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Abstract
Purpose Ultrasound (US) is a safer alternative toX-rays for bone imaging, and its popularity for orthopedic surgical navigation
is growing. Routine use of intraoperative US for navigation requires fast, accurate and automatic alignment of tracked US
to preoperative computed tomography (CT) patient models. Our group previously investigated image segmentation and
registration to align untracked US to CT of only the partial pelvic anatomy. In this paper, we extend this to study the
performance of these previously published techniques over the full pelvis in a tracked framework, to characterize their
suitability in more realistic scenarios, along with an additional simplified segmentation method and similarity metric for
registration.
Method We evaluated phase symmetry segmentation, and Gaussian mixture model (GMM) and coherent point drift (CPD)
registration methods on a pelvic phantom augmented with human soft tissue images. Additionally, we proposed and evaluated
a simplified 3D bone segmentation algorithm we call Shadow–Peak (SP), which uses acoustic shadowing and peak intensities
to detect bone surfaces. We paired this with a registration pipeline that optimizes the normalized cross-correlation (NCC)
between distance maps of the segmented US–CT images.
Results SP segmentation combined with the proposed NCC registration successfully aligned tracked US volumes to the
preoperative CT model in all trials, in contrast to the other techniques. SP with NCC achieved a median target registration
error (TRE) of 2.44mm (maximum 4.06mm), when imaging all three anterior pelvic structures, and a mean runtime of
27.3 s. SP segmentation with CPD registration was the next most accurate combination: median TRE of 3.19mm (maximum
6.07mm), though a much faster runtime of 4.2 s.
Conclusion We demonstrate an accurate, automatic image processing pipeline for intraoperative alignment of US–CT over
the full pelvis and compare its performance with the state-of-the-art methods. The proposed methods are amenable to clinical
implementation due to their high accuracy on realistic data and acceptably low runtimes.
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Introduction

Pelvic fractures require effective surgical treatment in the
form of accurate screw fixation. Existing methods for per-
cutaneous screw insertion minimize the invasiveness of
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the surgery, but require intensive 2D fluoroscopic imag-
ing to visualize the pelvic anatomy and screw trajectories,
thus exposing patients and the surgical team to significant
amounts of ionizing radiation. A recent study reported radi-
ation exposure per procedure of up to 3min [1]. Current
measures used to protect the surgical team, e.g., in the formof
lead aprons, remain cumbersome to use and their significant
weight can cause long-term physical injury [2]. Further-
more, 2D X-ray images are difficult to interpret as they
only depict projections of the bone structures, making sur-
gical navigation a challenging mental task for the surgeon
which can lead to significant errors and re-attempts in screw
insertions.
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Ultrasound (US) presents a non-ionizing, inexpensive,
real-time modality that is readily capable of 3D imaging.
In US images, bone is represented by high-intensity pixels at
the incident osseous surface, coupled with deeper low inten-
sities which represent acoustic shadows [3]. US-based bone
detection for subsequent registration (alignment) to a pre-
operative patient model for the navigation of surgical tools
has been explored for many years. For example, Tonetti et al.
investigated the use of tracked US to guide screw insertion in
pelvic surgeries as far back as 2001, but found that requiring
surgeons to manually segment the bone in US images dras-
tically increased operating times by approximately 25min
[4], which highlights the need for fast and automatic seg-
mentation. However, given that US images are notorious for
their poor signal-to-noise ratio and limited field of view of
the desired anatomy, automatic segmentation and subsequent
registration remained challenging.

A number of previous works aimed to address some of
these challenges. In 2002, an intensity-based registration
technique was proposed for surgical guidance of a lumbar
spine procedure, but it requiredmanual US segmentation [5].
US–CT intensity and surface-based registration techniques
for the pelvis have been proposed [6,7], but they required
initialization throughmanual landmark identification for suc-
cessful optimization, which slows or disrupts the surgical
workflow. Statistical shape models (SSMs) were imple-
mented for multimodal bone registration [8,9]; however,
these approaches are computationally expensive, requiring
significant training data, and they are best suited to modeling
healthy, non-fractured bones similar to those in the databases
used in creating the SSMs. Our group previously proposed
the phase symmetry bone segmentation technique, based on
locally symmetric phase features to enable accurate US bone
segmentation [10,11] including an approach where model
parameters were automatically optimized using data-driven
approaches [12].

Phase features have also been used to optimize registra-
tion between US volumes and a CT model [13], but the
authors report a runtime of approximately 6min per volume
which may be clinically infeasible. Point-based registration
between phase symmetry-processed US and CT volumes has
also been proposed [14–16], achieving submillimetric TRE
and near real-time execution on restricted pelvic landmarks
such as the iliac spine. Simulating US from preoperative CT
intensity information was proposed to aid registration [17]
and has been evaluated within a computer-assisted ortho-
pedic surgery (CAOS) workflow on cadaver models of the
femur, tibia and fibula, achieving a median target registration
error of 3.7 mm, but a large maximum error of 22.7 mm [18].
Recently, machine learning methods have become popular
and successful at automatic ultrasound bone segmentation.
A patch-based random forest classifier and a U-net convo-
lutional neural network (CNN) architecture were trained to

detect bone in US images of lumbar vertebrae, achieving
88% recall and 94% precision with manual segmentation as
the gold standard. Another CNN-based approach for bone
segmentation and subsequent point surface registration was
investigated and evaluated on femur, tibia and pelvis cadaver
data, achieving a median TRE of 2.76 mm on the pelvis [19].
It remains to be explored how well the trained algorithms
generalize to, for example, fractured bone images or data
acquired with different imaging parameters [20]. Addition-
ally, the learning process requires expensive computation on
hundreds or thousands of training US images which may be
difficult to acquire.

Despite the above advances, there remains an unmet need
for automatic, fast and accurate registration of tracked US
to a full-pelvis CT reference, to enable orthopedic surgical
guidance. Our group previously explored the effectiveness
of phase-based features for US bone segmentation [21] and
point set registration [16,22,23] to align untrackedUS images
to CT of partial pelvic models. In this paper, our goal is to
assess the performance of these previously published meth-
ods on a full pelvic model with tracked US, to reflect a
more clinically realistic setting. To this end, we also pro-
pose and evaluate a simplified 3D bone segmentationmethod
based on our group’s and others’ previous work in bone
shadow detection [24,25], and pair this with a rigid US–CT
volume registration framework to address the inherent chal-
lenges of ultrasound-based guidance. The proposed method
is designed with the aim of practical integration into the clin-
ical workflow where fast performance on standard hardware
is typically necessary, without the need to learn on multi-
ple annotated example images. Comparisons with current
approaches suggest that our simplified methods, which are
fully automated and do not require manual initialization, are
capable of achieving clinically acceptable results over the
complete pelvic anatomy.

Methods

Our approach to aligning tracked US to a preoperative
segmented CT model is broken into two steps. We first
segment bone surfaces from the spatially compounded US
volume and then register this segmentation to the CT
bone model. Segmentation is performed using the previ-
ously published phase symmetry segmentation technique
and also our proposed Shadow–Peak method described
below. Registration is performed using Gaussian mixture
model and coherent point drift techniques. We also register
using our proposed pipeline based on normalized cross-
correlation between US and CT distance maps, described
below.
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Bone segmentation

Shadow–Peak segmentation

Here, we present a simplified 3DUSbone segmentation tech-
nique that is guided by the physical characteristics of bone.
Specifically, bone surfaces in US cast a deep shadow in the
direction of the acoustic beam, and bone surfaces themselves
appear brighter when the surface is more perpendicular to the
acoustic beam [3]. Our segmentation technique extracts these
features from US volumes.

We first normalize the intensities of the input B-mode US
volume and then apply a 3D Gaussian filter (isotropic stan-
dard deviation of 1 voxel). We calculate, for each voxel, a
measure of confidence that it represents a shadow:

S(x, y, z) = 1 −
√
√
√
√

∑i=y
i=1 Ix,i,z

∑ j=Y
j=1 Ix, j,z

, (1)

where Ix,y,z represents the Gaussian filtered voxel intensity,
x, y, z are the voxel coordinates (column, row, frame), and
Y is the maximum y coordinate. The bone surface position
in each scanline is then estimated by finding the peak inten-
sity location of the shadow confidence mapmodulated by the
original raw voxel intensities. The confidence of each esti-
mate is given by the peak intensity value. Any confidence
values that fall below half the standard deviation (SD) of the
mean bone confidence are discarded, as they are likely to be
false positives.
Connected-component analysis To reduce false positive
bone surfaces after initial segmentation, we perform a 3D
connected-component analysis to remove small isolated seg-
mentations. Our assumptions in this process are that the
locations of any bone fractures are remote from the US
scanning site, and that non-displaced bone fractures are not
imaged as discontinuities in the US image. We empirically
set the minimum number of allowable connected voxels in
each connected component to be 5% of the total number of
connected voxels, smaller components are likely not to rep-
resent true bone surfaces. This relatively low threshold does
not penalize large bone surfaces that may appear separate
in the reconstructed volume, for instance, the left and right
iliac spines. Figure 1 illustrates our complete segmentation
pipeline. We call this algorithm Shadow–Peak (SP) segmen-
tation.
Preoperative CT segmentation We presume that we have
available a preoperatively acquired CT volume. We prepro-
cess this volume by intensity thresholding and manually
removing responses not corresponding to bone.We then seg-
ment the superficial CT bone surfaces by simple vertical
tracing. The CT volume is also truncated 60 mm below the

skin surface, as elements below this depth will not be visible
in US due to the maximum US imaging depth.

Phase symmetry segmentation parameters

We compare Shadow–Peak with 3D phase symmetry (PS)
for US bone segmentation techniques [21]. Following the
notation in the original paper, we set the model parameters
constant to m = 1, α = 6, λmin = 20, δ = 3, σalpha =
0.45◦, κ = 3 as recommended by the author. We enhance
the signal-to-noise ratio of PS segmentation using intensity
thresholding and bottom-up ray casting as described in [26].

Multimodal registration

Normalized cross-correlation (NCC) registration of 3D
distance maps

Here, we present our volume registration pipeline. After
segmentation is complete (either with SP or phase sym-
metry), the binary segmentations from US and CT are
transformed into Euclidean distance maps through a 3D dis-
tance transform [27]. The distance maps are inverted through
an exponential nonlinearity: (Idist + �)−2 where Idist rep-
resents the 3D Euclidean distance map. This nonlinearity
assigns a maximum intensity at the segmented bone loca-
tions while providing a sharp drop-off in intensity away from
the surface. The scaling parameter � is used to control the
rate of intensity drop-off. It is varied linearly from 0.05 to
0.01 along the depth of the US and CT distance maps; see
Fig. 2. We find that this significantly improves the regis-
tration accuracy, as it provides a larger weighting to more
superficial bone surfaces, which are less likely to suffer from
speed-of-sound distortions and hence their location is more
certain than deeper bone structures.

The volumes are automatically aligned by their centers
of gravity and along nominal anatomical directions prior to
running the automatic registration algorithm. Rigid regis-
tration between the inverted distance maps of US and CT
volumes is then performed by maximizing their normalized
cross-correlation (NCC), defined as:

NCC(μ, ICT , IU S)

=
∑

xiεΩCT
(ICT (xi) − ICT )(IU S(Tμ(xi)) − IU S)

√
∑

xiεΩCT
(ICT (xi) − ICT )2

∑

xiεΩCT
(IU S(Tμ(xi)) − IU S)2

,

(2)

whereμ represents the parameters of the rigid transformation
T . Stochastic gradient descent is used to efficiently converge
to the NCC global maximum, and 1000 intensities are sam-
pled at random coordinates over the CT domain to estimate
the similarity metric at each iteration. The registration runs
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Fig. 1 Qualitative comparison between Shadow–Peak (SP) and phase
symmetry (PS) segmentation. a 2D slice from a 3D US volume of the
human radius and ulna. b Shadow confidence map of a, given by Eq.
1. Higher intensities represent a higher confidence in shadow presence.

c Final SP segmentation after peak detection, population thresholding
and connected-component analysis. d PS analysis of a [21]. e Final PS
segmentation after thresholding, ray casting and connected-component
analysis [26]

Fig. 2 Left: Distance map nonlinearity with 0.01 ≤ � ≤ 0.05 described in section “Normalized cross-correlation (NCC) registration of 3D distance
maps” Right: Idealized contour segmentation in white and the effect of the inverse nonlinearity in magenta. Note the larger spread of intensities at
the top of the image

through five down-sampling and smoothing levels to itera-
tively obtain finer transformation estimates.

Gaussian mixture model (GMM) point set registration

We implement and evaluate GMM registration as described
for US–CT registration of the pelvic anatomy [16]. We test
this algorithm with 500 and 1000 particle-simulated points
in both US and CT point clouds, as suggested in the original
paper. We also evaluate the effect of curvature features on
registration accuracy by inserting an additional 10%of points
in areas of high curvature [16].

Coherent point drift (CPD) point set registration

CPD is another popular point set registration framework that
has been used for multimodal alignment. We implement the
original algorithm [22], also with 500 and 1000 points in
both US (moving) and CT (fixed) point clouds. Points are
randomly anduniformly sampled from theUSandCT images
of the pelvis, and we do not use particle simulation as with
GMM registration.
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Fig. 3 a Pelvic phantom under construction. N.B. After construc-
tion, the pelvis was completely covered by the agar medium. b
Example of bone surfaces scanned with tracked US (green) over-

laid on the preoperative CT model (gray) when only the iliac
spines were imaged, and c when the pubic symphysis was also
imaged

Fig. 4 Three examples showing phantom images before (left image in each pair) and after soft tissue enhancement (right image in each pair)

Validation experiment

Phantom design To enable a controlled, quantitative evalua-
tion of all combinations of the segmentation and registration
techniques, we constructed a pelvis phantom consisting of a
full pelvic bone model (Sawbones Inc, Vashon Island, WA,
USA) embedded in a 5% (weight/weight) agar and water
solution in an anatomically supine position. Agar was used
to model the general acoustic response of soft tissue as it
creates similar scattering and speckle patterns, and its acous-
tic velocity is similar to room temperature water [28]. A full
pelvis was used, instead of a hemi-pelvis, as this more accu-
rately captures the surgical scenario where US data have to
be automatically registered to the complete pelvic CTmodel.
This design choice allowed us to assess automatic registra-
tion performance when the intraoperative US bone surface
is a fractionally small representation of the preoperative CT
model. Forty-eight steel beads, of 2 mm diameter each, were
embedded uniformly around the iliac spines and the pubic
symphysis for subsequent evaluation of registration errors
(Fig. 3).
ImagingWe performed a CT scan of the phantom with a GE
Healthcare CT750HD scanner (GE Healthcare, Chicago, IL,
USA) to generate the reference CT volume, with a voxel
size of 0.71×0.71×0.63 mm. This high resolution is also
used clinically to assess pelvic fracture cases. For ultrasound
imaging, we used a SonixTouch Q+ ultrasoundmachine with
a 4DL14-5/38 linear transducer (BK Ultrasound, Peabody,

MA, USA) imaging at 10 MHz, and tracked by an optical
camera as described below. The transducer motor was fixed
at a neutral 0◦ and a maximum scanning depth of 60 mm.
We collected repeated scans of the right and left iliac spines
and the pubic symphysis of the pelvis, as they are acces-
sible superficial bony structures (see Fig. 3). A total of 24
reconstructed US volumes were collected from the phan-
tom, loosely aligned to anatomical axes. Twelve volumes
contained scans from only the right and left iliac spines
(“two-view” volumes) and the remaining 12 contained all
three anatomical structures (both iliac spines and the pubic
symphysis—“three-view” volumes). We collected these two
groups of volumes to assess the robustness of the segmenta-
tion and registration techniques in cases where scanned data
might be incomplete. Each US volume represented a region
measuring approximately 30 × 10 × 21cm (right/left, ante-
rior/posterior, superior/inferior axes).
Soft tissue enhancement Because soft tissue structures were
not directly incorporated in the agar phantom, we enhanced
the phantom’s realism by re-sampling and overlaying soft
tissue US images taken from the pelvic region of a human
volunteer. Augmenting the phantom with human soft tissue
images created a more realistic scenario to evaluate the seg-
mentation and registration algorithms.

To do this, we collected threeUSvolumes (using the imag-
ing parameters described above) from anterior pelvic regions
in a volunteer. These images were acquired from near the
bony regions corresponding to the phantom’s design, but we
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Fig. 5 a Five examples of axial slices taken from the pelvis phantom
with overlays of soft tissue images. The visible bony structures repre-
sent the right/left iliac spines and the pubic symphysis. bApplication of

Shadow–Peak segmentation and the inverse distance transform defined
in section “Normalized cross-correlation (NCC) registration of 3D dis-
tance maps”

ensured these images contained only soft tissue and no bony
structures. The images were then automatically transformed
to the phantom’s domain using nonrigid image registration.
The nonrigid registrationwas performed between axial slices
from the phantom and soft tissue images. From the phan-
tom images, we extracted bone and shadow and overlaid
the transformed soft tissue images using pixel-wise addition
and intensity normalization. Figure 4 illustrates the original
phantom data and the enhanced data. All segmentation and
registration evaluations were performed on the soft-tissue-
enhanced phantom data.
Tracking The US transducer and phantom were tracked
with rigid passive markers using an infrared Polaris camera
(Northern Digital Inc., Waterloo, ON, Canada; manufacturer
reported accuracy of 0.35 mm RMS) at an acquisition rate of
50 Hz.
Implementation US images and optical tracking data were
acquired, synchronized and spatially reconstructed using
the open-source PLUS toolkit [29], 3D Slicer [30] and
SlicerIGT [31]. Our segmentation technique was imple-
mented in MATLAB 2017a (The MathWorks, Inc., Natick,
MA, USA) and integrated into the open-source architecture
using the “Matlab Bridge” Slicer module. Furthermore, we
used the open-source registration framework “elastix” and
the associated “SlicerElastix” extension to integrate our vol-
ume registration technique into the same architecture [32].

Before segmentation, the CT reference and US volumes
were resampled to an isotropic pixel size of 0.8 mm, rep-

resented by 382×214×297 pixels for the CT model and by
approximately 380×110×280 pixels for the US volumes.
Each US volume was then segmented using either Shadow–
Peak or phase symmetry—Fig. 5 illustrates a few segmented
soft-tissue-enhanced images using Shadow–Peak. The CT
volume was segmented as described in section “Shadow–
Peak segmentation,” under the assumption that the relevant
bone surfaces can be detected in the vertical direction, as the
phantom has a single flat face that the US probe can access.
With human specimens, this step would have to be modi-
fied to account for the additional directions through which
the US probe could image the pelvis, which could be simply
achieved by defining the normal to the skin surface in the
preoperative CT model or transformation through a number
of predefined angles. Each US–CT segmentation pair was
tested with the three aforementioned registration techniques:
GMM, CPD and NCC. A total of 14 segmentation and regis-
tration combinations were tested on each volume pair, when
accounting for the variation in point cloud size and presence
or absence of curvature features.
Evaluation The performance of Shadow–Peak and phase
symmetry segmentation was characterized using the same
recall and precision metrics proposed by Baka [33], which
take into account the difficulty of comparing open contour
segmentations (due to the thinness of the surfaces). Recall
wasmeasured as the percentage ofmanually segmented (con-
sidered as ground truth) pixels in a volume that were within a
1-mm vertical zone of the automatic segmentation. Precision
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was defined as the proportion of automatically segmented
pixels that were within a 2-mm boundary of the manual seg-
mentation. We also calculated the F-measure for each 3D
segmentation,which is the harmonicmean between the recall
and precision and is one method of evaluating the accuracy
of a technique. The F-measure is defined as:

F1 = 2

(
Recall × Precision

Recall + Precision

)

. (3)

These metrics were analyzed with reference to the man-
ual segmentations of 16 soft-tissue-enhanced US volumes
taken from the phantom. The manual segmentations were
performed in a repeatable manner by fixed intensity thresh-
olding and removing false positives not corresponding to true
bone surfaces.

To evaluate the registration performance, each US volume
was first aligned to the CTmodel using steel fiducial markers
(between 22 and 37fiducials) to calculate the residual fiducial
registration error (FRE), which can be taken to be an esti-
mate of the lower bound on the target registration error. The
performance of the automatic techniques was measured by
the target registration error (TRE), defined as the root-mean-
square error between the embedded fiducial points visible
in US and CT. We also measured the surface registration
error (SRE), defined as the root-mean-square error from the
manually segmented US bone surface to the CT bone sur-
face. The maximum nearest-neighbor surface discrepancy,
i.e., the Hausdorff distance (HD), was also measured with
the same directionality as for the SRE calculation. For all
combinations of segmentation and registration techniques, a
successful registration was defined as one where the result-
ing TRE was less than 5 mm, after subtracting the residual
FRE—this threshold was based on the typical geometry of
the tunnel which sacroiliac screws normally pass [34]. Note
that the fiducial points andmanually delineated surfaceswere
only used for evaluating errors and were not used in the auto-
matic segmentation or registration techniques. The execution
time of each segmentation and registration component was
also measured.

Results

Segmentation accuracy Our analysis found that Shadow–
Peak segmentation achieved a lower false positive rate, with
a higher mean precision of 53.7% (SD 9.2%) compared to
41.3% (SD 5.7%) for phase symmetry. However, Shadow–
Peak had a lower recall than phase symmetry: 76.7% (SD
8.4%) compared to 81.0% (SD 6.9%). Overall Shadow–Peak
had a greater mean F-measure 62.6% (SD 7.3%) compared
to phase symmetry which had a F-measure of 54.3% (SD
5.1%). These results are presented in Table 1.

Table 1 Segmentation accuracy of Shadow–Peak and phase symmetry
measured on 16 soft-tissue-enhanced volumes

Segmentation method Recall Precision F-measure

Shadow–Peak 0.77 0.54 0.63

Phase symmetry 0.81 0.41 0.54

Fiducial alignment for ground truth registration errors The
mean FRE after fiducial-based manual alignment of the
dataset was 1.54 mm (SD 0.09 mm), and the corresponding
mean SRE was 1.62 mm (SD 0.22 mm). The mean HD was
7.93 mm (SD 0.87 mm), and the point of maximum distance
was typically located on the deeper surfaces of the ilium. The
initial preregistration TREs ranged between 27.03 and 88.52
mm.
Registration errors Figure 6 summarizes the total success
rate for all segmentation and registration combinations on the
dataset. Both CPD and NCC registrations had a success rate
greater than 75% when SP segmentation was used, and their
success rateswith phase symmetrywere lower. The combina-
tion of SP segmentation with NCC registration was the only
onewith a 100%success rate, evenwhenonly two anatomical
views were imaged with US. Conversely, GMM registration
did not surpass a 40% success rate in any scenario. Figure 7
plots the final TRE for successful segmentation and registra-
tion combinations. Overall, the mean TRE of SP and NCC
was 3.22 mm (SD 1.03 mm). SP segmentation combined
with 1000-point CPD registration achieved a mean TRE of
4.58 mm (SD 0.89 mm), and 3.89 mm (SD 1.27 mm) when
only 500 points were used. In general, registrations prepro-
cessed with phase symmetry segmentation resulted in higher
registration errors—NCC 4.56 mm (SD 0.77 mm), 1000-
CPD 4.39 mm (SD 0.75 mm), 500-CPD 4.15 mm (SD 1.07
mm). With only two views visible, SP with NCC had a mean
TRE of 3.79 mm (SD 1.06 mm) compared to 2.65 mm (SD
0.62 mm) when both iliac spines and pubic symphysis were
visible, which was the lowest mean error achieved by any
combination of techniques.

SP segmentation with NCC registration achieved the low-
est surface fit errors with a mean SRE of 1.35 mm (SD 0.17
mm), and SP combined with 500-point CPD and 1000-point
CPD achieved mean SREs of 1.84 mm (SD 0.58 mm) and
1.99 mm (SD 0.44 mm), respectively. Phase symmetry seg-
mentation with NCC registration achieved a mean SRE of
1.44 mm (SD 0.26 mm). The surface fit errors are summa-
rized in Table 2.
Computational performance All experiments were con-
ducted on an Intel Xeon E5-2630 v3 CPU @2.40GHz with
16GB of random access memory (RAM). SP segmentation
took an average of 1.80s (SD 0.57s) to process an uncropped
reconstructed US volume, and the proposed registration via
NCC took an average of 25.98s (SD 2.48s). In contrast,
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Fig. 6 Success rate (percentage) of all segmentation and registration
combinations on 24 US–CT volume pairs, broken down by anatomical
views visible in US. GMM—Gaussian mixture model registration with

500/1000 points; CPD—coherent point drift registration with 500/1000
points; NCC—normalized cross-correlation registration

Fig. 7 Target registration errors
(TRE) for all segmentation and
registration combinations which
had a greater than 50% success
rate. The solid line represents
the median point, and the
dashed line represents the mean
(24 volume pairs in total)

Table 2 Mean surface
registration errors and Hausdorff
distance (HD) for techniques
with success rates greater than
50%

Registration method Segmentation method

Shadow–Peak Phase symmetry

500-CPD 1.84 (SD 0.58, HD 7.90) 1.67 (SD 0.38, HD 6.88)

1000-CPD 1.99 (SD 0.44, HD 7.71) 1.69 (SD 0.44, HD 6.99)

NCC 1.35 (SD 0.17, HD 6.72) 1.44 (SD 0.26, HD 5.91)

All errors in mm
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phase symmetry segmentation took an average of 36.50s (SD
5.24s) to compute, and 500- and 1000-point CPD-based reg-
istrations took an average of 3.14s (SD 1.37s) and 10.62s
(SD 3.73s), respectively. On average, GMM registration took
longer than CPD to execute when combined with particle
simulation techniques as in [16].

Discussion and conclusions

In this study, we evaluated the suitability of three previously
published segmentation and registration techniques for align-
ing realistic intraoperative US to a full pelvic CT model.
We also proposed and developed a simplified segmentation
workflow based on SP segmentation and NCC registration.
Overall, SP segmentationwasmore accurate than phase sym-
metry and resulted in more robust registration performance
with the proposed NCC pipeline, compared to GMMor CPD
registration.

The proposed SP and NCC combination resulted in a sta-
tistically lower mean TRE than any of the other successful
combinations, with a significance level of p = 0.035 using a
one-tailed, two-sample unequal variance t-test. On the other
hand, CPD performs on average 15.8s quicker than NCC-
based registration (p < 0.001) which makes it more attractive
for clinical implementation. We also investigated the effect
of increasing point cloud size beyond 1000 points in CPD
and GMM registration, and found that this did not correlate
with lower registration errors.

We were surprised to find that overall GMM registration
was largely unsuccessful. Furthermore, we found that using
curvature features on this dataset did not improve the reg-
istration accuracy as previously reported [16]. We further
investigated the performance of GMM registration by man-
ually reducing the CT field of view to more closely match
the US field of view. On visual inspection, we found that
the success of GMM registration depended on the fixed and
moving point clouds sharing a very similar field of view and
point cloud representation. This makes it less suitable for a
clinical setting where there is no guarantee that the tracked
US images would contain a similar surface representation to
the CT preoperative model.

Our proposed segmentation and registration approach had
similar target registration accuracy to other recently reported
methods for US–CT registration. Wein et al. achieved a
median TRE of 3.7 mm on cadaveric data [18], and Salehi et
al. achieved a median TRE of 2.76 mm on cadaveric pelvis
data when using a deep neural network to perform bone seg-
mentation [19]. When considering only segmentation accu-
racy (i.e., without a corresponding registration step), random
forest-based segmentation and a U-net deep neural architec-
ture produced higher F-measures than SP or phase symmetry,
with scores of 0.83 and 0.90, respectively, based on tests

on 2D untracked lumbar vertebrae images reported in [33].
However, the generalizability of these learning algorithms on
data collected with different imaging parameters remains to
be tested. Moreover, SP segmentation runs in real-time with-
out the need for high-performance hardware such as GPUs or
multiple CPUs, unlike the learning-based methods. Similar
to previous studies, we found that the integration of shad-
owing features in SP segmentation greatly improved noise
rejection from surrounding soft tissue structures, leading to
less noisy point cloud and distance map generation [24,25].
However, our workflow simplified the shadow detection cal-
culation, helping facilitate real-time operation on a standard
CPU (approximately 150 frames/second for US volumes).
Additionally, by performing a contour segmentation of the
preoperative CT model, we optimized registration using
the NCC similarity metric instead of more computationally
expensive multimodal metrics like mutual information [35].

It is worth noting that a proportion of the TRE may be
attributed to the relatively large errors in fiducial localization,
limited tracking accuracy and speed-of-sound discrepancies
between the phantom’s medium and what is expected by the
US system. These errors contribute to the residual FREwhen
US and CT volumes are aligned using fiducials, and are also
reflected in the relatively high SRE and HD after fiducial-
based alignment. Although our NCC pipeline accounts for
deeper bone surface localization uncertainty, by assigning
higher weights to superficial surfaces using the inverse dis-
tance map, we expect further improvements in accuracy if
speed-of-sound calibration is integrated into the workflow,
e.g., as in [19]. Furthermore, since the pelvis represents a
relatively large anatomical region, a more accurate tracking
system with more consistent accuracy over that region may
help further drive down the registration error.

Our future work will focus on validating our approaches
on clinical ex vivo and in vivo data, as our investigation
provided promising results in the presence of human soft
tissue structures such as muscle, fat, vessels and nerves. We
also plan to integrate speed-of-sound calibration. Finally, it
is important to test the feasibility of applying our methods to
more complex cases of displaced pelvic fractures.
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