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Abstract
Purpose Fast and accurate graft hepatic steatosis (HS) assessment is of primary importance for lowering liver dysfunction
risks after transplantation. Histopathological analysis of biopsied liver is the gold standard for assessing HS, despite being
invasive and time consuming. Due to the short time availability between liver procurement and transplantation, surgeons
perform HS assessment through clinical evaluation (medical history, blood tests) and liver texture visual analysis. Despite
visual analysis being recognized as challenging in the clinical literature, few efforts have been invested to develop computer-
assisted solutions for HS assessment. The objective of this paper is to investigate the automatic analysis of liver texture with
machine learning algorithms to automate the HS assessment process and offer support for the surgeon decision process.
Methods Forty RGB images of forty different donors were analyzed. The images were captured with an RGB smartphone
camera in the operating room (OR). Twenty images refer to livers that were accepted and 20 to discarded livers. Fifteen
randomly selected liver patches were extracted from each image. Patch size was 100 × 100. This way, a balanced dataset
of 600 patches was obtained. Intensity-based features (INT), histogram of local binary pattern (HLBPriu2 ), and gray-level co-
occurrence matrix (FGLCM) were investigated. Blood-sample features (Blo) were included in the analysis, too. Supervised and
semisupervised learning approaches were investigated for feature classification. The leave-one-patient-out cross-validation
was performed to estimate the classification performance.
Results With the best-performing feature set (HLBPriu2 +INT+Blo) and semisupervised learning, the achieved classification
sensitivity, specificity, and accuracy were 95, 81, and 88%, respectively.
Conclusions This research represents the first attempt to usemachine learning and automatic texture analysis of RGB images
from ubiquitous smartphone cameras for the task of graft HS assessment. The results suggest that is a promising strategy to
develop a fully automatic solution to assist surgeons in HS assessment inside the OR.
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Introduction

Liver transplantation (LT) is the treatment of choice for
patients with end–stage liver disease for which no alterna-
tive therapies are available [4]. Due to increasing demand
and shortage in organ supply, expanded donor selection cri-
teria are applied to increase the number of grafts for LT. Since
extended criteria donors generates augmented morbidity and
mortality in recipient population, liver graft quality assess-
ment is crucial.
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Hepatic steatosis (HS) is one of the most important donor
characteristic that can influence graft function and so LT out-
come, mostly because of severe ischemia reperfusion injury
[13]. Defined as the intracellular accumulation of triglyc-
erides resulting in the formation of lipid vesicles in the
hepatocytes, HS is commonly assessed by histopathological
examination of liver tissue samples extracted with biopsy.
Through visually analyzing the quantities of large sized lipid
droplets in the sample, an HS score is assigned to the sample
in a semiquantitave fashion. Livers classified as with 5–30%
fatty infiltration are associated with decreased patient and
graft survival, but are still considered suitable for transplan-
tation due to the limited donor availability [20]. Severe HS
(≥ 60%) is instead associatedwith primary graft dysfunction
or non-function and is not compatible with transplantation
[6,29].

Despite histopathological analysis of biopsied liver tissue
being currently the gold reference standard for diagnosis and
grading of HS in liver grafts, it is invasive, time-consuming,
and expensive. Due to the short time availability between
liver procurement and transplantation [24], the surgeon usu-
ally performs HS assessment through clinical evaluation
(medical history, blood tests) and qualitative visual graft
assessment [31]. In this context, visual liver texture analysis
is recognized as crucial in grading HS [31]: livers that cannot
be transplanted due to highHS (Fig. 1, right) are usually char-
acterized by inhomogeneous texture and are more yellowish
than the transplantable ones (Fig. 1, left). It is nonetheless
recognized that the precise estimation of HS remains chal-
lenging even in experienced hands [31].

On this background, the development of a robust, quantita-
tive, practical, cost–effective and rapid method to support the
surgeon in decidingwhether to accept or discard liver grafts is
mandatory. Considering challenges in diagnosis, preliminary
efforts to the automated or semiautomated HS assessment
have been proposed and a complete review can be found
in [9]. Examples include [28], which reported a sensitivity
(Se) of 79% in recognizing the HS level from computer-
tomography (CT) images, and [19] which reported an area
under the receiving operating characteristic curve of 75%
by exploiting fibroscanning. Liver-bioelectrical-impedance
analysis and Raman spectroscopy were used in [1,11],
respectively. A semiautomatic HS-grading approach that
exploits magnetic resonance (MR) spectroscopy has been
proposed in [26], achieving a Spearman correlation coeffi-
cient of 0.90.

It is worth noting that all the proposed methodologies
require additional imaging instrumentation, which may be
not always available in the remote graft procurement hospi-
tals. Moreover, at most the methods concluded that there is a
correlation between liver physical characteristics (e.g., liver
stiffness and impedance) and HS grade, without providing a
solution for liver graft quality assessment.

Despite visual liver texture analysis being crucial for clin-
ical HS assessment [31], to the best of authors’ knowledge
no efforts have been done to develop a computer-assisted
diagnostic tool that exploits automatic texture analysis to
assess graft steatosis. Moreover, liver texture analysis has
the advantage of being performed on standard RGB opti-
cal imaging, without requiring additional instrumentations.
It is worth noting that modern cellphone cameras provide
decent quality images for liver assessment and are ubiqui-
tous. Therefore, they could be the solution for automatic HS
assessment not only in remote hospitals, but also in low-
income countries where other imaging equipment may not
be available. Indeed, the use of RGB cameras for tissue clas-
sification is becoming quite popular in different fields, such
as skin cancer diagnosis [8].

The emerging and rich literature on surgical data sci-
ence for tissue classification in optical images outside the
field of HS assessment is focusing more and more on
usingmachine learning algorithms to classify tissues accord-
ing to texture-based information [18]. The histogram of
local binary patterns (LBP) is exploited for tissue classi-
fication in several anatomical districts, such as abdomen,
larynx, gastro-intestinal tract (e.g., [15,16,22,23,32]). Gray-
level co-occurrence matrix (GLCM)-based features [10]
have also been exploited for tissue classification. Examples
include [30] for gastroscopy and [21] for colorectal images.

Inspired by these recent and promising studies, and in
particular by our previous research focused on the laryngeal
district [22], in this paper we aim at investigating whether
liver texture analysis fromRGB images acquired with smart-
phones in the operating room (OR) coupled with machine
learning can provide reliable results, to be used as support
for LT decision.

This paper is organized as follows: “Methods” section
explains the proposed approach to textural feature extrac-
tion and classification. The results are presented in “Results”
section and discussed in “Discussion” section, reporting the
main strengths and drawback of the proposed approach and
suggesting future work to overcome the drawbacks. To con-
clude, “Conclusion” section summarizes the contribution of
this paper.

Methods

In this section, the feature extraction strategy is explained
(“Feature extraction” section) as well as the classification
model training (“Model training” section). We will explore
both supervised (“Supervised approaches for patch clas-
sification” section) and semisupervised (“Semisupervised
approach for image classification” section) classification
approaches. The evaluation protocol, which includes materi-
als, parameter setting, and performance measure definition,
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Fig. 1 Sample RGB liver images acquired in the operating room. Images are captured with different lighting conditions and different tissue-camera
pose. Images refer to a transplanted-liver graft (left) and a discarded one (right)

Fig. 2 Proposed workflow for graft hepatic steatosis assessment. From
40 RGB liver images of 40 different donors, a dataset of patches with
size 100 × 100 is extracted. From each patch, a set of textural features

is computed. The dataset is divided in training and testing patches. The
features from the training patches are used to train a classifier model.
The trained model is used to assess HS from the testing patches

is explained in “Evaluation” section. The workflow of the
proposed method for LT assessment is shown in Fig. 2.

Feature extraction

When choosing the classification features, it is necessary to
consider that liver images may be captured under various
illumination conditions and from different viewpoints. As a
consequence, the features should be robust to the camera pose
aswell as to the lighting conditions. Furthermore,with a view
of a real-time computer-aided application, they should be

computationally cheap. LBPs fully meet these requirements
[25].

A rather popular LBP formulation is the uniform rotation-
invariant one (LBPR,P

riu2). The LBPR,P
riu2 formulation requires

to define, for a pixel c = (cx , cy), a spatial circular neigh-
borhood of radius R with P equally spaced neighbor points
({pp}p∈(0,P−1)):

LBPR,P
riu2 (c)

=
{∑P−1

p=0 s(gpp − gc), if U (LBPR,P ) ≤ 2

P + 1, otherwise
(1)
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where gc and gpp denote the gray values of the pixel c and of
its pth neighbor pp, respectively. s(gpp − gc) is defined as:

s(gpp − gc) =
{
1, gpp ≥ gc
0, gpp < gc

(2)

and U (LBPR,P ) is defined as:

U (LBPR,P ) =|s(gpP−1 − gc) − s(gp0 − gc)|

+
P−1∑
p=1

|s(gpp − gc) − s(gpp−1 − gc)|
(3)

Here, the HLBPriu2 , which counts the occurrences of
LBPR,P

riu2, was used as textural feature and normalized to the
unit length.

To include image intensity information, which has been
reported as related to the HS level from the clinical commu-
nity [31], we also included intensity-based features (INT),
which consisted of imagemean and standard deviation, com-
puted for each RGB channel in the image.

For comparison, we also extracted the GLCM matrix-
based textural features. The GLCM computes how often pair
of pixels (c,q) with specific values and in a specified spa-
tial relationship (defined by θ and d, which are the angle
and distance between c and q) occur in an image. In the
GLCM formulation, the GLCM width (W ) is equal to the
GLCM height (H ) and corresponds to the number of quan-
tized image intensity gray levels. For the w = h intensity
gray level, the GLCM computed with θ and d is defined as:

GLCMθ,d(h, w)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, I (c) = h and

I (cx + d · cos(θ), cy + d · sin(θ)) = w

1, I (c) = h and

I (cx − d · cos(θ), cy − d · sin(θ)) = w

0, otherwise

(4)

We extracted GLCM-based features from the normal-
ized GLCMθ,d , which expresses the probability of gray-level
occurrences, is obtained by dividing each entry of the
GLCMθ,d by the sum of all entries, as suggested in 10. The
GLCM feature set (FGLCM) consisted of GLCM contrast,
correlation, energy and homogeneity.

As in [22], and since texture is a local image-property,
we decided to compute textural features from image patches,
which were extracted as explained in “Evaluation” section.

Model training

In this section, we will first describe our approach for super-
vised patch classification (“Supervised approaches for patch

classification” section). In “Semisupervised approach for
image classification” section we will deal with the semisu-
pervised approach for image classification.

Supervised approaches for patch classification

To perform patch classification, support vector machines
(SVM) with the Gaussian kernel (Ψ ) were used [3]. Indeed,
SVM allowed overcoming the curse-of-dimensionality that
arises analyzing our high-dimensional feature space [5,17].
The kernel-trick prevented parameter proliferation, lowering
computational complexity and limiting over-fitting. More-
over, as the SVM decisions are only determined by the
support vectors, SVM are robust to noise in training data.
For our binary classification problem, given a training set
T = {yt , xt}t∈T, where xt is the t th input feature vector and
yt is the t th output label, the SVM decision function ( f ),
according to the “dual” SVM formulation, takes the form of:

f (x) = sign
[ ∑
t∈T

a∗
t ytΨ (x, xt) + b

]
(5)

where

Ψ (x, xt) = exp
{
−γ ||x − xt||22/σ 2

}
, γ > 0 (6)

b is a real constant and a∗
t is computed as follow:

a∗
t = max

⎧⎨
⎩−1

2

N∑
k,l=1

yt ylΨ (xt, xl)atal +
∑
t∈T

at

⎫⎬
⎭ (7)

with:∑
t∈T

at yt = 0, 0 ≤ at ≤ C, t ∈ T (8)

In this paper, γ and C were retrieved with grid search and
cross-validation on the training set, as explained in “Evalua-
tion” section.

For the sake of completeness, the performance of random
forest (RF) [2] in classifying image patches was also inves-
tigated.

Semisupervised approach for image classification

After performing the patch classification with SVM and RF,
we identified the best-performing feature set as the one that
guarantees the highest Se. With the best-performing feature
set, we further investigated the use ofmultiple instance learn-
ing (MIL), a semisupervised machine learning technique, for
performing full image classification (instead of patch classi-
fication) from patch-based features. In fact, it is worth noting
that the pathologist gold-standard biopsy-based classification
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is associated to the whole image, and not to the single patch.
Thus, considering all patches from an image of a graft with
high HS as pathological may influence the classification out-
come, as HS is commonly not homogeneous in the hepatic
tissue [31]. Therefore,wedecided to investigatewhetherMIL
can support HS diagnosis from (unlabeled) patches extracted
from (labeled) RGB images.

Among MIL algorithms, we investigated the use of single
instance learning (SIL) [27], which has the strong advan-
tage of allowing the fusion of patch-wise information (such
as textural features) with image-wise information (such as
blood-sample features) [27], thus providing further infor-
mation for the classification process. Here, we decided to
investigate the popular SVM-SIL formulation,which showed
good classification performance in several fields outside the
proposed one [27].

For our semisupervised binary classification problem, let
Tp ⊆ T be the set of positive images (rejected grafts), and
Tn ⊆ T the set of negative images (accepted grafts). Let
T̃p = {t | t ∈ T ∈ Tp} and T̃n = {t | t ∈ T ∈ Tn} be
the patches from positive and negative images, respectively.
Let L = L p + Ln =| T̃p | + | T̃n | be the total number of
patches. For any patch t ∈ T from an image T ∈ T, let xt be
the feature vector representation of t . Thus, xT = ∑

t∈T xt is
the feature vector representation of image T . The SVM-SIL
optimization, here written in the “primal” SVM formulation
for better readability, aims at minimizing J:

J(w, b, ξ) = 1

2
‖w‖2 + C

L

∑
X∈χ

∑
x∈X

ξx (9)

subject to:

wxt + b ≤ −1 + ξt , ∀t ∈ T̃n (10)

wxt + b ≥ +1 − ξt , ∀t ∈ T̃p (11)

ξt ≥ 0 (12)

where ξt is the relaxing term introduced for the soft-margin
SVMformulation, b is a real value,w the SVMweight vector.
Also in this case, C was retrieved with grid search and cross-
validation on the training set, as explained in “Evaluation”
section.

As SIL allows fusing patch-wise (i.e., texture features) and
image-wise (i.e., blood features) features, in addition to the
best-performing feature set, features from blood tests (Blo)
were used, too. In particular, alanine aminotransferase, aspar-
tate aminotransferase, bilirubin, liver Hounsfield unit (HU),
difference between the liver and the spleen HU, and gamma
glutamyl transferase were considered. Further, patient’ age,
weight and height were also considered. Thus, Blo feature
size was 9. The Blo features are commonly used for HS
assessment by surgeons [31], as introduced in “Introduction”

section. Thus, their use would not alter the actual clinical
practice.

Evaluation

In this study, we analyzed 40 RGB images, which refer to
40 different potential liver donors. HS was assessed with
histopatological analysis performed after liver biopsy.

Biopsy was performed during procurement, taking surgi-
cal triangular hepatic samples up to 2cm. One pathologist
analyzed the histological sections. Steatosis was visually
assessed based on the percentage of hepatocytes with intra-
cellular large lipid droplets by using a semicontinuous scale
[0:5:100%].

From the dataset, 20 livers referred to discarded grafts,
as with a HS ≥ 60%. The remaining 20 livers had a HS
≤ 20% and were transplanted. Images were acquired with a
smartphoneRGBcamera. Image sizewas 1920×1072pixels.
All the images were acquired with open-surgery view, as no
laparascopic procurement is performed for cadaveric donors
[14]. Challenges associated with the dataset included:

– Wide range of illumination
– Varying camera pose
– Presence of specular reflections
– Different organ position

Visual samples of liver images are shown in Fig. 3.
From each image, liver manual segmentation was per-

formed to separate the hepatic tissue from the background
(Fig. 4). The manual segmentation of the liver images was
performed with the help of the software MATLAB ®. The
liver contour in each image was manually drawn by marking
seed points along the lived edges, whichwere then connected
with straight lines by the software.

The whole image was then divided in non-overlapping
patches of size 100 × 100 pixels starting from the top-left
image corner. We chose such patch size as image-patch size
is usually of the order of magnitude of 102×102 pixels (e.g.,
[32]). The most right part of the image, for which it was not
possible to select full patches, was discarded. This did not
represent a problem since the liver was always displayed at
the center of the image. A patch was considered valid for our
analysis if it overlapped with at least 90% of the liver mask.

To have the same number of patches from each patient,
we first computed the minimum number of image patches
that we could obtain among all images, which was 15.
Then, we randomly extracted 15 patches from all the other
images. As result, our patch dataset was composed of 300
patches extracted from transplanted liver and 300 from
non-transplanted ones. Sample patches for transplanted and
non-transplanted livers are shown in Fig. 5.

123



1362 International Journal of Computer Assisted Radiology and Surgery (2018) 13:1357–1367

Fig. 3 Dataset sample images. The images refer to (first row) accepted and (second row) rejected liver grafts. Images were acquired at different
distance and orientation with respect to the liver. Images present different illumination levels. Specular reflections are present due to the smooth
and wet liver surface

Fig. 4 Liver and liver mask obtained through manual segmentation

Fig. 5 Dataset sample patches.
The green and red boxes refer to
patches extracted from
transplanted and
non-transplanted livers. Each
row in a box refers to patches
extracted from the same liver
image

For the feature extraction described in “Feature extrac-
tion” Section, the LBPriu2R,P were computedwith the following
(R; P) combinations: (1; 8), (2; 16), (3; 24), and the corre-
sponding HLBPriu2 were concatenated. Such choice allows a
multi-scale, and therefore a more accurate description of the
texture, as suggested in 22. The LBPriu2R,P were computed for
each RGB image channel.

Nine GLCMθ,d were computed for each RGB channel
using all the possible combinations of (θ, d), with θ ∈
{0◦, 45◦, 90◦} and d ∈ {1, 2, 3}, and the corresponding
FGLCM sets were concatenated. The chosen interval of θ

allows to approximate rotation invariance, as suggested in 10.
The values of d were chosen to be consistent with the scale
used to compute LBPriu2R,P .
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Prior to classification, we also investigated feature reduc-
tion by means of principal component analysis (PCA). In
particular, we applied PCA on our best-performing (highest
Se) feature set. We then retained the first principal compo-
nents with explained variance equal to 98% and performed
the classification described in “Supervised approaches for
patch classification” section.

For performing the classification presented in “Model
training” section, the SVM hyper-parameters, for both the
supervised and semisupervised approaches, were retrieved
via grid search and cross-validation on the training set. The
grid search space for γ and C was set to [10−10, 10−1] and
[100, 1010], respectively, with 10 values spaced evenly on
log10 scale in both cases. The number of trees for RF train-
ing was retrieved with a grid search space set to [40,100]
with six values spaced evenly.

The feature extraction and classification were imple-
mented with scikit-image1 and scikit-learn.2

We evaluated the classification performance of SVM, RF
and SVM-SIL using leave-one-patient-out cross-validation.
Each time, the patches extracted from one patient were used
for testing the performance of the classificationmodel (SVM,
RF or SVM-SIL) trained with (only) the images of all the
remaining patients. The separation at patient level was nec-
essary to prevent data leakage.

To evaluate the classification performance, we computed
the classification (Se), specificity (Sp), and accuracy (Acc),
where:

Se = TP

TP + FN
(13)

Sp = TN

TN + FP
(14)

Acc = TP + TN

TN + FP + TP + FN
(15)

being TP, TN, FP and FN the number of true positive, true
negative, false positive and false negative, respectively.

We used theWilcoxon signed-rank test (significance level
α = 0.05) for paired sample to assess whether the classifica-
tion achieved with our best-performing (highest Se) feature
vector significantly differs from the ones achieved with the
other feature sets in Table 1.

Results

Table 2 shows the area under theROC for the SVMclassifica-
tion obtained with the feature vectors in Table 1. The higher

1 http://scikit-image.org/.
2 http://scikit-learn.org.

Table 1 Tested feature vectors for supervised patch classification with
support vector machines and random forest and corresponding number
of features

Feature vector INT FGLCM HLBPriu2 HLBPriu2 + INT

Number of features 6 108 162 168

INT Intensity mean and variance, FGLCM gray-level co-occurrence
matrix-based descriptors, HLBPriu2 normalized histogram of rotation-
invariant uniform local binary patterns

Table 2 Area under the receiving operating characteristic (ROC) curve
obtained with support vector machines (SVM) and different feature
vectors

Area under the ROC

INT 0.65

FGLCM 0.71

HLBPriu2 + INT 0.76

HLBPriu2 0.77

INT intensity mean and variance, FGLCM Gray-level co-occurrence
matrix-based descriptors, HLBPriu2 Normalized histogram of rotation-
invariant uniform local binary patterns

Fig. 6 Receivingoperating characteristic (ROC) curve for classification
with the normalizedhistogramof rotation-invariant uniform local binary
patterns and support vector machines

area under the ROC (0.77) was obtained with HLBPriu2 . The
relative ROC curve is shown in Fig. 6.

The classification performance obtained with SVM and
INT, FGLCM, HLBPriu2 and HLBPriu2 + INT is shown in
Table 3. The best performance was obtained with HLBPriu2 ,
with Se = 0.82, Sp = 0.64 and Acc = 0.73. Using only
INT features led to the worst classification performance
for rejected grafts with Se = 0.58. Significant differences
were found when comparing our best-performing feature
(HLBPriu2 ) with INT and FGLCM. The confusion matrices for
feature comparison are reported in Fig. 7.
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Table 3 Patch classification performance measure obtained with sup-
port vector machines (SVM) and different feature vectors

Se Sp Acc

INT 0.58 0.80 0.69

FGLCM 0.73 0.60 0.66

HLBPriu2 + INT 0.80 0.64 0.72

HLBPriu2 0.82 0.64 0.73

INT Intensity mean and variance, FGLCM Gray-level co-occurrence
matrix-based descriptors, HLBPriu2 Normalized histogram of rotation-
invariant uniform local binary patterns, Se sensitivity, Sp specificity,
Acc accuracy

WhenexploitingPCA-based feature reduction for HLBPriu2 ,
Se = 0.83, Sp = 0.62, and Acc = 0.73 were obtained
(Table 4). No significant differences with respect to the
case without feature selection were found, and therefore we
decided to avoid using PCA to keep the overall algorithm
computational cost low. Similar results were achieved also
with HLBPriu2 + INT.

When classifying HLBPriu2 with RF, Se = 0.72, Sp =
0.61, and Acc = 0.67 were obtained (Table 4). Signifi-
cant differences with respect to SVM performance were not
found.

Table 4 Patch classification performance measure obtained using the
histogram of rotation-invariant local binary patterns as feature with dif-
ferent classifiers

Se Sp Acc

SVM + PCA 0.83 0.62 0.73

RF 0.72 0.61 0.67

SVM 0.82 0.64 0.73

Classification with feature reduction is reported, too. Se Sensitivity,
Sp specificity, Acc accuracy, PCA principal component analysis, SVM
support vector machines, RF random forest

The visual confusion matrix for the patch classification
performed with SVM and HLBPriu2 is shown in Fig. 8.

From our patch-based experimental analysis, among all
the tested feature sets, HLBP + INT and HLBP were the best-
performing feature sets. Thus, we decided to test SVM-SIL
with these two feature vectors, including also the Blo fea-
tures as introduced in “Semisupervised approach for image
classification” section. The features investigated for SVM-
SIL classification and the correspondent number of features
are reported in Table 5. With SVM-SIL, HLBP + INT + Blo
showed the best classification performance, with Se = 0.95,
Sp = 0.81, and Acc = 0.88. When using HLBP + Blo,
Acc = 0.82 was achieved. The confusion matrix for the

Fig. 7 Confusion matrices
(CMs) for the classification of
image patches from transplanted
(T) and non-transplanted (NT)
liver graft images. a CM for
gray-level co-occurrence-based
features (FGLCM). b CM for
intensity-based features (INT). c
CM for intensity-based and
local binary patter features
(HLBPriu2 + INT). d CM local
binary patter-based features
(HLBPriu2). CMs were obtained
with support vector machines

(a) (b)

(c) (d)
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Fig. 8 Visual confusion matrices for supervised patch classification
obtained with the histogram of rotation-invariant uniform local binary
patterns and support vector machines. NT Non-transplanted patches, T
transplanted patches

Table 5 Tested feature vectors for semisupervised image classification
with single instance learning-support vector machines and correspond-
ing number of features

Feature vector HLBPriu2 + INT HLBPriu2 + INT + Blo

Number of features 168 177

INT Intensity mean and variance, HLBPriu2 Normalized histogram of
rotation-invariant uniform local binary patterns, Blo blood features

SVM-SIL classification for HLBP + INT+Blo is reported in
Fig. 9. Visual samples of liver classification outcomes with
HLBPriu2 + INT+Blo for SVM-SIL classification are shown
in Fig. 10. It is worth noting that SVM-SIL failed in classi-
fying images of rejected liver grafts only once.

As for the algorithm computational cost, the liver manual
segmentation took ∼ 3 s on average per image. The clas-
sification process (both for SVM, RF and SVM-SIL) took
∼ 10−5 s. The time for the computation of HLBP + INT for
one patch was ∼ 0.02 s. Experiments were performed on a
CPU Intel® Core™i7-3537U @ 2.0GHz x 4 with 7.6GB
of available RAM; Linux operative system, kernel 4.4.0-98-
generic (x86_64) Ubuntu 16.04.3 LTS distribution.

Discussion

In this paper, we presented and fully evaluated an innova-
tive approach to the computer-aided assessment of HS in
RGB images acquired with smartphones in the OR, which
exploits liver texture analysis coupledwithmachine learning.
With respect to the approaches in the literature, our method
only requires RGB images and blood-sample tests. More-

Fig. 9 Confusion matrix (CM) for the classification of transplanted (T)
and non-transplanted (NT) liver graft images. CM are obtained with
HLBP + INT+Blo. The classification is performed with support vector
machines (SVM)-single instance learning (SVM-SIL). The colorbar
indicates the number of correctly classified images

over, it provides the surgeons with a classification outcome
on whether to accept or discard a liver graft.

For our experimental analysis, the highest (supervised)
patch classification performance was obtained with HLBPriu2
and HLBPriu2 + INT, which performed equally. FGLCM per-
formed worse and this is probably due to the GLCM lack of
robustness to illumination condition changes. In fact, when
acquiring liver images, no assumption on keeping the illu-
mination constant was done, resulting in different levels of
illumination in the images. Similarly, also INT features were
not able to face such variability in the illumination.

Classification performance with and without PCA did
not differ significantly. Therefore, we decided to avoid per-
forming PCA feature reduction for lowering the algorithm
computational cost with a view to real-time applications.

Significant differences were not found when comparing
RF and SVM performance. This is something expected, if
one compares our results with the literature (e.g., [7,22]).

By visually inspecting the wrongly classified patches
(Fig. 8), it emerged that misclassification occurred for
patches that are challenging to classify also for the human
eye. In fact, imageswere acquiredwithout a controlled acqui-
sition protocol, making the classification not trivial.

SVM-SIL provided a more reliable and robust classifi-
cation with respect to supervised approaches, both in terms
of Se and Sp. In fact, SVM-SIL misclassified a rejected liver
image only once. This can be attributed to the fact that SIL did
not make any assumption on ground-truth patch labels, but
only exploited the ground-truth classification of the images
obtained through histopathology for training purposes. The
inclusion of blood-test features helped increasing the classi-
fication accuracy with respect to using only textural features.
Nonetheless, it is worth noting that Blo alone was not suf-
ficient to achieve accurate HS diagnosis. Indeed, during our
preliminary analysis, we achieved anAcc = 0.75with super-
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Fig. 10 Samples of classification outcomes for transplanted (first row)
and non-transplanted (second row) liver grafts. Classification refers to
support vector machines (SVM)—single instance learning (SIL) with

HLBPriu2 + INT + Blo. The green and red boxes refer to correct and
wrong classification outcomes, respectively. SVM-SIL wrongly classi-
fied a rejected liver only once

vised SVM-based classification when considering Blo alone.
This supports the hypothesis that textural-information inclu-
sion is a valid support for HS diagnosis.

The computational time required by the proposed method
was not compatible with real-time application due to the
computational cost associated with the liver manual seg-
mentation. To reduce the computational cost and make the
process more automatic, color thresholding could be used
to segment the liver. Nonetheless, in this paper, we decided
to perform manual liver masking to keep the experimental
setup as controlled as possible with the goal of investigating
the potentiality of machine learning in the analyzed context.

A direct comparison with the state of the art results was
not possible, due to the lack of benchmark datasets. More-
over, as reported in “Introduction” section, the methods in
the literature only correlated hepatic physical characteristics
with the HS level, not providing a method for graft quality
assessment.

A limitation of the proposed study could be seen in its
patch-based nature, even though this is something commonly
done in the literature for hepatic tissue assessment (e.g., [26]).
We decided to work with patches to have a controlled and
representative dataset to fairly evaluate different features.

Moreover, due to the size of our dataset, we decided to per-
form leave-one-patient-out cross-validation for the algorithm
evaluation. Despite leave-one-patient-out cross-validation
being a well-established method for performance evaluation
based on a small set of samples, it could provide classification
performance overestimation [12]. Therefore, to have a robust
estimation of the classification performance, it would be nec-
essary to evaluate the classificationmethodwith different sets
of images never used for training. Nonetheless, as to do so,
a bigger dataset would be required. Thus, as future work, we
aim at enlarging the training dataset, exploiting also different
RGB camera devices, to validate the experimental analysis
presented here. We also aim at investigating if including a
measure of confidence on classification, such as in [22,23],
could help further improving classification reliability.

Conclusion

In conclusion, themost significant contributionof thiswork is
showing that LBP-based features and SVM-SIL, along with
blood-sample tests, canbeused as support forHSassessment.
This is highly beneficial for practical uses as the method can
be potentially developed to run in real-time, being compat-
ible with the short time available between the time of liver
procurement and the LT. Moreover, the only required imag-
ing source is a standard RGB camera, which can be easily
used in the OR without requiring additional imaging sources
such as MRI or Raman spectrometer.

It is acknowledged that further research is required to fur-
ther ameliorate the algorithm as to offer all possible support
for diagnosis and achieve classification performance compa-
rable with those obtained with biopsy. However, the results
presented here are surely a promising step toward a helpful
processing system to support the decision process for HS
assessment in liver procurement setting.
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