternary quanti-
sation (middle) over the better performing ad hoc binary activation and
quantisation, which oversegments a neighbouring structure (left). Our
approach better matches the manual segmentation (right). Bottom row:

3Dvisualisation of our segmentation shows a very smooth surface (left).
Ranked (sorted) Dice score compared across methods demonstrate that
the full-precisionmodel is not significantly better than our heavily quan-
tised TernaryNet. Both Binary XNORnet variants perform inferior

the presumptions that symmetric activations are nowadays
unsuitable to reach high accuracy has been refuted. Possibly,
because the U-Net and similar architectures enable a very
good backwards flow of gradients through their skip connec-
tions. The performance of binary quantisation is significantly
lower than our approach. This is in particular evident for
the variant that uses an analytically differentiable activation
(see Fig. 4). We assert that this underlines the importance
of sparse activations, which can contain a larger number of
zero values—a key feature of our new nonlinearity. Sparse
intermediate featuremaps enable the network to adapt certain
filter banks to specific subproblems while being unaffected
by pertubations of unrelated data.

Training one entire model (within 40 epochs) requires
about 15 min on an NVIDIA Titan Xp. Inference of the
full-precision network on a CPU takes about 80 s. When
employing a customised OpenCL implementation for Ham-
ming distance calculation (used for ternary convolutions in
Eq. 9), we estimated inference times of 5–7 s using a dual-
core mobile CPU. This represents a more than 10× speed-up
through our contributions. Further speed-ups can be gained
by reducing the number of parameters in the expanding path
and skipping every other slice in a 3Dvolume (and interpolat-
ing in between) or adjusting the ternary weight quantisation
to increase sparsity and reduce the number of population
counts.
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Fig. 5 Left: By employing the continuation technique with increasing
β values during training epochs, we can significantly improve the out-
come of our trained networks. The ternarised quantisation does thereby
no longer affect segmentation quality measured in Dice overlap and
approaches the quality of a full-precisionU-Net.When comparing these

validation curves with training accuracies, only a moderate gap is vis-
ible and no overfitting occurs. Right: The observed sparsity (fraction
of zero values) in the trained ternary weights increases throughout the
training process. This effect is more pronounced for deeper layers with
high parameter counts

When analysing the sparsity of filter weights learned by
our model across epochs, shown in Fig. 5, one can see a ten-
dency to an increase in zero values in later layers and later
epochs. These findings are supported by [22], which explore
more sparsity in deeper layers together with increased accu-
racy. In comparison with the number of trainable weights in
Table 1, it is notable that layers with increased sparsity at
the end of training also contain most free parameters. This
indicates that the model automatically avoids overfitting and
sparsity acts as a regulariser. The importance of adapting the
slope in our ternary hyperbolic tangent nonlinearity during
training is clearly shown in Fig. 5, where the average Dice
is plotted across training epochs. Note that the evaluation on
validation cases always employs ternary convolutions and
accordingly quantises activations using Eq. 6.

Limitations and potential for further extensions:While the
results of a TernaryNet come close to a full-precision U-Net
with hyperbolic tangent activation, there is a loss in accuracy
of 3.9% to the more common ReLU variant. We empirically
found that using a ReLU6 (which cannot exceed an output of
6) [15] performs as well (75.7% avg. Dice). Therefore, the
performance gap could most likely be closed by increasing
the expressiveness of the quantised activation.

Conclusion

We have presented a pioneering approach for ternary convo-
lutions in deep neural networks that relies on both ternarised
activations and filter weights. Our work goes beyond pre-
vious efforts of binarisation that has often led to severe
model degradation. In our experiments, we demonstrated that
the TernaryNet maintains the high segmentation quality of
the corresponding full-precision U-Net (around 71% Dice
for pancreas CT with further potential for improvements),

while realising 10× speed improvements and 15× lower
memory requirements. This is in particular important when
executingmodel inference for image-guided interventions on
clinical or mobile computing hardware. We believe that the
detailed description, publicly available implementation and
convincing empirical findings along with the generality of
our approach will help transfer the concept of ternary convo-
lutions to other deep learning applications. We have seen a
clear importance of designing a ternary activation that is ana-
lytically differentiable based on the underlying hyperbolic
tangent nonlinearity as well as using a continuous adaption
of its slope during training. This eases the complex train-
ing process and results in a high sparsity that is desirable for
generalisation and supported by theoretical analysis in litera-
ture. When proven in other related fields of computer vision,
we strongly believe that quantised networks will have an
increasing impact and potentially lead to a wider adaptation
of its underlying computational blocks (population counts)
in mobile processors.
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