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Abstract
Purpose We propose a novel framework for enhancement and localization of steeply inserted hand-held needles under
in-plane 2D ultrasound guidance.
Methods Depth-dependent attenuation and non-axial specular reflection hinder visibility of steeply inserted needles.Here,we
model signal transmissionmaps representative of the attenuation probability within the image domain. Themaps are employed
in a contextual regularization framework to recover needle shaft and tip information. The needle tip is automatically localized
by line-fitting along the local-phase-directed trajectory, followed by statistical optimization.
Results The proposed method was tested on 300 ex vivo ultrasound scans collected during insertion of an epidural needle
into freshly excised porcine and bovine tissue. A tip localization accuracy of 0.55 ± 0.06mm was achieved.
Conclusion The proposed method could be useful in challenging procedures where needle shaft and tip are inconspicuous.
Improved needle localization results compared to previously proposedmethods suggest that the proposedmethod is promising
for further clinical evaluation.

Keywords Needle enhancement · Ultrasound · Attenuation map · Tip localization · Anesthesia

Introduction

Many percutaneous interventional procedures such as biop-
sies [1] and regional anesthesia [2] involve insertion of
a needle and directing it toward target anatomy under
image guidance. Ultrasound (US) has emerged as a popu-
lar imaging modality in these procedures due to its low-cost,
radiation-free and real-time imaging capabilities. However,
at steep trajectories, non-axial specular reflection and signal
attenuation cause needle shaft discontinuity and/or tip imper-
ceptibility. An invisible needle affects procedure efficacy and
may lead to injury. Therefore, solutions for localization or
tracking of needles in US have been proposed. Broadly, these
can be categorized as either hardware or software based.

Examples of hardware-based methods include mechani-
cal needle guides [3], electromagnetic/optical tracking sys-
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tems [4,5] and specialized needles or probes [6–8]. Needle
guides restrict needle redirection and are thus not suit-
able in procedures where fine needle trajectory adjustment
is required. Electromagnetic/optical tracking enhancements
increase overall cost of the imaging system and disrupt
the normal clinical workflow. Moreover, electromagnetic
systems are affected by metal objects in the operating envi-
ronment. Needle or probe modification increases cost and
complexity of the imaging system.

Concerning software-based approaches, we will limit our
discussion tomethods applied to 2DUSdue towide availabil-
ity of these systems. Methods based on the Hough transform
(HT) have been proposed [9], but this approach assumes
the needle will appear as the longest line-like feature with
high intensity in the US image. At steep insertion angles,
this is often violated due to attenuation and reflection of
US waves away from the transducer. In [10], a learning-
based framework for detection of an imperceptible needle
was presented. Although the method facilitates localization
of the needle trajectory, tip enhancement and localization
were not investigated. In [11], a learning-based method for
needle localization using 2D beam-steered US is proposed.
Although a mean targeting error of 0.48 mm is achieved, US
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data for validation are collected within a 4.5 cm depth set-
ting and shallow insertion angles. An approach for localizing
discontinuous needles using local-phase-based projections
was recently proposed by Hacihaliloglu et al. [12], but it
fails when the tip is inconspicuous. For shaft enhancement,
a method that relies on vibration of a transducer-actuated
needle has been proposed [13], but it necessitates special-
ized needles in which the needle’s resonance frequency must
match that of the transducer.

Here, we propose a robust, accurate and automatic algo-
rithm for enhancement of needle shaft and tip in 2D US. Our
main novelty is incorporation of US signal modeling into an
optimization problem to estimate an unknown signal trans-
mission map which is used for enhancement of the needle
shaft and tip while considering US-specific signal propa-
gation constraints. We present qualitative and quantitative
validation results on scans collected from bovine and porcine
phantoms. A preliminary investigation of our approach was
reported in [14]. This extension focuses on steep needle
insertions typical of challenging US-guided lumbar spinal
injections. We also address the challenge of high-intensity
artifacts that may reduce needle localization accuracy. The
proposed algorithm improves visibility of the needle shaft
and tip and achieves superior tip localization to previous
approaches reported in [12,14].

Methods

The proposed method is based on our prior experience with
in-plane US guidance of lumbar injections in vivo, in which
(i) the needle is inserted in-plane and the insertion side (left or
right) is known; (ii) the needle tip appears as a characteristic,
but variable intensity; and (iii) a portion of the needle shaft
near the transducer surface is visible. In our approach, we
focus on enhancement of needles under curvilinear 2D US
guidance at insertion angles of 40◦−80◦ to the skin surface.
Owing to the transducer’s convex shape, only part of the shaft
is present in the US image. An overview of the proposed is
shown in Fig. 1. In the next section, we describe how these
image features are used in our proposed method.

Needle restorationmodel

The incidentUSwaves traveling through tissue are attenuated
along their transmission paths and scattered in other direc-
tions. To recover needle information, wemust perform image
restoration. Considering a 2D B-mode US image I (x, y) in
which the needle tip and shaft are inconspicuous, we pro-
pose a linear interpolation model to account for the effect of
attenuation and scattering:

I (x, y) = t (x, y) I e (x, y) + (1 − t (x, y)) ν, (1)

where t(x, y) is the depth-dependent signal transmissionmap
function (representing response of a loss field in the trans-
mission medium), I e(x, y) is the US image intensity to be
recovered and ν is a constant intensity equal to echogenic-
ity of the tissue confining the needle. Throughout the text,
we will use a bold notation to denote matrices, and other-
wise for scalars. If ρ is the arc length parametrization of
the signal path, then, for each short distance dρ along this
path, the fraction of US signal lost is given by ∝ ×dρ,
where ∝ is the attenuation coefficient. A spatially varying
∝ yields t(x, y) = exp(− ∫ d(x,y)

0 ∝ (ρ(τ ))dτ). Therefore,
t(x, y) : 0 ≤ t(x, y) ≤ 1 denotes the fraction of US signal
that reaches a target point d(x, y) without attenuation.

Referring to (1), the enhanced image is obtained using:

I e (x, y) = I (x, y) − ν

[max (t (x, y) , κ)]∝
+ ν, (2)

where κ = 0.001, a small constant prevents division by zero.
The proposed solution is severely under constrained because
the number of unknowns is greater than the number of equa-
tions. The approach we devise to achieve a solution is to first
model a patch-wise transmission map, ψ(x, y), that reflects
the boundary constraints imposed on the needle by attenu-
ation and the needle trajectory, for all (x, y) ∈ �, the set
of pixel locations in I(x, y). ψ(x, y), is then optimized to
generate t(x, y) through a regularization framework we will
describe later. Next, we describe how we compute different
ψ(x, y) and thereafter, t(x, y) for tip and shaft enhancement,
and localization of the needle tip.

Patch-wise transmissionmaps for tip enhancement

Ideally, derivation of the patch-wise transmissionmapwould
involve partitioning the image into grids specified by a patch
size and knowledge of image depth information. Karamalis
et al. [15] previously proposed an approach to estimate uncer-
tainty in US images caused by depth-dependent attenuation
and shadowing, referred to as a confidence map. Leveraging
this approach to estimate the patch-wise transmission map
automatically includes depth information and ensures that
the transmission in a local image patch, at the same depth,
will always be almost constant. Therefore, we do not have to
specify image patch sizes.

A confidence map, I c(x, y), results from a probability
density function that assigns to each pixel in I(x, y) a prob-
ability that a random walk [16] emanating from that pixel
would be able to reach virtual transducer elements at the top
of the image, given US-specific constraints. To calculate the
confidence map, I(x, y) is represented as a weighted graph
in an 8-connected lattice. Random walks originating from
virtual transducers at the top of the image are used to cal-
culate expected signal strengths throughout the image [15].
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Fig. 1 Overview of the proposed framework, consisting of three main
processes: (1–4) tip enhancement using a linear interpolation model
that utilizes US signal transmission maps, (5) local-phase-based tip

localization, and (6) shaft enhancement. Inset is the pseudocode, whose
parameters are described in detail hereafter
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Fig. 2 Effect of γ on the patch-wise transmission map, ψ(x, y), while fixing ∝= 2 and β = 90. γ = 0.03 achieves a distinct function with
minimum horizontal discontinuities

The weighting function for the random walks is given by:
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(3)

Here, ei j represents the edge between nodes i and j ,
EH, EV and ED are the horizontal, vertical and diagonal
edges on the graph, ci = I(x, y)i exp (− ∝ li ), where
I(x, y)i is the image intensity at node i and li is the normal-
ized closest distance from the node to the virtual transducer
elements. The behavior of the confidence map is controlled
by three free parameters: ∝, β and γ . ∝ is the attenuation
coefficient which controls the depth-dependent attenuation
rate. It is expected that pixels close to the top of the image
will exhibit high confidence and vice versa. β is an algorith-
mic constant which affects the robustness and accuracy of
segmentation. γ models the beam width, imposing a penalty
on random walks crossing a horizontal/diagonal edge in
the graph with increasing corresponding distance from the
starting scanline. Recalling that I c(x, y) expresses proba-
bility that a random walk emanating from a pixel in the
image reaches the top of the image, yet we are interested
in the likelihood that a signal sent from the transducer will
reach a point of interest in the image (needle shaft and tip);
we accordingly model the patch-wise transmission map as
ψ(x, y) = I c(x, y)∗, where * denotes the complement. The
parameters of ψ(x, y) are determined as follows: ∝ and β

were previously optimized for US data in [15,16]. Therefore,
we use similar values: ∝= 2 and β = 90 for all the exper-
iments. γ should achieve a balance between a distinct map
and minimal horizontal discontinuities. In Fig. 2, we show
the effect of γ ∈ [0 1] on the derived ψ(x, y). Note that
γ = 0.03 yields the best balance; this value was determined

from several test images and kept constant throughout the
validation experiments.

Signal transmissionmaps for tip enhancement

The solution for (1) should be less sensitive to noise and
abrupt changes in image intensity. To achieve this, we for-
mulate a regularization problem for deriving the signal
transmissionmap, t(x, y). Our approach is like that proposed
by Tikhonov [17], but instead of using only the L2 norm, we
include the L1 norm, which has in some cases been reported
to give more robust solutions in image restoration [18]. Spe-
cific to our problem, since we expect features that have edges
in our optimization data and hence possible outliers, the use
of L1 is prudent. Therefore, we obtain t(x, y) by minimizing
the following objective function:

λ

2

∥
∥t (x, y) − ψ (x, y)

∥
∥2
2 +

∑

i∈�

∥
∥Wi ◦ (Gi ∗ t (x, y))

∥
∥
1.

(4)

This equation has two components: The first is the data
which measure the closeness of t(x, y) to ψ(x, y), while
the second introduces additional contextual constraints on
t(x, y). The regularization parameter, λ, is used to balance
the two parts.Gi is a bank of high-order differential operators
consisting of 8 Kirsch filters [19] and a Laplacian oper-
ator. The 8 Kirch filters consist of the same kernel mask
rotated in 45-degree increments through all 8 compass direc-
tions. Combining the first-order derivative Kirch filters with
a second-order derivative Laplacian mask preserves edge
features associated with the needle. In (4), we introduce
a weighting function W to further constrain t(x, y) in a
local image patch. Considering two neighboring pixels, the
weighting function is such that W (t2(x, y) − t1(x, y)) ≈ 0.
If the two pixels are far apart, then W should be small, and
vice versa.Consequently,we compute theweighting function
from Wi (
) = exp(−∣

∣(Gi ∗ I(x, y))

∣
∣2, where 
 is a given
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Fig. 3 Effect of the regularization parameter λ on derivation of t(x, y)
from ψ(x, y).ψ(x, y) is derived with ∝= 2, β = 90 and γ =
0.03.t(x, y) displays lower intensities near the top of the image, where
attenuation and scattering are minimal, and higher intensities with

increasing depth.Note that asλ becomes larger, t(x, y) tends toψ(x, y).
λ = 1 ensures t(x, y) with the smoothest attenuation density estimate
and the best mutual enhancement of the shaft and tip

location in the image. When t2(x, y) = t1(x, y),W = 0,
Conversely, when W = 0 the constraint on t(x, y) between
neighboring pixels is eliminated.

Like in [20], the optimization of (4) is achieved using vari-
able splittingwhere several auxiliary variables are introduced
to construct a sequence of simple subproblems, the solutions
of which finally converge to the optimal solution of the orig-
inal problem. In Fig. 3, we show the result of deriving the
signal transmission map t(x, y) from ψ(x, y) using various
λ . In all cases, t(x, y) exhibits low intensities at the top,
with depth dependent increase. However, we desire t(x, y)
with the smoothest attenuation density estimate for use in
the needle restoration model. Setting λ = 1 ensured that the
needle shaft and tip were enhanced mutually on a number of
test images, and this value was kept constant throughout the
validation experiments. Knowing t(x, y), the tip-enhanced
image is determined using (2). Notice that the mean intensity
of the local region in t(x, y) is always less than the echogenic-
ity of the tissue confining the needle. From (2), the tip will
be represented by a local average of the surrounding points,
yielding a high-intensity feature corresponding to the tip in
the enhanced image.

In (2), the choice of ν affects the accuracy of the
enhancement result. It is imperative that ν results in partial

enhancement of the shaft alongside the tip. As we will see
later, shaft information is essential for the tip localization pro-
cess. If ν is brighter than most pixels in I(x, y), including
the needle, the output of (2) will produce no needle infor-
mation. Alternatively, a low ν creates more high-intensity
artifacts. To maximize contrast of the needle, a value of
ν = 0.3 × max(I(x, y) where max(I(x, y) denotes max-
imum intensity in I(x, y) is chosen.

In [14], the tip enhancement process also enhanced hyper-
echoic artifacts present along the needle trajectory. With
such artifacts in the enhanced image, it is difficult to dis-
tinguish needle features. Therefore, we need a mechanism
to remove them. When these artifacts appear linearly, it is
easy to eliminate them using morphological filters. Specif-
ically, we use a top-hat filter (T F), which computes the
morphological opening of I e(x, y) and subtracts it from
I e(x, y) : T F(I e(x, y)) = I e(x, y) − DL [EL(I e(x, y))].
Here, L is a linear structuring element, while DL and EL

denote dilation and erosion operations, respectively. The out-
put of the top-hat filter yields the final tip-enhanced image,
I e(x, y)tip. In Fig. 4, we show the output of tip enhancement
process for various ν. It is observed that in the optimum case,
the high-intensity artifact at the bottom of the image is sup-
pressed.
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Fig. 4 Example of needle tip enhancement at various ν. Note that ν

influences whether sufficient tip and shaft information is present in the
tip-enhanced image, I e(x, y)tip, to facilitate the tip localization process.

In the desired case, the tip (enclosed by red circle) is enhanced together
with part of the shaft (enclosed by red rectangle)

Tip localization

The first step in the tip localization process is estimation
of the needle trajectory. To achieve this, we need to extract
shaft information from the enhanced image, I e(x, y)tip. For
a 500 × 500 Ie(x, y)tip image, a fixed 100 × 100 region
of interest (ROI), I eRO I(x, y), is defined on the inser-
tion side of the needle as shown in Fig. 5a. I eRO I(x, y)
must contain part of the shaft, although it need not contain
the tip. To extract shaft information from I eRO I(x, y), we
use a bank of orientation-tuned band-pass 2D Log-Gabor
filters. We choose these filters because they facilitate local-
phase-based processing, from which the resulting image
descriptor is intensity invariant and therefore insensitive to
US imaging variables such as tissue type [16]. The result-
ing phase symmetry image, PS(x, y), contains distinct local
phase features for the needle shaft. The filter parameters
were tuned to the optimized parameters in [12]. Limiting
the calculation to I eRO I(x, y) minimizes the effect of any
residual high-intensity artifacts that may be present else-
where in I e(x, y)tip. InFig. 6,we show the result of extracting
PS(x, y) for scans obtained fromdifferent tissue types. Inde-
pendence of our method from tissue type is augmented by
calculating the image from a binary tip-enhanced image.

From PS(x, y), the needle trajectory is estimated using
the Radon transform (RT)with an angular range of 0◦−179◦.

To obtain a region where the needle shaft and tip certainly
lie, the estimated trajectory is expanded over the whole
I e(x, y)tip image as shown in Fig. 5(b). Knowledge of the
trajectory region helps us to extract only data lying along
the trajectory in I e(x, y)tip by convolution. These data are
trimmed using the maximum likelihood estimation sam-
ple consensus (MLESAC) algorithm [21], which performs
inlier detection and geometrical optimization. The resulting
image, IMLESAC(x, y), is shown in Fig. 5(c). Following the
approach described in [12], the resulting colinear candidate
intensities lying along a line L are distributed among a set
of line segments, each defined by a set of points or knots
denoted as μ1 . . . ..μn . The needle tip is extracted using:

Ineedle (I BP (x, y)) =
∫ μi+1
μi

I BP (x, y) dμ
∥
∥L(μi+1) − Lμ

∥
∥
2

; μ ∈ [
μi , μi+1

]
.

(5)

Here, I BP (x, y) is obtained by applying a Log-Gabor filter
without orientation selectivity to I e(x, y)tip, whereas μi and
μi+1 are successive knots. The function in (5) assigns to
pixels between knots μi and μi+1, a mean intensity value
along L . The result of this operation, Ineedle(x, y), is shown
in Fig. 5(d). From Ineedle(x, y) , the needle tip is localized
as the farthest maximum intensity pixel at the distal end of
the needle trajectory (Fig. 5(e)).
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Fig. 5 Framework for automatic tip localization. a Region of interest
I e RO I(x, y) on enhanced tip image I e(x, y)tip, indicated by white
rectangle. b Estimated trajectory (green) overlayed on I e(x, y)tip. c
IMLESAC (x, y), the output of theMLESAC algorithm. d Ineedle(x, y)

image obtained from (5). From Ineedle(x, y), needle tip localization is
achieved by selecting the first maximum intensity pixel lying along the
calculated needle trajectory. e Enhanced needle tip (red dot) marked on
the US image I(x, y)

Fig. 6 Illustrating tissue independence of PS(x, y) image for four dif-
ferent tissue types: bovine, porcine, kidney and chicken. Row 1: US
image I(x, y). Row 2: Tip-enhanced image I e(x, y)tip. The enhanced

tip is surrounded by a red circle. Row 3: PS(x, y) image. The use
of PS(x, y) in calculating needle trajectory ensures accuracy through
orientation tuning and independence from tissue type

Shaft enhancement

The final step in our proposed framework is needle shaft
enhancement using (2) and (4). However, we desire differ-
ent patch-wise and signal transmission maps pertinent to the
shaft restoration problem. Suppose along the needle trajec-
tory, N represents a set of pixels belonging to the needle
and B represents a set of pixels belonging to the background
in I(x, y). The patch-wise transmission map ψ(x, y)shaft is
derived using the Euclidean distance transform of all N , i.e.,
a measure of the minimal distance between N and B. If we
denote the Euclidean distance by σ(x, y), then:

ψ (x, y)shaft = |σ (x, y) − max (σ (x, y))|
max (σ (x, y))

. (6)

Since we know the tip location from the previous step, we
constrain ψ(x, y)shaft not to exceed the tip position. The sig-
nal transmission map for the shaft, t(x, y)shaft, is obtained
from ψ(x, y)shaft using (4), and shaft restoration is per-
formed using (2), with ν = max(I(x, y). The result of shaft
enhancement is illustrated in Fig. 7. Notice that t(x, y)shaft
has low intensities along the needle axis and higher inten-
sities for image regions away from the axis. The enhanced
shaft arises from a local average of pixels belonging to the
shaft along the trajectory.
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Fig. 7 Needle shaft enhancement process. The signal transmissionmap
t(x, y)shaft derived from the patch-wise transmission map ψ(x, y)shaft
shows higher intensitieswith increasing distance from the central axis of

the estimated trajectory. In the shaft-enhanced image, the automatically
localized tip is indicated by the red dot

Experimental validation

US images for this study were obtained using a SonixGPS
system (AnalogicCorporation, Peabody,MA,USA) equipped
with a C5-2/60 curvilinear probe. A 17-gauge (1.5 mm
diameter, 90 mm length) Tuohy epidural needle (Arrow
International, Reading, PA, USA) was inserted by hand into
freshly excised bovine and porcine tissue at varying angles
(40◦−80◦) and depths (up to 9 cm). A total of 300 scans
(150 from each tissue type) were collected with the needle
in-plane.

The proposed method was implemented in MATLAB
2017a (Mathworks, Natick, Massachusetts, USA) on a 4.2
GHz Intel(R) CoreTM i7 CPU, 16GB RAM Windows PC
(DELL, Round Rock, Texas, USA). After automatically
determining the tip localization accuracy, an expert man-
ually localized the tip on corresponding images. We then
determined localization error as the Euclidean distance (ED)
between the automatically localized tip and the manually
localized position. The root-mean-square (RMS) error and
95% confidence interval (CI) for localization error were also
calculated. The same dataset used in evaluating the proposed
method was used to assess the performance of the meth-
ods proposed in [12,14]. Similarly, the RMS error and the
associated 95% CI were calculated. Further, we performed a
one-tailed paired t-test to determine whether the differences
between localization errors from the various methods were
statistically significant.

Results

Qualitative results for tip and shaft enhancement (Fig. 8)
show that the proposed method efficiently enhances the tip
and shaft at steep insertion angles when the shaft is broken
and the tip is inconspicuous. Our method works for different
visibility profiles of the shaft and tip in theUS image. Figure 9

shows a qualitative comparison of the proposed method and
the methods in [12,14]. In the top row, we notice that when
the tip intensity is high compared to surrounding tissue and
there are no high-intensity artifacts along the trajectory, all
3 methods give accurate tip localization. However, investi-
gating the middle row shows that low tip intensity affects tip
localization by the method in [12]. The last row illustrates
some case where high-intensity artifacts lead to inaccurate
localization by the methods in [12,14]. These artifacts do not
affect the proposed method.

Quantitative results from the proposed method are shown
in Table 1. Since the localization error is invariant to tissue
type, we report aggregate errors for bovine and porcine tis-
sue. The overall localization error from the proposed method
was 0.55 ± 0.06 mm. In comparison, the localization error
from the method in [14] was 0.74 ± 0.07 mm, while [12]
yielded 0.88 ± 0.08 mm. For the methods in [12,14], we
excluded outliers (localization error > 2 mm). For the pro-
posed method, all localization errors were less than 2 mm.
With [14], only 68% of the dataset was retained, and this
dropped to 56% with [12]. A one-tailed paired t−test shows
that the differences between the localization errors reported
in [12,14] and the proposed method are statistically signifi-
cant (p < 0.005).

Further, recall that ν is optimallyfixed at 0.3×max(I(x, y).
We show the effect of ν on tip localization accuracy inTable 2.
Values of ν ≥ 0.5 × max(I(x, y) are excluded since they
result in complete loss of shaft information. The results are in
consonancewith qualitative results (Fig. 4) regarding optimal
choice for ν . In Table 3, we show effect of the regularization
parameter, λ , on tip localization accuracy. It is observed that
minimum error occurs at λ = 1, in agreement with qual-
itative results in Fig. 3, where λ = 1 gave the smoothest
estimate of the signal transmission map. Also, recall that we
chose a 100 × 100 ROI during the tip localization process.
In Table 4, we show the effect of ROI size on tip localization
accuracy. Note that small and larger ROI sizes result in inac-
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Fig. 8 Qualitative results showing shaft enhancement and tip local-
ization at steep insertion angles. Column A: US image I(x, y). B:
Tip-enhanced image I e(x, y)tip. C: Ineedle(x, y) image, from which
the needle tip is determined as the first bright intensity pixel at the distal

end of the needle. D: Shaft-enhanced image. The automatically local-
ized tip is indicated by a red dot. The proposed method restores needle
information when the shaft is discontinuous, the tip is inconspicuous or
high-intensity artifacts are present along the trajectory

curate results because they lead to inclusion of inadequate
shaft information or interfering artifacts, respectively, thus
reducing clarity of trajectory estimation. For a 500 × 500
2D image, the tip and shaft enhancement processes executed
for 0.4 and 0.27 seconds, respectively, while tip localization
took 1.1 seconds.

Discussion and conclusions

We have presented a solution to the challenge of poor needle
tip and shaft visibility in 2D curvilinear US at steep insertion
angles. The proposedmethod utilizes US signal transmission
maps derived from a contextual regularization framework
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Fig. 9 Comparing the proposed method with methods in [12,14]. Col-
umn aUS image I(x, y). The arrow points to the expert localized tip. b
Tip localization from the proposedmethod. cTip localization bymethod

in [14]. d Tip localization by method in [12]. A green dot shows correct
tip localization, while a red dot shows inaccurate localization

Table 1 Tip localization error (mm) using the proposed method and
localization approaches in [12,14]

Parameter Proposed method Method in [14] Method in [12]

Mean ED 0.55 0.74 0.82

RMS 0.62 0.80 0.89

SD 0.28 0.33 0.35

95% CI 0.06 0.07 0.08

Max Error 1.48 1.71 1.95

while integrating US-specific signal propagation constraints.
The needle tip localization accuracy achieved was 25% and
37%better than that reported in [12,14], respectively. Further,
considering the diameter of the needle used in this study
(1.5 mm) and the resolution of state-of-the-art US machines,
a tip localization error of < 1 mm is clinically acceptable.

Table 2 Effect of ν on tip localization error. % values are of
max(I(x, y)), the maximum intensity in I(x, y). Minimum error is
obtained at 30%

ν 0% 10% 20% 30% 40%

Mean ED 1.46 1.2 0.88 0.55 0.72

RMS 1.62 1.46 0.94 0.62 0.78

95% CI 0.44 0.24 0.14 0.06 0.08

Table 3 Effect of λ on localization error. Minimum error is obtained at
λ = 1. For λ ≥ 10, the increase in localization error with increase in λ

is not statistically significant, because t(x, y) → ψ(x, y).

λ 0.1 0.4 0.8 1 10 50 200

Mean ED 0.86 0.74 0.65 0.55 0.96 0.98 0.99

RMS 0.65 0.67 0.66 0.62 0.85 0.96 0.94

95% CI 0.21 0.18 0.15 0.06 0.24 0.46 0.51
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Table 4 Effect of ROI size on tip localization error. The optimum ROI size was 100x100 pixels

ROI size 20 × 20 40 × 40 60 × 60 80 × 80 100 × 100 120 × 120 140 × 140

Mean ED 1.94 1.16 0.71 0.56 0.55 0.88 1.22
RMS 1.56 1.14 0.77 0.64 0.62 0.68 1.04
95% CI 0.88 0.48 0.14 0.09 0.62 0.12 0.56

Different than [12,14], we demonstrate needle enhancement
at steeper insertion angles (40◦−80◦) andminimize the effect
of high-intensity artifacts along the needle trajectory.

Suffice to note, lumbar spinal injections sometimes
involve the use of bending needles, yet the epidural needle
used in this study exhibits negligible bending. For bending
needles, bending information can be integrated in the pro-
posed method. Further, our method requires shaft and tip

information to be partially available. In Fig. 10, we illustrate
cases where these assumptions are violated, leading to fail-
ure of the method. In Fig. 10 (top row), there is hardly any
shaft information in the original US image; the enhanced
image also contains insufficient shaft information. As such,
we can’t proceed with the tip localization process. In Fig. 10
(middle and bottom rows), shaft information is available, but
tip information is absent. Therefore, although the enhanced

Fig. 10 Examples of cases where the proposed method fails. A) US
image I(x, y) . B) tip-enhanced image I e(x, y)tip. C) Ineedle(x, y)
image. D) Localized tip (red) marked on original image. In the top
row, I(x, y) contains insufficient shaft information, and thus I e(x, y)tip
contains no conspicuous shaft information. Therefore, we can’t proceed

with the tip localization process. In themiddle and bottom rows, I(x, y)
contains sufficient shaft information, but tip information is unclear. Pres-
ence of an enhanced shaft means we can attempt tip localization, but
absence of an enhanced tip leads to incorrect tip localization
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image facilitates the tip localization process, the tip location
obtained is inaccurate.

Nevertheless, for instances where the shaft and tip are
somehow visible, the achieved tip localization accuracy and
shaft enhancement make our method appropriate for further
investigation in vivo and is valuable to all previously pro-
posed state-of-the-art needle localization methods. Future
work will focus on validation of the proposed method on
clinical data.
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