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Abstract
Purpose Ultrasound acquisitions are typically affected by deformations due to the pressure applied onto the contact surface.
While a certain amount of pressure is necessary to ensure good acoustic coupling and visibility of the anatomy under
examination, the caused deformations hinder accurate localization and geometric analysis of anatomical structures. These
complications have even greater impact in case of 3D ultrasound scans as they limit the correct reconstruction of acquired
volumes.
Methods In this work, we propose a method to estimate and correct the induced deformation based solely on the tracked
ultrasound images and information about the applied force. This is achieved by modeling estimated displacement fields of
individual image sequences using the measured force information. By representing the computed displacement fields using
a graph-based approach, we are able to recover a deformation-less 3D volume.
Results Validation is performed on 30 in vivo human datasets acquired using a robotic ultrasound framework. Compared to
ground truth, the presented deformation correction shows errors of 3.39 ± 1.86mm for an applied force of 5N at a penetration
depth of 55mm.
Conclusion The proposed technique allows for the correction of deformations induced by the transducer pressure in entire
3D ultrasound volumes. Our technique does not require biomechanical models, patient-specific assumptions or information
about the tissue properties; it can be employed based on the information from readily available robotic ultrasound platforms.

Keywords Robotic ultrasound · Deformation correction · Compounding · Inpainting

Introduction

Ultrasound (US) imaging is extensively used in both diagnos-
tic and interventional scenarios. The high accessibility of US
systems and their lowcostsmakeUS themodality of choice to
obtain real-time imaging of various anatomies. In the case of
soft tissue applications and subcutaneous pathologies, such
as soft tissue sarcomas (STS),USyieldsmorphological infor-
mation about the target tumor [15], e.g., tumor heterogeneity
or vascularization. Being free of ionizing radiation, US is
also an ideal imaging modality for follow-up acquisitions
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after surgical interventions, such as in the case of STS where
there is a high risk of recurrence of STS [1].

To achieve optimal acoustic coupling of the US transducer
and obtain good visibility of the target anatomy, it is neces-
sary to apply a certain force onto the contact surface. This
naturally results in an unavoidable deformation of the imaged
tissues. For certain clinical applications, the induced defor-
mation can be exploited to infer mechanical properties of the
imaged tissue by means of a static or dynamic excitation—a
concept exploited in classical US elastography [12]. On the
other hand, this deformation can hamper the exact localiza-
tion of anatomies of interest, such as STS tumor masses, as
well as the precise assessment of their geometry and volume.
Additionally, as these deformations do not usually remain
constant during free-hand 3D ultrasound acquisitions, dif-
ferent deformations across the individual 2D images of an
US sweep eventually impair the volumetric reconstruction.
Despite the advantages free-hand 3D-US could provide in
several clinical settings, in both diagnostic [13] and inter-
ventional scenarios [11], these drawbacks impair a higher
acceptance of such approaches in practice. To overcome
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these deformation-induced problems, the inhomogeneous
deformation created in free-hand 3D US is reconstructed in
[18] through a combination of probe tracking information
and non-rigid image-based registration, although limited to
the deformation in the axial direction. Similarly, in [2,21]
nonlinear tissue distortions produced during long 3D US
acquisitions are corrected via subsequent elastic registrations
of image pairs. All these methods, however, do not aim at
removing the tissue deformation, but to make it homoge-
neous along the entire US volume.

Recently, robotic platforms for US imaging (rUS) have
been proposed [5,17]. It is common for these platforms to
include force sensing, either via force and torque sensors
attached to the robot end-effector, or coupled with elastic
joints, such as in [8]. Therefore, contrary to free-hand US,
such platforms are able to apply a constant pressure onto
the examined anatomy and thus maintain a nearly constant
deformation,which significantly alleviates volumetric recon-
struction. However, the deformation will still be present due
to the necessary contact force. This is of particular interest in
an interventional scenario, when registering preoperatively
acquired tomographic image data (e.g., MRI or CT) to intra-
operatively acquired 3D US data, as the amount of deforma-
tion between the two volumes is directly proportional to the
required computational effort and thus precious runtime.

Related work

Existing methods for correcting for the induced deformation
in US make use of a combination of various types of infor-
mation such as the US image data, the position of the US
transducer (via a tracking system) and the applied force. A
group of proposed works additionally employs biomechan-
ical models that reproduce the mechanical properties of the
tissue under examination. These include models based on
the finite element method (FEM) to predict and correct for
the deformation [3]. However, FEM-based methods require
a priori knowledge of the tissue properties to obtain an accu-
rate representation and often require specific density, elastic
moduli, or similar. In practice, such indices are complex to
be retrieved, especially in pathological indications. Besides
FEM modeling, 3D mesh models are also used to estimate
the deformation [14]. Although these models are not patient-
specific itself, the method requires the acquisition of the
surface of interest during the procedure, using laser scan
technology or similar techniques. Furthermore, both meth-
ods assume that deformations are present only along the axial
direction of the US transducer. In [4], a proof of concept
is proposed to obtain mechanical parameters specific to the
examined tissue using mutual information between the US
images, avoiding the use of generalized parameters. Finally,
a recent method proposed in [16] solely uses tracked US
images and the applied force in order to extrapolate the tis-

sue deformation and eventually recover deformations in the
axial and lateral direction. However, both methods are pre-
sented for 2D images only and validated only on simulations.

Contributions

We present an image-based approach to obtain
compression-free 3D US volumes based on robotic acqui-
sitions (see Fig. 1). We do not employ a technique based on
biomechanical models, as these require the retrieval of addi-
tional parameters that impairs their usability, especially since
a patient-specific model is required. It is noticeable, in fact,
that these limitations are reflected in the validation of such
methods, which is very often performed on synthetic data
only—both regarding tissue models and US images—except
[14], which is validated on one clinical case.

The robotic platform presented in the following facilitates
accurate tracking of the US transducer position and provides
control over the applied force via direct force control tech-
niques. The latter ensures that the necessary force to visualize
the anatomy of interested is applied as well as that informa-
tion about the applied force can be obtained along the whole
scan trajectory. With regard to the mentioned state of the art,
our proposed method features the following aspects:

(a) it makes use of the tracked 2D US images and the force
information only, i.e., no additions to a generic robotic
US setup are required;

(b) it is able to recover deformations in both axial and lateral
direction;

(c) it uses a novel deformation interpolation (3D inpainting)
of sparsely measured elastic information to retrieve a full
deformation-corrected 3D US volume.

We provide validation for our method on 30 3D acquisitions
performed on volunteers and evaluate the corrected volumes
against ground truth US data. Table 1 categorizes this work
and the related state of art according to their characteristics.
Finally, to allow a better comparison of different methods
for deformation correction and to improve reproducibility,
the human acquisitions that were performed to validate this
work are publicly available.

different forces

Pixel 
tracking

Polynomial 
fitting

Deformation 
estimation

Fig. 1 Proposed workflow for deformation correction of 3D US vol-
umes. For an acquisition of length L , K 2D deformation estimations
are performed
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Table 1 Comparison with related work

2D 3D Axial def. Lateral def. Force sensing No biomech. model In vivo validation

Burcher et al. [3] � � � �
Pheiffer et al. [14] � � � �
Dahmani et al. [4] � � �
Sun et al. [16] � � � � �
Ours � � � � � � �

Categorized based on the characteristics of available methods: deformation correction in 2D, in 3D, ability to cope with axial and/or lateral
deformations, use of force sensing and/or biomechanical models and in vivo validation

Methods

The aim of the presented method is to obtain a 3D US vol-
ume free of the deformation induced by the contact force
from the US transducer during the acquisition performed by
a rUS platform. Following an image-based approach, this
requires to correct for the induced deformation of each indi-
vidual 2D image that forms the 3D volume, which would
imply extensive acquisition and computation time depend-
ing on the length of the trajectory. To maintain high clinical
usability, we propose to perform the 2D deformation estima-
tion sparsely along the planned trajectory, while providing
a complete 3D deformation correction employing a novel
3D-inpainting scheme. A schematic representation of the
overall workflow is shown in Fig. 1. Initially, 2D US images
are acquired along a linear trajectory of length L . During
the whole acquisition, the position of the US transducer is
tracked via the forward kinematics of the robotic manipu-
lator, as well as the fixed base force Fbase applied onto the
surface. At each designated position, we estimate the 2D
deformation induced by the transducer pressure as described
in “2D deformation estimation” section. This estimation is
performed at K equidistant locations (separated by a distance
of L/(K − 1)). Then, the estimated sparse 2D deformation
fields are inpainted using a graph-based representation of
the whole US sweep in order to obtain a volumetric defor-
mation field. Using this approach allows for filling in the
missing information where the direct estimation was not per-
formed. Finally, the undeformed 3D volume is reconstructed
as described in “3D reconstruction” section.

2D deformation estimation

While the transducer is moved along the planned trajectory
and the base force Fbase is applied, for each of the K loca-
tions, the tissue deformation due to the applied pressure is
examined. Inspired by the approach proposed by Sun et al.
[16], 2D deformation fields are generated from a series of 2D
images acquired at the same location with N different forces
Fi ∈ [Fstart,Fend]where i = 1, . . . , N . These contact forces
are increased by Fstep after a small temporal interval tstep, s.t.
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Fig. 2 Exemplary force profile and induced deformation. Forces
applied during 2D deformation estimation (left), resulting force-
dependent deformed US images for 2N in red, and 8N in blue (right)

Fi = Fstart + (i − 1)Fstep, (1)

yielding N force-dependent 2D images Ii (i = 1, . . . , N )
as illustrated in Fig. 2. We retrieve the resulting deforma-
tion between Ii and Ii+1 at each pixel using a preconditioned
fluid-elastic diffeomorphic demons as described in [19,20]
with the following parameter settings: standard deviation for
elastic demons σe = 1, standard deviation for fluid demons
σ f = 1 and step size τ = 0.05. The parameters for the dif-
feomorphic demons algorithm have been chosen to reach a
meaningful compromise between speckle size and degree of
desired regularity: while increasing both standard deviations
decreases the contributions of individual speckle patterns, too
small standard deviations do not achieve satisfactory regular-
ization results. In addition to this, it needs to be considered
that by adjusting σe the regularity of the entire solution,
i.e., the deformation field, can be changed and by adjusting
σ f one can influence the regularity of the individual updates,
i.e., how susceptible the algorithm is to spurious and noisy
local deformations.

To finally allow for a continuousmodeling of the expected
tissue displacements as a function of the applied force, a
regression function is fitted to the sampled points. In our
case, we model the force-dependent deformations using
fourth-order polynomial functions in order to regress the
deformation field corresponding to the force-free configu-
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Fig. 3 Qualitative comparison of model quality. The evaluation shows
the position of a single tracked sample for all measured incremental
force steps in reference to evaluated models based on first-, second- and
third-order polynomial

ration, i.e., at zero force. It is important to note that while
the method in [16] utilizes median filtering on the obtained
deformation fields to guarantee spatial consistency, the pro-
posed reconstruction in “3D reconstruction” section ensures
this property in an implicit manner. In conclusion, we obtain
a model of the tissue deformation with respect to the applied
force. Since each 3D acquisition is performed using Fbase
(e.g., 5N)—with the exception of the location where the 2D
estimation is computed—we will use the regression model
to estimate the position at zero force for each volume voxel.
Examples of suchmodel obtainedbypixel tracking are shown
in Figs. 3 and 4.

3D reconstruction

As the 2D deformation estimation takes most of the time
during a 3D US acquisition (see “Acquisitions” section)

and acquiring them in a dense sampling is impractical, it
is performed at K equidistant sampling positions along the
scanning trajectory in order to facilitate the proposedmethod
to be applied in a clinical scenario. Thus, the obtained 2D
deformation fields have to be propagated or inpainted at
the image position where no sampling has been performed.
Inpainting can be described as the process of augmenting a
set containing missing values with ones based on the sur-
rounding known samples. There are several mathematical
approaches to model inpainting, one of which is the solution
of a set of partial differential equations (PDEs), where the
known values represent the Dirichlet boundary conditions.

It is possible to solve discrete PDE-like problem with a
graph-based method as the one proposed by Hennersperger
et al. [9], whichwas introduced for the solution of a quadratic
optimization problem. Differently from the original formu-
lation, our inpainting problem requires the generation of
new graph nodes to interpolate the missing information. We
choose anisotropic diffusion of the deformation fields over
the graph structure, such thatwe can better define the required
diffusivity properties for our problem, i.e., high diffusion in
the elevational direction and low speed of information prop-
agation in axial and lateral direction. That is, we want the
deformations to propagate more over the sweep direction
than within the image plane. This can be efficiently imple-
mented over the irregular graph that is built by the method,
i.e., the optimization over the graph is performed as local
operation. The irregular nature of the graph also allows us to
employ non-parallel acquisitions.

For our problem, the boundary conditions (the known
values) are the sparse 2D deformation fields. Inpainting is
performed over the deformation fields component-wise using
a preconditioned conjugate gradient (PCG)with a Jacobi pre-

Fig. 4 2D deformation tracking: 5 pixels are tracked—manually and
using the demons-based approach—while forces from Fstart to Fend are
applied. The points are marked on the first (left) and last (center) frame

of the sequence. On the right, their position in axial direction is dis-
played: manually tracked trajectory (full line) and tracked via demons
(dashed line)
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conditioner as optimizer. Weights inside the images were
fixed to e−3 to inhibit blurring within them, while weights
between different images were set as described by the orig-
inal authors [9], applied to the axial and lateral deformation
components.

This graph-based inpainting results in a final deformation
field that describes how each pixel along the acquired volume
is affected by the applied force (forward deformation field).
We invert this field to correct for the deformation induced
by Fbase during the acquisition. Inversion of an explicit field
is not possible in the general case, but due to the employed
tracking scheme, the resulting field is diffeomorphic, i.e.,
invertible. It is inverted numerically using an iterativemethod
based on an open-source implementation.1 After applying
the inverse deformation field to the individual images from a
full acquisition, a 3D volume is created using an US recon-
struction method. We employed a voxel-based interpolation
method, in which for each voxel a scalar is computed as
weighted interpolation of the relevant US image samples.
This approach is described in [7] for advanced reconstruction
using tensors instead of scalar values. The resulting unde-
formed 3D volume thus appears as acquired using no force.

Hardware setup and experiments

Hardware setup

We make use of a robotic platform for autonomous US
acquisitions: the system is composed of a manipulator, a
KUKA LBR iiwa R800 (KUKA Roboter GmbH, Augs-
burg, Germany), controlled using the ROS2 framework. The
robotic arm is equipped with torque sensors at its joints,
which allow for the estimation of the forces and torques
applied by (or to) the robot’s end-effector. B-mode US
images are acquired using an Ultrasonix RP US machine
(BK Ultrasound, Peabody, MA, USA) and a linear trans-
ducer (frequency: 3.3MHz, depth: 55mm, gain: 50%) which
is attached to the robot’s flange. Images are transferred using
theOpenIGTLink communication protocol3 to a workstation
(Intel Core i7, NVIDIAGTX 1080), where they are synchro-
nized to the transducer tracking and force stream.

Acquisitions

3D US volumes were acquired on the thighs of five healthy
volunteers (age 26–30, 4 males, 1 female). We selected the
volunteers’ thighs as the area for our experimental acquisi-
tions, since extremities are prone to be affected by soft tissue

1 https://itk.org.
2 http://www.ros.org.
3 http://openigtlink.org/.

pathologies, such as STS [10], and therefore often subject to
US examination. For each volunteer, six volumetric acquisi-
tions of length L = 70mmwere performed, for an average of
26s each and a total of 30 US volumes. Different base forces,
applied orthogonally to the contact surface, were employed
during the different US sweeps: Fbase ∈ {2, 5, 8, 10, 12, 15}
Newton. A 2D deformation field, as described in “2D defor-
mation estimation” section, was estimated for K = 15
positions along the planned trajectory, with Fstart = 0N and
Fend = 20N. Fstep was varying between 0.25 and 1N during
a single estimation, since smaller variation steps were found
beneficial to better capture deformations of the initial tissue
layers at lower forces. That is, those layers tend to undergo
high deformations with low forces already, using small steps
at the beginning of the evaluation allows to better track pixel
movements. The required computation time to compute a 2D
deformation field from the images acquired at one location
was in average of 186s, with a maximum memory usage of
approximately 21GB for the computations of a full acquisi-
tion.

A ground truth volume, free from any compression from
the US transducer, was also acquired for every individual by
maintaining the probe at about 5mm from the contact surface
while applying a thick layer of US gel to guarantee acoustic
coupling. The precise and stable movement required for the
ground truth volume acquisition is made possible by the use
of such robotic system. It is important to notice that previous
works on the topic do not validate their result using real
undeformedUS images or volumes, but rather using synthetic
ones or via registration with other image modalities. On the
other hand, due to the missing contact to the patient surface,
while the ground truth volumes do not present deformations,
the visibility of the underlying anatomy is strongly impaired.

Validation

To validate the framework for deformation-compensation,
we assess the quality of the individual components as well
as the overall system:

– 2D deformation estimation We validate the pixel
tracking and deformation regression on 5 deformation
sequences. For each, 5 points are manually selected on
the first frame and their displacement tracked over the
successive ones. The position of the same points is also
manually annotated, such that the absolute accuracy of
the automatically tracked trajectory can be compared.

– Deformation field interpolation To evaluate our pro-
posed sparse sampling scheme, we validate how sparsely
a 2D deformation estimation can be performedwhile still
obtaining a valuable volumetric deformation correction,
as a trade-off between quality and acquisition time is
needed. Based on 15 deformation fields estimated per

123

https://itk.org
http://www.ros.org
http://openigtlink.org/


624 International Journal of Computer Assisted Radiology and Surgery (2018) 13:619–627

volume, we first compare different subsamplings (leave-
one-out) and compute theEuclidean normof the resulting
difference in deformation for 18 volumes. Second, for a
given volume, we exclude the computed central deforma-
tion field and interpolate the remaining ones to obtain it.
We perform this 7 times, incrementally removing more
neighboring fields, until only the first and last sample
are used for interpolation. The resulting field in the cen-
tral location of the volume is then compared to the one
directly computed by the (ground truth) 2D estimation.

– 3DvolumeundeformationWevalidate the quality of the
overall method using the target registration error (TRE)
between the compounded US ground truth volume and
the final undeformed volumes acquired applying differ-
ent forces (2, 5, 8 and 15N).

Results

2D Deformation Estimation

The 2D deformation estimation, as performed along the
planned US trajectory (“2D deformation estimation” sec-
tion), allows to track the displacement induced by the applied
force of the individual image pixels. As can be seen in Fig. 3,
the computed displacement is characterized by a nonlinear
behavior, with a stronger deformation at lower forces due

Fig. 5 2D tacking error: Mean and standard deviation of the Euclidean
error [mm] between demons-based and manual tracking. 5 points over
5 sequences (25 points in total) of 35 force steps were evaluated, a
subsample of the results (10 force values of 35) is shown

to the compression of the superficial and more elastic tissue
layers. Therefore, while in [16] the authors propose to model
this displacement using quadratic functions, we instead pro-
pose to use fourth-order polynomials to better capture the
high flexibility of the subcutaneous and other relevant tissue
layers.

In Fig. 4, the 5 points selected for validation of one spe-
cific sequence are shown at the beginning and at the end of
the deformation sequence together with the resulting models
obtained from the demon-based tracking and a ground truth.
For the 25 points selected over 5 different sequences, the error
between their computed trajectory and the ground truth was
found to be 0.64 ± 0.57mm. Note that information on the
tissue state at 0N is already sampled in our model, so that we
do not need to extrapolate to reach the undeformed state. In
Fig. 5, the distribution of modeling errors is depicted for the
evaluated force steps. The error from our tracking approach
tends to accumulate over multiple force steps, with some
sharp increases at instants where tissue layers yield to the
increasing pressure.

Deformation field inpainting

The results of the validation of our inpainting strategy using
different subsampling of the available deformation fields are
presented in Fig. 7. For displacement fields sampled at a
distance of 35mm, an average error of 1mm is obtained.
The possibility to sample tissue deformation so sparsely also
helps reducing the computational costs of a full acquisition
and the clinical feasibility of the proposed method. We also
validate the accuracy of the inpainting method computing
a known displacement field that is not used during interpo-
lation, together with a subset of its neighbors. In Fig. 6, the
original deformation field, computed with the 2D estimation,
is shown alongside the magnitudes of the Euclidean error
between the inpainted fields and the baseline. As also shown
inTable 2, themean error increaseswith the number of neigh-
boring samples that are removed from the inpainting process,
as expected. The error obtained is comparable to that in Fig. 7.

3D volume undeformation

We validate the performance of the proposed deforma-
tion correction method using target registration error (TRE)
between the compounded ground truth and the undeformed
volumes acquired with different forces (2, 5, 8 and 15 N—
20 volumes in total). Anatomical landmarks were manually

Table 2 Quantitative inpainting
accuracy: error in mm (average
and SD) of an interpolated
deformation field with respect to
respective estimated one

2 Neighbors 4 Neighbors 6 Neighbors 8 Neighbors 10 Neighbors 12 Neighbors

0.94 ± 0.83 0.95 ± 0.84 1.11 ± 0.87 1.20 ± 0.87 1.40 ± 0.97 1.62 ± 1.00

The deformation field for the same location is interpolated incrementally removing neighboring fields. Errors
are shown for 2, 4, 6, 8, 10, and 12 fields being removed symmetrically around the selected one
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Fig. 6 Qualitative inpainting accuracy: on the left, an exemplary defor-
mation field computed by the 2D deformation estimation is shown.
Inpainting is performed with the attempt of reproducing the computed
deformation as accurately as possible,while incrementally removing the

surrounding neighboring fields to assess how sparse sampling affects
output quality. The error magnitudes of the interpolated deformation
field with respect to the one on the left are shown in the center (remov-
ing 2 neighbors) and on the right (removing 12 neighbors)
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Fig. 7 Deformation subsampling: mean and SD of the Euclidean norm
of difference between dense and sparsely sampled deformation estima-
tion

selected with an average of 142 ± 14 fiducial points per
volume pair. Table 3 summarizes the measured distances
between the chosen points, an increase from 3.11 ± 1.55
to 6.27 ± 2.59mm can be observed with increasing force.
The achieved correction is also shown in Fig. 8.

Discussion and conclusion

The obtained results show that the proposed method is able
to capture the deformation induced by the US transducer
during a 3D robotic acquisition and effectively correct for
it. While a direct comparison to the current state of art is
difficult due to variations in the acquisition protocols, the
reported deformation correction for a clinical case [14] is
3.5 ± 0.4mm, which is comparable to our findings for 5N

Table 3 Target registration error

2N 5N 8N 15N

3.11 ± 1.55 3.39 ± 1.86 4.65 ± 1.92 6.27 ± 2.59

Average and SD [mm] (3 subjects). The force values used for acquisi-
tions allow the visualization of subcutaneous masses in a large set of
body type

in Table 3. Such an error would be clinically acceptable for
the target application, since diagnosed STS have an average
size of 10cm [6].

To improve the reproducibility of this work and allow
future comparative evaluations, we release the acquisitions
acquired on volunteers.4 The dataset contains synchronized
US images, tracking data and force information.

It is clear that the overall deformation estimation was able
to better correct for low forces, since the estimated deforma-
tions from our fitted model are inherently subject to noise
due their local nature. Resulting undeformed volumes may
contain artifacts at the interface of different tissue layers,
as noticeable in Fig. 8, as the tracking of the deformation
is more difficult due to the diverse response to the applied
force. This effect could be reduced by a better regularization
of the obtained deformation fields. It is valuable to note that
we do not aim to compensate for all the possible sources of
deformations that might be present during an US acquisition,
e.g., breathing motion, vascular pulsation, but—similarly to
the state of the art—we tackle the deformation caused by

4 http://campar.in.tum.de/files/virga/dataset.zip.

123

http://campar.in.tum.de/files/virga/dataset.zip


626 International Journal of Computer Assisted Radiology and Surgery (2018) 13:619–627

Fig. 8 Comparison of deformed and undeformed volumes. Axial and lateral views of deformed (left), ground truth (center) and undeformed (right)
volumes

the probe pressure only. Future work will include improve-
ments in the model to incorporate constrains on the resulting
deformation fields and integrate information on elastic tissue
behavior. Additionally, a validation of the method for multi-
modal volumetric registration would be beneficial to assess
its potential in additional clinical settings. Also, a prospective
validation on clinical patients would be beneficial to evaluate
the deformation on pathological tissue, opening the way to
clinical impact of robotic US imaging.
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