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Abstract
Purpose Lung cancer detection at its initial stages increases the survival chances of patients. Automatic detection of lung
nodules facilitates radiologists during the diagnosis. However, there is a challenge of false positives in automated systems
which may lead to wrong findings. Precise segmentation facilitates to accurately extract nodules from lung CT images in
order to improve performance of the diagnostic method.
Methods Amultistage segmentation model is presented in this study. The lung region is extracted by applying corner-seeded
region growing combinedwith differential evolution-based optimal thresholding. In addition to this, morphological operations
are applied in boundary smoothing, hole filling and juxtavascular nodule extraction. Geometric properties along with 3D edge
information are applied to extract nodule candidates. Geometric texture features descriptor (GTFD) followed by support
vector machine-based ensemble classification is employed to distinguish actual nodules from the candidate set.
Results A publicly available dataset, namely lung image database consortium and image database resource initiative, is used
to evaluate performance of the proposed method. The classification is performed over GTFD feature vector and the results
show 99% accuracy, 98.6% sensitivity and 98.2% specificity with 3.4 false positives per scan (FPs/scan).
Conclusion A lung nodule detection method is presented to facilitate radiologists in accurately diagnosing cancer from CT
images. Results indicate that the proposed method has not only reduced FPs/scan but also significantly improved sensitivity
as compared to related studies.

Keywords Ensemble learning · Hybrid features · Lung nodules · Segmentation · Support vector machine

Introduction

Lung cancer is considered as a second most probable can-
cer in human beings. Moreover, the graph of survival rate is
curved toward the very low end. Due to this fatal disease,
around 1.69 million deaths have been reported worldwide
during the year 2015 along with several new cases [1]. The
human cells grow in a well-controlled manner. The uncon-
trolled growth of these cells leads to cancer. In lung cancer,
these abnormal cells grow quickly to form a nodule [2].
As the nodule size increases, lungs functionality is severely
disturbed and leads to death within a short time [3]. There-
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fore, it has become a compulsion to identify lung nodules
at earlier stages. Medical imaging helps in early diagnosis
of lung cancer. The most popular one is computed tomogra-
phy (CT) [4]. During a CT scan, more than 100 images of a
patient are generated. Radiologists have to examine all these
images during the diagnosis. Handling such large number of
images is error-prone and time-consuming. Computer-based
systems help the radiologists in diagnosis process by provid-
ing the second opinion [5]. However, there is a significant
challenge of sensitivity and number of FPs/scan. One of the
major steps of a diagnosis system is segmentation. Accurate
segmentation of lung region and pulmonary nodules is crit-
ical that helps the radiologists in decision making [6]. This
paper presents a multistep segmentation method to improve
the diagnosis procedure. In addition to segmentation, the
selection of relevant features and a robust classifier helps
to improve accuracy and reduce false positives. Considering
aforementioned, GTFD is created for better representation
of nodule candidates. Finally, SVM-ensemble classifier is
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applied, which is based on three base classifiers, namely
SVM-linear, SVM-polynomial and SVM-RBF (radial-based
function). The proposed method is evaluated over a widely
used publicly available standard dataset: LIDC–IDRI. The
results show improved performance of the proposed method
in terms of accuracy, sensitivity and specificity with low
FPs/scan as compared to earlier methods.

Related work

Automated diagnostic systems for lung cancer have remained
a key area of research in the recent years. Several such sys-
tems have been developed based on image processing and
machine learning techniques [7]. However, there is a primary
issue of accuracy and false positive rate (FPR) in these diag-
nosis systems. Lung nodule detection methods are mainly
comprised of segmentation, feature extraction and classifica-
tion [8]. The segmentation is further divided into lung region
extraction and nodule candidate detection. Several segmen-
tation methods have been proposed including thresholding
[9], template matching [10], 3D template matching [11] to
name a few. Thresholding is a simple and popular technique
used for lung volume segmentation and nodule candidate
detection. Different variations of thresholding techniques
are reported in literature including simple thresholding [9],
optimal thresholding [12], Otsu thresholding [13], thresh-
olding combined with morphological operations [14], fuzzy
thresholding [15] and multiple thresholds [16–19]. Some
researchers also used combinations of different segmentation
methods to improve the segmentation quality. ..Tan et al. [20]
proposed a segmentation method by combining watershed,
active contours and Markov random field. ..Shen et al. [21]
used bidirectional chain code for nodule segmentation and
then SVM for classification. The use of classifier is also a
very significant step in the reduction in false positives. It dis-
tinguishes actual nodules from the set of nodule candidates
on the basis of features provided for training and testing.Arti-
ficial neural networks (ANN) [22,23] and SVM are popular
techniques used for nodule classification. ..Nibali et al. [24]
proposed deep residual network-based nodule classification
method. Their major focus was on the performance evalua-
tion of deep learning in the field of lung nodule detection.
..de Carvalho Filho et al. [25] applied thresholding com-
bined with a genetic algorithm for nodule segmentation and
finally SVM for classification. Taşcı, Uğur [13] presented a
segmentation method based on Otsu thresholding and mor-
phological operations. Shape and texture features were used
as input to a regression-based classifier. .Teramoto, Fujita
[26] proposed the cylindrical nodule enhancement filter to
improve FPR. They used thresholding for segmentation of
region of interest (ROI) and SVM for nodule classifica-
tion.

Segmentation of lung nodules is a challenging phase in the
detection process due to complex structure of lung. Further-
more, handling of small, boundary attached (juxtapleural)
and vessel attached (juxtavascular) nodules is a big chal-
lenge. Precise feature extraction and powerful classification
algorithms assert their impact on the performance of a diag-
nosis system. The proposed technique addresses these issues
in order to give a better detection method for lung cancer.

Proposedmethod

An automated diagnosis method to detect lung nodules on
the basis of various image processing and machine learning
techniques is presented in this paper. Figure 1 shows work-
ing model of the proposed method. Segmentation comes first
as a vital step in the presented technique which deals with
two major parts, i.e., lung region extraction and nodule can-
didate detection. These two stages are further divided into
substeps. Other two stages are the creation of GTFD and
SVM-ensemble-based nodule classification, respectively.

Nodule segmentation

Pulmonary nodule segmentation is an escalating phase in the
performance of an automatic diagnostic system. During the
diagnosis procedure, precise and accurate segmentation of
nodules impacts the performance. Segmentation of smaller
nodules, ranging from 3–30mm, juxtapleural nodules and
vascular attached nodules is a significant test for the seg-
mentation method.

Lung region extraction

In the first step, the image background is removed by using
corner-seeded region growing combined with thresholding
approach. The thresholding is a straightforward and efficient
method for image segmentation. It performs segmentation
on the basis of pixel intensities. It is observed that simple
thresholding is not useful for lung region extraction due to
overlapping between the intensities of background and some
sections of ROI. To overcome this issue, the background of
input images is removed. Furthermore, the threshold gener-
ated for one slice is not useful to other slices because of its
variation in the gray level for each slice as shown in Fig. 2.
Therefore, the suggested segmentation techniqueused a com-
bination of differential evolution-based optimal thresholding
[27] and corner-seeded region growing.

After the removal of image background, differential
evolution-based optimal thresholding is used to identify the
lung boundary and extraction of lung region. An initial
threshold of −950HU is applied because most of the lung
region lies in the range of −950HU to −500HU. It is an
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Fig. 1 Workflow of the proposed method

iterative step in which the threshold is recalculated in each
iteration.

In an image, a histogram gives the probability distribution
of gray levels. This probability distribution is calculated by
Eq. (1).

p(x) =
K∑

i=1

Pi .pi (x) =
K∑

i=1

Pi√
2πσi

exp

[
− (x − μi )

2

2σ 2
i

]

(1)

The total number of categories within the image is repre-
sented by K . Pi and pi (x) are the probability and probability
distribution functions within the category i , respectively. μi

and σi are the mean and standard deviation. To compute opti-
mal threshold, the overall probability error in two different
categories is minimized by Eq. (2).

e(Ti ) = Pi

Ti∫

−∞
pi (x)dx + Pi+1

∞∫

Ti

pi+1(x)dx (2)

This error is with respect to the threshold Ti . Then the
overall error is calculated as given by Eq. (3).

E(T ) =
K−1∑

i=1

e(Ti ) (3)

Henceforth, a threshold image is generated that contains
the lung mask. To refine the lung boundary and extraction of
juxtapleural nodules, morphological operations are applied.
Morphological closing is performed on the binary mask,
where a disk of size 25 is taken as the structuring element. The
process of closing also includes some extra regionswhich can
affect the accuracy of segmentation. To solve this problem,
morphological opening with the same structuring element,
a disk of size 25, is applied. Figure 3 highlights the process
of juxtapleural nodule extraction. Finally, the lung region is
extracted by using the resultant mask and input CT image.
The whole procedure is repeated for all the slices of each
scan. Figure 4 shows the step-by-step results of segmenta-
tion.

Nodule candidate detection

After ROI extraction, the next step is to extract nodule can-
didates by eliminating vessels and other unwanted objects.
For this purpose, a combination of morphological opera-
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Fig. 2 Input CT images (a, b)
and their respective histograms
(c, d)

tions, edge detection, bounding box and shape information
are applied to the lung ROI for eliminating vessels and noise
objects. Themajor issue in nodule candidate detection is jux-
tavascular nodules due to their attachment to the vessels [28].
In most of the previously known techniques, these nodules
are eliminated with the removal of vessels. To avoid nod-
ule elimination, we use 3D connectivity information. Since
nodule is a 3D object, therefore, it must show its existence
in consecutive slices of a scan. Considering this property
of nodule, the presence of each object with its predecessor
and successor slices is investigated. Let p(i, j, k) is a can-
didate for a nodule pixel, where k is the slice number and
i , j represent the location of pixel within that slice. Then
3D neighborhood is checked by comparing the intensity of
that pixel. Each pixel p(i, j) of slice k has nine neighbor-
hoods in the k − 1 slice and nine in the k + 1 slice as shown
in Fig. 5. The similar intensity pixels must be there within
the eighteen neighborhood pixels, either in predecessor or in
successor slices or in both.

The morphological opening is used to separate juxtavas-
cular nodules from vessels. The structuring element used for
this purpose is a ‘sphere’ of size 2 which is effective in 3D

lung structure. The nodule is a round-shaped object and the
use of a ‘sphere’ as structuring element preserves the nodules
and breaks the connection of nodules and vessels. After-
ward, 3D connected component analysis is performed and
regions with centers within 5mm are merged. Canny edge
detection method is used to identify the boundaries of each
object. It results in a large number of candidate objects. To
refine this set of objects, the nodule size and shape infor-
mation are taken into account. The nodule is round-shaped
object ranges from 3 to 30mm in size within ROI. Consid-
ering these properties, the nodule candidate set is refined on
the basis of diameter, elongation and circularity. The objects
with diameter less than 3mm and greater than 30mm are
removed and considered to be unwanted objects as their sizes
do not match with the size specifications of nodules. In addi-
tion to diameter, those objects are excluded which are too
elongated i.e., their major axis length is 2.25 times more
than the minor axis length. The third parameter is circular-
ity, which defines roundness of the object. The roundness
of an object ranges from 0 to 1, where 1 represents perfect
round. All those objects which have circularity less than 0.65
are also excluded from the candidate set. The elongation and
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Fig. 3 a Input images with juxtapleural nodules, b corresponding lung masks missing plural nodules, c boundary correction using morphology, d
extracted lungs with juxtapleural nodules

circularity threshold values are empirically selected based
on the observation that if circularity value is increased more
than 0.65 and elongation value is decreased less than 2.25,
this causes the removal of some of the actual nodules. On
these parameters, nodule candidate set is refined and nod-
ules are distinguished from other objects like vessels and
noise objects as presented in Fig. 6. Some of the extracted
nodule candidates are illustrated in Fig. 7.

Geometric texture feature descriptor (GTFD)

In object detection and classification, precise and relevant
features play a significant role. In recent studies, a variety
of features including geometric, texture, local binary pat-
terns (LBP), wavelet, intensity and gradient are used for the
detection and classification of nodules because a single type
of feature vector cannot give an accurate representation of
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Fig. 4 a Input image, b
background removed, c lung
mask, d extracted lung

k-1 slice kth slice k+1 slice

Fig. 5 3D connectivity

objects resulting in unsatisfactory performance. To overcome
these issues, researchers also used hybrid feature vectors by
encapsulating more types of features in a single feature vec-
tor. In this study, a GTFD by combining texture and shape
features in 2D and 3D is devised that successfully delineates
the nodules and non-nodules.

Geometric features

Geometric features like circularity, area and volume are the
shape descriptors of an object [29]. Therefore, these features
are helpful to distinguish nodules from other objects within
the lung region. The median slice of a scan contains maxi-
mum information of objects present in the scan. Therefore,
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Fig. 6 a Objects in ROI b
Nodule candidate regions

Fig. 7 Extracted nodule candidates

2D geometric features are extracted from the median slices.
However, 3D geometric features are extracted from 3D seg-
mented objects. The features include area, radius, circularity,
volume, compactness and elongation. Equations (4)–(9) give
the mathematical representation of these features.

Area (A) =
∑

oεS

p (4)

Radius (r) = D

2
(5)

Circularity = A

4πr2
(6)

Volume =
∑

v∈V
v (7)

Compactness = A
4πr3
3

(8)

Elongation = Minor Axis Length

Major Axis Length
(9)

where p is pixel within the segmented object O of slice S
of a 3D scan, D represents diameter of the nodule candidate
and V accounts for the voxels of a candidate object.

Texture features

Texture features characterize the regions of images on the
basis of their pixel intensities [30]. Ten texture features, four
2D and six 3D features, are used in this study. The 2D texture
features are given by Eqs. (10)–(13) and 3D texture features
are specified from Eqs. (14)–(18).

Mean (μ) =
∑I

i=0 p(i)

I + 1
(10)

Variance (σ 2) =
∑I

i=0(μ(i) − μ)2

I + 1
(11)

Skewness (μ3) =
∑I

i=0(μ(i) − μ)3

σ 3 (12)
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Energy1 (E1) =
I∑

i=0

(p(i))2 (13)

Energy2 (E2) =
I∑

i=0

I∑

j=0

[p(i, j)]2 (14)

Contrast =
I∑

i=0

I∑

j=0

(i − j)2 p(i, j) (15)

Correlation =
I∑

i=0

I∑

j=0

i j p(i, j) − μxμy

σxσy
(16)

Homogeneity =
I∑

i=0

I∑

j=0

p(i, j)

1 + (i − j)2
(17)

Entropy(H) = −
I∑

I=0

I∑

j=0

p(i, j) log2[p(i)] (18)

where p(i) is i th pixel in a 2D slice, p(i, j) is i th voxel in
3D volume at slice j and I represents maximum intensity
within the slice.

Ensemble classification

SVM-ensemble classification is used to identify the actual
nodules from a set of candidate nodules. An ensemble clas-
sifiermakes final decision on the test dataset derived from the
output of individually trained base classifiers [31]. Let there
are n base classifiers as: {C1,C2,C3 . . .Cn} over a dataset
X and target T . All classifiers are trained and then evaluated
over the same test examples. The decisions of individual clas-
sifiers are then combined to make a final decision. Majority
voting is a useful combiner in which decision about the class
of a test example is made through the number of votes, deter-
mined by Eq. (19).

fe(x) = max
n∑

j=1, f ( j)∈Ci

1 (19)

where fe(x) assigns class labels to the test feature vector x on
the basis of maximum votes given to a class and n represents
the total number of base classifiers. Let if there are three base
classifiers, two predict that the test example is of class A and
one predicts it in class B, then majority voting predicts it
as class A. In this study, SVM is used as a base classifier
with three different kernels including linear, polynomial and
GaussianRBF.These kernels are representedmathematically
in Eqs. (20)–(22).

Linear Kernel K (xi , x j ) = xTi .x j (20)

Polynomial Kernel K (xi , x j ) = (1 + xTi x j )
d (21)

Fig. 8 Workflow of SVM-ensemble for nodule classification

Radial-Basis Function K (xi , x j )

= exp

(
−‖xi − x j‖2

2σ 2

)
(22)

where xi and x j are vectors in input space, d represents the
degree of polynomial, ‖xi − x j‖2 is the Euclidean distance
and σ is standard deviation, defined as Gaussian distribu-
tion. SVM is known to be a good classifier that learns easily
and produces good classification results. However, a sin-
gle classifier may not learn all the parameters to produce
good global optimum result. To meet this limitation, an
SVM-based ensemble classifier is developed for nodule clas-
sification. Figure 8 shows the workflow of SVM-ensemble
classifier for the proposed method to distinguish between
nodules and non-nodules. During the training phase, each
individual SVM-based classifier is trained over the labeled
data provided for training. SVM-linear, SVM-polynomial
and SVM-RBF are trained as base classifiers. The individual
classifiers are aggregated on the basis of voting. In the testing
phase, an unlabeled test example is supplied as input to all
the individual classifiers simultaneously and final decision is
made on the basis of Eq. (19).

Results and discussions

In this study, an authentic publicly available dataset LIDC–
IDRI [32] is used to evaluate the performance of proposed
method. The tube current range, from 40 to 627mAs, is used
for image acquisition. The tube potential energies have a
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range from120 to 140kV.The low-dose scans aremore effec-
tive to identify small size lung nodules [33]. The dataset
contains 1018 CT scans of 1010 patients collected from 7
academic centers. Each scan contains approximately 100 to
400 slices with slice thickness between 0.6 to 5mm and
dimension of 512 × 512 pixels. Each image has a 12-bit
grayscale resolution with the pixel size ranging from 0.5mm
to 0.8mm. Out of 1018 cases, 121 cases have slice thick-
ness ≥ 3mm which is not suitable for the computer-based
diagnosis [34]. In addition to this, there are nine cases which
have inconsistent slice spacing. By excluding these cases, a
total of 888 scans are left for the automated diagnosis. Every
scan of dataset is reviewed by four experienced radiologists
for nodule annotation. The annotation information for each
scan is provided in XML format. All the radiologists have a
consensus on 777 nodules. In this study, those nodules are
considered for experimentations which are marked by all the
four radiologists. Around 45% scans of dataset contain no
nodules which are annotated by all the four radiologists and
some scans have multiple nodules. Considering these points,
those scans are excluded which have zero nodules and those
scans are selected which contain number of nodules in the
range of 1–8. As a result, 250 scans are finally selected with
567 nodules. Candidate nodules are classified according to
annotations provided by the expert radiologists. If a nodule
candidate meets the criteria, it is considered as hit and clas-
sified as a nodule. On the other hand, if it does not meet the
criteria, it is taken as miss and considered as a non-nodule. A
candidate is considered hit if its radius is 0.8 to 1.5 times of
the actual nodule or its distance with reference to any corre-
sponding annotated nodule is less than 1.5 times the radius of
that nodule .[12]. The performance of classifiers is checked
over different distributions of data into training and testing
ratio. Following evaluation parameters, as mentioned from
Equations (23) to (26), are used to analyze the performance.

Sensitivity = TP

TP + FN
(23)

Specificity = TN

TN + FP
(24)

Accuracy = TP + TN

TP + FP + TN + FN
(25)

False Positive Rate (FPR) = FP

TN + FP
(26)

MATLAB 2016a is used as an implementation tool. Three
different distributions of data are used as 80–20, 70–30 and
50–50% for training and testing purpose, respectively. The
hold-out validation is used for training and testing the classi-
fiers. The process is repeated 10 times to avoid the biasness
and average score is computed. Various experiments are exe-
cuted with different combinations of feature sets. The results
are shown in Tables 1, 2 and 3 with geometric, texture and
GTFD features, respectively. SVM is trained with three dif-
ferent kernels, namely SVM-linear, SVM-polynomial and
SVM-RBF. The output of individual classifiers over the test
examples is evaluated. Majority voting is applied to make a
final decision by SVM-ensemble. From Tables 1, 2 and 3, it
is clear that SVM-ensemble has producedmuch better results
as compared to individual classifiers.

Performance of the proposed method is evaluated with
the individual as well as combined feature sets. The results
show that combined feature vectors produced a better perfor-
mance as compared to single feature type. The performance
with texture features is lower than the geometric features.
However, when GTFD is used by encapsulating both geo-
metric and texture features, much better results are obtained
as compared to single type of feature vector. Furthermore,
best results are shown when experimentation is done over
the combination of 70–30 i.e., 70% training and 30% testing.
Table 3 depicts that GTFD presented better results than indi-
vidual features. In comparison with Tables 1 and 2, it gives

Table 1 Results with geometric
features

Classifier Training–testing Sensitivity Specificity Accuracy AUC

SVM-linear 80–20 85.2 72.1 82.3 0.90

70–30 85.7 73.2 82.5 0.90

50–50 83.3 70.3 79.8 0.90

SVM-polynomial 80–20 88.6 87.3 90.5 0.93

70–30 90.3 88.4 91.9 0.93

50–50 87.2 84.7 88.8 0.93

SVM-RBF 80–20 92.7 90.9 92.5 0.96

70–30 94.6 92.2 93.4 0.96

50–50 90.6 88.6 89.2 0.96

SVM-ensemble 80–20 94.2 91.4 93.2 0.98

70–30 95.1 93.7 94.4 0.99

50–50 92.0 89.8 92.2 0.98
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Table 2 Results with texture
features

Classifier Training–testing Sensitivity Specificity Accuracy AUC

SVM-linear 80–20 84.5 72.1 81.8 0.88

70–30 85.2 72.7 82.1 0.88

50–50 83.1 69.9 79.3 0.87

SVM-polynomial 80–20 88.1 86.4 89.8 0.91

70–30 89.6 87.5 91.2 0.91

50–50 86.8 84.2 88.3 0.90

SVM-RBF 80–20 92.3 90.2 91.9 0.94

70–30 93.9 91.8 92.7 0.94

50–50 90.0 87.9 88.4 0.94

SVM-ensemble 80–20 93.4 90.9 92.2 0.97

70–30 94.8 93.2 93.7 0.97

50–50 91.3 89.1 90.8 0.97

Table 3 Results with GTFD Classifier Training–testing Sensitivity Specificity Accuracy AUC

SVM-linear 80–20 88.2 75.6 85.3 0.93

70–30 89.1 76.7 85.8 0.93

50–50 86.4 73.2 83.1 0.92

SVM-polynomial 80–20 91.7 90.6 93.9 0.98

70–30 93.6 91.2 95.3 0.98

50–50 91.0 88.9 92.8 0.97

SVM-RBF 80–20 96.9 96.7 97.4 0.99

70–30 97.7 97.4 98.3 0.99

50–50 95.8 95.8 96.8 0.98

SVM-ensemble 80–20 98.0 97.6 98.4 0.99

70–30 98.6 98.2 99.0 0.99

50–50 97.2 96.0 97.3 0.99

a clear picture that geometric features are better descriptors
of nodules as compared to texture features. However, on an
individual basis, they cannot produce best results. Figure 9
illustrates a receiver operating characteristic (ROC) curve for
the results of classification. It is evident that ensemble-based
SVM shows better results as compared to RBF, polynomial
and linear kernels.

The nodule candidate detection process comprises of two
stages. In thefirst stage, 66021nodule candidates are detected
with 261.8 FPs/scan. At this step, all 567 actual nodules are
also recognized with 100% sensitivity. The second stage is
related to candidate refinement on the basis of nodule size
and shape information. In this stage, the number of can-
didates is reduced to 46176 and FPs/Scan is decreased to
182.5 with 45614 total false positives. However, this refine-
ment phase has missed 5 actual nodules and sensitivity is
reduced to 99.1%. The classification phase, based on SVM-
ensemble, reduces the number of false positives to 838which
is 3.4/scan. The free-response receiver operating character-

Fig. 9 ROC curve with GTFD feature vector
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Fig. 10 a FROC curve shows false positive reduction by each classifier,
b FROC curve illustrates sensitivity comparison of each classifier at 3.4
FPs/scan

istic (FROC) curve in Fig. 10a illustrates the number for
FPs/scan produced by four classifiers. The SVM with linear
kernel delivers 9.6 FPs/scan with 89.1% sensitivity, SVM-
polynomial produces 6.4 FPs/scan with 93.6% sensitivity
and SVM-RBF shows comparatively good results with 4.2
FPs/scan and sensitivity of 97.7%. However, SVM-ensemble
reduces the FPs/scan to 3.4% with the highest sensitivity
of 98.6%. In Fig. 10b, another FROC curve is given which

illustrates the comparison of classifiers’ sensitivity at 3.4
FPs/scan. It depicts that SVM-ensemble has highest sensi-
tivity i.e., 98.6% and SVM-linear has the lowest. SVM-RBF
has better sensitivity than SVM-polynomial at 3.4 FPs/scan.
It is evident from FROC curves that minimum FPs/scan with
SVM-ensemble is reduced to 1 but at the cost of sensitivity
degradation with 92.1%.

For estimating the significance of proposed method in
relation to reported techniques in the literature, a compar-
ison of datasets and their results is presented in Tables 4 and
5, respectively.

Ye et al. [15] used clinical data of 108 scans containing
220 nodules of size 3–20mm with a slice thickness of 0.5–2
mm. Cascio et al. [22] and Choi, Choi [12] used 84 CT scans
of LIDC dataset consisting of 148 nodules marked by any
of the radiologists. Dehmeshki et al. [10] made use of 70
CT scans of a clinical dataset containing 179 nodules of size
3–20mm with a slice thickness of 0.5–1.25mm. Kuruvilla,
Gunavathi [23] utilized a clinical dataset of 155 scans with
a slice thickness of 0.75–1.25mm including 110 nodules.
In addition, they have also used some scans of LIDC dataset
without LIDC annotations. Han et al. [19] used 205 CT scans
ofLIDC–IDRIdataset containing490nodulesmarkedby any
of the radiologists. The nodules included in their study were
of 3–30mm size. Teramoto, Fujita [26] made use of 84 CT
scans of LIDC dataset with 103 nodules of size 5–20mm.
The nodules included in the work were marked by any of the
radiologists. Nibali et al. [24] utilized LIDC–IDRI dataset
for experimentations but details are not provided. Tan et al.
[9] made use of 125 CT scans of LIDC dataset containing
80 nodules of size 3–30mm marked by all the four radi-
ologists. Riccardi et al. [14] used 154 CT scans of LIDC
dataset consisting of 117 nodules with size 3–30mmmarked
by all the four radiologists. Proposed method is evaluated
over 250 scans of LIDC–IDRI dataset containing 567 nod-
ules with size 3–30mm annotated by all the four radiologists.
The statistics in Table 4 highlight the fact that the proposed

Table 4 Comparison of datasets
used in existing and proposed
systems

Methodology Dataset Scans Nodules Nodule size (mm)

Choi and Choi [12] LIDC 84 148 3–30

Dehmeshki et al. [10] Clinical 70 179 3–20

Kuruvilla and Gunavathi [23] Clinical 155 110 3–30

Ye et al. [15] Clinical 108 220 3–20

Han et al. [19] LIDC–IDRI 205 490 3–30

Cascio et al. [22] LIDC 84 148 3–30

Teramoto and Fujita [26] LIDC 84 103 5–20

Nibali et al. [24] LIDC–IDRI – – 3–30

Tan et al. [9] LIDC 125 80 3–30

Riccardi et al. [14] LIDC 154 117 3–30

Proposed method LIDC–IDRI 250 567 3–30
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Table 5 Comparison of results
with existing methods

Methodology Accuracy Sensitivity Specificity FPs/scan

Choi and Choi [12] 99.0% 97.5% 97.5% 6.76

Dehmeshki et al. [10] 90.0% – 90.0% 14.6

Kuruvilla and Gunavathi [23] – 91.4%. – 30

Ye et al. [15] – 90.2% – 8.2

Han et al. [19] 95.88% 89.2% – 4.14

Cascio et al. [22] 97.0% 88.0% – 6.1

Teramoto and Fujita [26] 80.0% – – 4.2

Nibali et al. [24] 89.9% 91.07% 88.64 –

Tan et al. [9] – 87.5% – 4.0

Riccardi et al. [14] – 71.0% – 6.5

Proposed method 99.0% 98.6% 98.2% 3.4

method is tested over a more significant number of scans and
nodules as compared to other research works reported in the
literature.

Table 5 compares the results of the proposed and existing
methods. Kuruvilla, Gunavathi [23] produced 91.4% sensi-
tivity but with a very high FPs/scan of 30. Moreover, they
did not provide specificity. Dehmeshkiet.al [10] also pro-
duced very high FPs/scan of 14.6with 90% specificity. These
results were taken on clinical datasets instead of some stan-
dard dataset. Choi, Choi [12] claimed 97.5% sensitivity as
well as specificity with 6.76 FPs/scan. Ye et al. [15] pro-
duced 8.2 FPs/scan with 90.2% sensitivity. Cascio et.al [22]
claimed88%sensitivity and97%accuracywith 6.1FPs/scan.
Teramoto, Fujita [26] achieved a low FPs/scan of 4.2 but at
the cost of accuracy which is as low as 80%. Han et al. [19]
claimed a low FPs/scan of 4.14 but their sensitivity was low
as 89.2%. Nibali et al. [24] showed 89.9, 91.07 and 88.64%
accuracy, sensitivity and specificity, respectively. Tan et al.
[9] produced 87.5% sensitivity with 4.0 FPs/scan and Ric-
cardi et al. [14] claimed 6.5 FPs/scan with a low sensitivity
of 71.0%. By concluding the whole discussion, it is evident
that the proposedmethod has shown better results i.e., 99.0%
accuracy, 98.6% sensitivity and 98.2% specificity with a 3.4
FPs/scan which is a clear proof of the effectiveness of the
presented method.

Conclusion

A critical issue with the nodule diagnosis methods is han-
dling small, boundary attached and vessel attached nodules.
If a detection method misses any nodule, it leads to inac-
curate diagnosis which might be life threatening. To handle
such problems, a nodule segmentation method from 3D CT
scan is presented. The first step of proposed method is based
on hybrid multistep segmentation technique to extract lung
ROI and nodule candidates. SVM-ensemble is used to dis-

tinguish nodules from the set of selected candidates. The
classification is based on a GTFD feature vector encapsulat-
ing texture and geometric features. The proposed method is
tested on a standard publicly available dataset LIDC–IDRI.
The presented method achieved 99.0% accuracy with 98.6%
sensitivity and 98.2% specificity. The number of FPs/scan is
also low as 3.4/scan. These results show the significance of
presented method that it will facilitate radiologists during the
diagnosis process of lung cancer.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Human and animal rights This article does not contain any studies
performed with human participants or animals by any of the authors.

Informed consent This article does not contain patient data.

References

1. Organization WH (2017) Cancer fact sheet. http://www.who.int/
mediacentre/factsheets/fs297/en/. Accessed 09 June 2017

2. Gould MK, Fletcher J, Iannettoni MD, Lynch WR, Midthun DE,
Naidich DP, Ost DE (2007) Evaluation of patients with pulmonary
nodules: when is it lung cancer? ACCP evidence-based clinical
practice guidelines. Chest J 132(3–suppl):108S–130S

3. Petkovska I, Brown MS, Goldin JG, Kim HJ, McNitt-Gray MF,
Abtin FG,Ghurabi RJ,AberleDR (2007) The effect of lung volume
on nodule size on CT. Acad Radiol 14(4):476–485

4. Bach PB, Mirkin JN, Oliver TK, Azzoli CG, Berry DA, Brawley
OW, Byers T, Colditz GA, Gould MK, Jett JR (2012) Benefits and
harms of CT screening for lung cancer: a systematic review. JAMA
307(22):2418–2429

5. EndoM,Aramaki T, AsakuraK,MoriguchiM,AkimaruM,Osawa
A,Hisanaga R,MoriyaY, ShimuraK, FurukawaH (2012) Content-
based image-retrieval system in chest computed tomography for a
solitary pulmonary nodule: method and preliminary experiments.
Int J Comput Assist Radiol Surg 7(2):331–338

123

http://www.who.int/mediacentre/factsheets/fs297/en/
http://www.who.int/mediacentre/factsheets/fs297/en/


International Journal of Computer Assisted Radiology and Surgery (2018) 13:1083–1095 1095

6. Yim Y, Hong H (2008) Correction of segmented lung boundary
for inclusion of pleural nodules and pulmonary vessels in chest CT
images. Comput Biol Med 38(8):845–857

7. Naqi SM, SharifM (2017) Recent developments in computer aided
diagnosis for lung nodule detection fromCT images: a review. Curr
Med Imaging Rev 13(1):3–19

8. van Ginneken B, Armato SG III, de Hoop B, van Amelsvoort-
van de Vorst S, Duindam T, Niemeijer M, Murphy K, Schilham
A, Retico A, Fantacci ME (2010) Comparing and combining
algorithms for computer-aided detection of pulmonary nodules in
computed tomography scans: the ANODE09 study. Med Image
Anal 14(6):707–722

9. Tan M, Deklerck R, Jansen B, Bister M, Cornelis J (2011) A novel
computer-aided lung nodule detection system for CT images. Med
Phys 38(10):5630–5645

10. Dehmeshki J, Ye X, Lin X, Valdivieso M, Amin H (2007) Auto-
mated detection of lung nodules in CT images using shape-based
genetic algorithm. Comput Med Imaging Graph 31(6):408–417

11. Ozekes S, Osman O, Ucan ON (2008) Nodule detection in a lung
region that’s segmentedwith using genetic cellular neural networks
and 3D template matching with fuzzy rule based thresholding.
Korean J Radiol 9(1):1–9

12. Choi W-J, Choi T-S (2014) Automated pulmonary nodule detec-
tion based on three-dimensional shape-based feature descriptor.
Comput Methods Programs Biomed 113(1):37–54
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