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Abstract
Purpose In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases.
Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information
from multimodal images, producing a new composite image which is expected to be more informative for visual perception
than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges
and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet
transforms.
Methods A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in
this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition,
and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and
phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain
enhances the average information and morphological details.
Results The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas
data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet
transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge
preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the
superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations.
Conclusion In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate
that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details,
artifacts, distortions.

Keywords Intensity-based image registration · Undecimated wavelet transform · Principal component analysis · Dual-tree
complex wavelet transform · Maximum fusion rule

Introduction

In the medical field, radiologists need medical images with
high resolution and information to diagnose diseases. Since
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computer-aided imaging techniques provide a quantitative
assessment of the images under evaluation, it helps to
improve the efficacy of radiologists in arriving at an objec-
tive decision in a short span of time [1,2]. There are several
popular imaging modalities used in the medical field such as
computed tomography (CT), magnetic resonance imaging
(MRI) and positron emission tomography (PET). CT gives
details about bone structures but does not give information
about the soft tissues, whereas MRI gives information about
soft tissues.

Thus, the integration of CT and MRI images gives more
details about both bone structures and tissues with higher
accuracy and reliability by removing redundant information.
Therefore, studying how complementary information from
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differentmodalities can be combined to obtainmore effective
particulars through image fusion has important significance
for clinical use [1]. During the past two decades, many fusion
algorithms have been developed and generally these algo-
rithms are categorized into two domains, i.e., spatial and
transform. Spatial domain directly operates on the pixel val-
ues of the source images, whereas in the transform domain,
the images are projected into localized bases providing sig-
nificant information [3–7]. One of the spatial fusion methods
is principal component analysis (PCA) which improves the
resolution aswell as reduces the redundancy of the image and
transforms correlated variables into uncorrelated variables
[6]. Nandi et al. [8] have explained the effect of applying
PCA in the fusion of biomedical images. However, the spa-
tial domain fusion techniques have produced spatial and edge
distortions in the fused image [9].

Discrete wavelet transform (DWT) is one of the most
commonly used image fusion methods furnishing increased
directional information with three spatial orientations [10,
11]. Wei et al. [12] proposed a technique which provides
3-D fiber architecture properties of the human heart using
wavelet-based image fusion. Prakash et al. [13] have sug-
gested the use of biorthogonal wavelet transform-based
image fusion in the presence of noise. However, the real-
valued wavelet transform suffers from shift sensitivity and
the lack of phase information [5,14]. This fractional time-
shift may introduce significant differences in the energy of
the wavelet coefficients, which can be overcome by the intro-
duction of stationary wavelet transform (SWT) or redundant
wavelet transform (RWT) or undecimated wavelet transform
(UDWT) which detects the curved shapes more precisely
than DWT [15]. But UDWT suffers from the lack of direc-
tionality [15,16].Therefore, UDWT and PCA are combined
in order to increase the contrast and morphological details of
an image [16]. Harpreet and Rachna [17] have presented a
combined DWT- and PCA-based image fusion approach for
neuro-images from different modalities. But the edges are
not preserved [18].

Furthermore, the real-valued wavelet transform does not
provide any details related to amplitude and local behavior
of the function, while the problem of lack of direction-
ality also remains unsolved [19,20]. These problems have
been overcome by using a special wavelet transform with
shift invariance property and phase information called dual-
tree complex wavelet transform (DTCWT). This captures
additional edge and structural information of the image [21–
23]. The high directionality and shift invariant properties of
DTCWT make it suitable for image fusion.

In this paper, a contemporary fusion technique based on
the cascade of two different shift invariant wavelet trans-
forms (UDWT and DTCWT) and PCA has been introduced.
The combined effect of shift invariant time domain fea-
tures and distinguishable spatial domain features provides

more visual information with fewer artifacts. The rest of the
paper is organized as follows. “Proposed cascaded image
fusion framework” and “Image fusion algorithm” section
discuss the proposed cascaded image fusion framework and
algorithm, respectively. “Results and discussion” section
investigates the experiments/results anddiscussions followed
by “Conclusion” section.

Proposed cascaded image fusion framework

Intensity-based image registration

Image registration is a prerequisite step to align medical
images obtained from different modalities. The input images
might be of different coordinate systems and have to be
aligned properly for efficient fusion. The main goal of image
registration is to find the optimal transformation that best
aligns the structures of interest in the input images [24]. In our
proposed fusionmethod, intensity-based registrationmethod
is used. This registration method directly operates on image
pixel or voxel values. The basic principle of this method is
to search maximum similarity measures between fixed (CT)
and moving (MRI) images within a certain space of transfor-
mation [25,26].

Figures 3 and 4 show registration of MRI and CT using
their intensity values. The intensity values of bones are higher
in CT images and lower in MRI images. Hence, hard tis-
sues (bones) are more visible in CT image and less visible in
MRI images. There will be gray level variations for two pixel
classes: lesion and normal tissue. Based on that, lesion areas
can be accurately mapped during registration of MRI and
CT images. For preserving structural details, atlas construc-
tion is performed in spatial temporal wavelet domain [27,28].
The resultant registered images are shown in Figs. 3c and 4c
for two set of brain images. MRI image is represented in
magenta, while CT image is represented in green.

Cascaded PCA and shift invariant wavelet fusion

The next step after image registration is image fusion. The
schematic representation of the generic image fusion frame-
work is shown in Fig. 1. The registered source images are first
decomposed into low-frequency and high-frequency sub-
bands in different scales using UDWT, which provide details
in three directions for each scale. The detail and approxima-
tion coefficients are extracted from low- and high-frequency
bands, respectively. The spatial features are obtained by
applying PCA which also minimizes the dimension of the
data, thereby reducing the redundancy in both the input
images. In the next step, the resultant fused image obtained
(i.e., images A and B) is again decomposed using a complex
wavelet transform known asDTCWTyielding real and imag-
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Fig. 1 Block diagram of proposed image fusion methodology

inary parts of the image in the complex wavelet domain. The
resulting components are fused based on a specific fusion
rule. Finally, a novel fused image is obtained by taking
inverseDTCWT.The steps involved in this proposedmethod-
ology are explained in the subsequent sections.

Image fusion algorithm

The proposed algorithm for the image fusion framework con-
sists of
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Module I:Wavelet-based PCA fusion algorithm

In this module, linear transformations based on eigenvalue
decomposition (EVD) are used to map the data from a high-
dimensional to a low-dimensional space, thereby projecting
the features from the original domain to a PCA domain, thus
reducing the redundancy and improving the image enhance-
ment.

Step 1 Find the undecimated wavelet coefficients of the CT
and MRI images of the following equations:

Approximation Coefficients: ϕ1(x, y) = φ(x)ϕ(y) (1)

Vertical Coefficients: ϕ2(x, y) = ϕ(x)φ(y) (2)

Horizontal Coefficients: ϕ3(x, y) = ϕ(x)ϕ(y) (3)

Diagonal Coefficients: ϕ4(x, y) = φ(x)φ(y) (4)

where φ(x) is the scaling function and ϕ (x) is the wavelet
function.

Step 2 Represent the wavelet coefficients of the image in
terms of column vector A = [a1, a2, . . . . . . .ai ] where ai
represents ‘n’ features.

Step 3 Compute the covariance matrix using these vectors,

C = cov(A) = E{AAT } (5)

Step 4 Determine the eigenvalues and calculate the eigen-
vector matrix Ey from the covariance matrix using the
characteristic equation

(λi − E A) = 0 (6)

Step 5 Select the column vector with the largest eigenvalue
corresponding to the principal components. Normalize the
column vector which acts as the weight values WT .

Step 6 Perform the multiplication of normalized eigenvalues
by each term of the wavelet coefficient matrix, i.e., Cv =
CAWT where CA is real and symmetric covariance matrix,
CV is the diagonal matrix whose elements along the main
diagonal are eigenvalues of CA.

Step 7 Repeat the above steps for all the approximation and
detail coefficients.

Step 8 Find the inverse wavelet transform of the scaledmatri-
ces calculated in step 7.

Step 9 Generate the fused image matrix by finding the two
scaled matrices obtained in step 8.

Module II: DTCWT-based fusion algorithm

The conventional DWT produces aliasing due to the shift
variant nature because of subsampling at each level. Besides,
a small shift in the input signal can cause a very different set
of wavelet coefficients. But, the application of DTCWT pro-
vides better orientation selectivity over DWT, thus allowing
perfect reconstruction of wavelets [22].

A and B represent the different source images derived after
applying wavelet-based PCA fusion algorithm to the individ-
ual source images. Considering the 2D wavelet ϕ(a, b) =
ϕ(a)ϕ(b) associated with row column implementation of
wavelet transform, where ϕ(a) is a complex wavelet given
by

ϕ(a) = ϕh(a) + jϕg(b) (7)

ϕ(a, b) = [ϕh(a) + jϕg(a)][ϕh(b) + jϕg(b)] (8)

Re{ϕ(a, b)} = ϕh(a)ϕh(b) − ϕg(a)ϕg(b) (9)

Im{ϕ(a, b)} = ϕh(a)ϕh(b) + ϕg(a)ϕg(b) (10)

The real part of this complexwavelet is obtained as the differ-
ence of two separable wavelets and is oriented in − 45◦. At
every decomposition level of DTCWT, six directional high-
frequency wavelet coefficients are generated along with two
low-frequency coefficients as shown in Fig 2.

The two-dimensional DTCWT decomposes a 2D image
into different scales. The scaling functions φh (a) and φg

(b) are implemented using low-pass filters, and the wavelet
functions ϕh (a) and ϕg (b) are implemented using high-pass
filters which form Hilbert transform pairs.

Image

φ h(a) ϕ h(a)

ϕ h(a)

φ h(a) ϕ h(a) 

φ h(a) φ g(b)

φ g(b)

φ g(b) ϕg(b)

ϕg(b)

ϕg(b)

Fig. 2 Image decomposition using DTCWT
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The essential steps involved in DTCWT-based fusion are
arranged as follows:

Step 1 j-level decomposition of the images A and B is per-
formed. The six directional high-frequency coefficients a j

and low-frequency coefficients b j are then extracted.

Step 2 The high-frequency coefficients a j are fused based on
maximum fusion rule

Maximum fusion rule The images are fused by choosing the
maximum intensity of corresponding pixels from both the
input source images [29].

F(x, y) =
m∑

x=0

n∑

y=0

Max(A(x, y) + B(x, y)) (11)

where A(x, y), B(x, y) are input images and F(x, y) is the
fused image and point (x, y) is the pixel value.

Step 3 The final image F is reconstructed by taking inverse
DTCWTof the derived high- and low-frequency coefficients.

Results and discussion

The input images of the human brain under different modal-
ities (MRI and CT) of size 256 × 256 have been collected
fromwhole brain atlas data distributed byHarvardUniversity
and have been fused using cascaded PCA and shift invariant

wavelet transforms. Even thoughMRI, CT, PET are different
medical imaging modalities, MRI and CT have been consid-
ered for the study. MRI and CT give structural information,
whereas PET images give functional information. MRI and
CT give a clear picture of both higher-grade and lower-grade
tumors (slowly growing tumors), whereas PET images work
better for only higher-grade tumors. To evaluate the perfor-
mance of the proposed fusion approach, two different image
sets of the human brain have been considered and our present
work is compared with other image fusion methods based
on shift variant transforms and different fusion rules. Fig-
ure 6a, b represents MRI and CT images, respectively. The
light portion of theMRI image provides the soft tissue details,
whereas the brighter or white portion of the CT image repre-
sents the presence of denser matter or hard tissue. The source
images are decomposed based on the fusion algorithm dis-
cussed in “Image fusion algorithm” section.

Fig. 5 Fused result of UDWT and PCA. a Image set 1. b Image set 2

Fig. 3 Intensity-based registration of image set 1. a MRI. b CT. c Registered MRI-CT image

Fig. 4 Intensity-based registration of image set 2. a MRI. b CT. c Registered MRI-CT image
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Fig. 6 Comparison of fused images set 1. a MRI. b CT. c DWT (E = 6.5735). d UDWT (E = 6.7715). e UDWT and PCA (E = 7.0967). f
DTCWT. g UDWT and DTCWT (E = 6.8225). h Cascaded shift invariant WTs and PCA (E = 7.1180)

Fig. 7 Comparison of fused images set 2. a MRI(1). b CT(1). c DWT (E = 4.9694). d UDWT. e UDWT and PCA (E = 5.4610). f DTCWT. g
UDWT and DTCWT (E = 5.8587). h Cascaded shift invariant WTs and PCA (E = 5.9433)

First the input images are registered using intensity-based
registration method, and the results are shown in Figs. 3 and
4. The registered MRI and CT images are decomposed by
applying UDWT. Here 2-level decomposition is performed
because the first level sub-bands contain edges, but it is dif-
ficult to recognize them because of noise, while the second
level sub-bands contain more useful information and less
noise. The decomposed coefficients are fused using PCA
fusion rule, and then, the resulting fused image is obtained
by taking inverse UDWT. The fused images obtained using
UDWT and PCA are shown in Fig. 5. Figure 6c–h shows
the comparative results of visual information in the pixels of
the fused image using the proposed method with other fusion
methods. The fused image depicted in Fig. 6c shows both soft
and hard tissue details with less contrast and contains more
artifacts. The edges are also not well preserved. This is due to
the lack of shift invariance in the DWT-based fusion. Thus,
the introduction of shift invariance in wavelet domain, i.e.,

UDWT, significantly improves the visual information of the
image. Figure 6d shows the fused image based on UDWT in
which the quality of the image is high but edge information
is not well preserved. The wavelets together with the PCA
minimize redundancy and extract more details with a slight
improvement in entropy value, i.e., (E = 7.0967) as shown
in Fig. 6e. The fused image contained limited directionality
with fewer contrast features. The directional features are fur-
ther improved by the introduction of DTCWT as depicted in
Fig. 6f, g. The cascaded combination of PCA and shift invari-
ant wavelet transforms minimizes the redundancy, preserves
more information at the edges (i.e., E = 7.1180) as well
as provides more directional features with fewer artifacts as
shown in Fig. 6h.

The proposed fusion technique is also applied to the other
pair of human brain images. MRI(1) and CT(1) are shown in
Fig. 7a, b. The fused images are shown in Fig. 7c, h.
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It is manifested that the shift invariant-based transforms
with PCA provide fine details at the edges with fewer arti-
facts (i.e., Fig. 7h) and more information, i.e., E = 5.9433,
whereas Fig. 7c shows less image contrast with less entropy
value due to the lack of directionality and shift invariance
in DWT. Thus, the fused images give better details when
compared to the original CT and MRI images. The qual-
ity and information content of the fused image is analyzed
by utilizing suitable quality metrics such as entropy, peak
signal-to-noise ratio, standard deviation, edge-based similar-
ity measure (QAB/F ), spatial frequency, mean square error,
normalized cross-correlation, average difference.

Entropy (E) The entropy can be used to measure the richness
of information in an image which is given by the equation

E = −
L−1∑

i=0

Pi log Pi (12)

where L is the number of gray levels of an image, and
P = {P0, P1. . ...PL−1} is the probability distribution of each
level. A higher value of entropy indicates more amount of
information in the fused image.

Peak signal-to-noise ratio (PSNR) PSNR gives the relation-
ship between the fused and the reference image.

PSNR = 10 log10
(255)2

MSE
(13)

where MSE is the mean square error.
A higher value of PSNR indicates better quality of the

fused image.

Standard deviation (SD) Standard deviation is the measure
of the contrast of the fused image.

σ =
√√√√ 1

mxn

L−1∑

n=0

L−1∑

m=0

f (m, n) − μ, (14)

where f (m, n) is the pixel value of the fused image and
μ represents mean value. The SD reflects the discrete image
gray scale relative to themean gray scale. If the value of SD is
large, the image gray scale distribution of dispersion and the
image contrast is greater, thus producing more information.

Edge-based similarity measure (QAB/F ): QAB/F measures
the amount of edge information correctly transferred from
input source images to the fused image [30].

QAB/F

=
∑N

n=1
∑M

m=1 Q
AF (n,m)W A (n,m) + QBF (n,m)WB (n,m)

∑N
i=1

∑M
j=1[W A (i, j) + WB (i, j)]

(15)

whereW A (n,m) andWB (n,m) are weights for edge preser-
vation values QAF (n,m) and QBF (n,m), respectively.

The range of QAB/F is 0 ≤ QAB/F ≤ 1.
A higher value of QAB/F implies that fused image has

better edge information.

Spatial frequency (S.F) Spatial frequency measures the over-
all activity in an image. For an image with gray value f(m, n)
at position (m, n), the spatial frequency is defined as

S.F =
√
RF2 + CF2 (16)

where row frequency

RF =
√√√√ 1

MN

M∑

m=1

N∑

n=2

[ f (m, n) − f (m, n − 1)]2 (17)

Column frequency

CF =
√√√√ 1

MN

N∑

n=1

M∑

m=2

[ f (m, n) − f (m − 1, n)]2 (18)

The higher the value of spatial frequency, the better the image
quality.

Mean square error (MSE) Mean square error between the
original image and fused image with a size of (m × n) is
given as follows:

MSE = 1

m × n

m∑

i=1

n∑

j=1

(Ai j − Bi j )
2 (19)

where Ai j and Bi j are the image pixel values of the original
image and fused image, respectively.

A smaller value of MSE represents better fused result.

Normalized cross-correlation (NCC) Normalized cross-
correlation measure is used to show the comparison between
fused image and original image.

It is mathematically expressed as follows:

NCC =
m∑

i=1

n∑

j=1

(Ai j Bi j )/A
2
i j (20)

where Ai j and Bi j are the image pixel values of the original
image and fused image, respectively.

A higher value of NCC represents a better fused result.

Average difference (AD)Average difference gives the average
of change concerning the fused and original image.
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Table 1 Comparison of fusion metrics

Fusion methods Filter type Entropy PSNR Standard deviation

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2

DWT Bhavana and Krishnappa [31] db4 6.5446 4.9139 19.4158 14.9214 46.0552 48.4414

sym3 6.5497 4.9439 19.4045 14.8867 46.1041 48.5645

coif2 6.5455 4.9694 19.4098 14.9428 46.0363 48.4986

bior1.5 6.5735 4.9257 19.2068 14.8029 46.4626 49.1632

rbio1.5 6.5417 4.9601 19.4132 14.9083 46.0571 48.6330

UDWT Ellmauthaler et al. [15] db4 6.6541 5.6714 13.6512 12.6155 48.5250 83.5347

sym3 6.6702 6.0519 13.5217 11.7926 48.3422 79.5760

coif2 6.6628 5.9293 13.6225 12.9154 48.3723 79.6790

bior1.55 6.6752 6.0519 13.5725 12.7216 47.2707 81.2615

rbio1.5 6.6115 6.1112 13.2162 13.0112 51.2639 81.1393

UDWT and PCA Nandeesh and Meenakshi [16] db4 7.0919 5.3958 9.4572 6.0390 96.0135 164.1317

sym3 7.0906 5.3814 10.1198 6.9142 95.9321 163.9934

coif2 7.0898 5.4069 10.1906 6.9815 96.0248 164.1507

bior1.5 7.0589 5.3348 10.4203 7.2975 97.3279 166.0792

rbio1.5 7.0967 5.4610 10.6239 7.5510 94.6836 162.1933

UDWT and DTCWT Chauhan et al. [23] db4 6.8225 5.8282 12.5942 11.3923 111.2259 139.6815

sym3 6.8045 5.8207 12.7416 11.4960 111.2657 139.9913

coif2 6.7985 5.8193 12.7597 11.4617 111.3556 140.1837

bior1.5 6.7904 5.8587 12.6876 11.4623 112.8774 142.2316

rbio1.5 6.7851 5.8493 13.0995 11.5292 109.8676 137.5750

Cascaded shift invariant wavelets and PCA [proposed] db4 7.0937 5.9335 151.093 148.6119 47.9541 81.9455

sym3 7.0975 5.9167 151.0936 148.6113 47.9601 81.8556

coif2 7.1180 5.9175 151.1009 148.6106 47.2924 81.9376

bior1.5 7.0681 5.8625 151.0860 148.5987 48.6061 82.9352

rbio1.5 7.0964 5.9433 151.0938 148.6181 47.9141 80.9972

It is mathematically given as follows:

AD = 1

m × n

m∑

i=1

n∑

j=1

[Ai j − Bi j ] (21)

A lower value of AD represents a better fused performance.
The objective evaluations of the fused images of the pro-

posedmethod and the other comparable fusionmethods such
as DWT, UDWT, UDWT and PCA, UDWT and DTCWT for
the medical images (set 1 and set 2) are listed in Table 1.
The higher values of entropy, PSNR and standard deviation
for the fusion methods listed are highlighted in Table 1. It is
observed that classical DWT-based fusion gives the entropy
as an average of ∼ 6.5 whereas the cascaded shift invariant
wavelet transform with PCA produces the entropy of ∼ 7.1
for image set 1. There is a slight change in PSNR value for
a different set of wavelets as listed in Table 1. Moreover,
other effective fusion metrics like QAB/F , spatial frequency,
normalized cross-correlation,mean square error, average dif-

ference for image set 1 are obtained and listed in Table 2. The
higher parameter values obtained are highlighted in Table 2.

The introduction of DTCWT yields better results since it
can retain more orientation information than DWT. More-
over, there is a drastic improvement in standard deviation,
PSNR, spatial frequency, QAB/F , mean square error, nor-
malized cross-correlation and average difference due to the
introduction of shift invariant wavelet transform and PCA.
The proposed fusion approach gives additional fine details
such as edge, phase, directional information more precisely.
Thus, it is concluded that the performance of the image fusion
is greatly improved due to the shift invariant property of the
wavelet transform.

The wavelet families adopted in this fusion approach are
Daubechies (dbN, N = 1. . .20), symlets (symN, N =
1. . .20), coiflets (coifN, N = 1. . .5), biorthogonal (bior
(M, N ), M = 1. . .6, N = 1. . .9). The entropies obtained
for the fused image using different wavelets are revealed in
Fig. 8, and it is found that biorthogonal has better perfor-
mance than Daubechies. The visual comparison results of
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Table 2 Comparison of
performance metrics for image
set 1

Fusion methods SF MSE QAB/F NCC AD

DWT Udhaya Suriya and Rangarajan
[32]

15.0173 0.1752 0.6932 0.6385 0.2249

UDWT Sultana et al. [33] 16.7887 0.3419 0.7286 0.3329 0.2154

PCA Saravanan et al. [34] 18.8151 0.3913 0.7163 0.2957 0.3844

DWT and PCA Kuswaha and Thakare
[35]

19.0709 0.3257 0.7291 0.4617 0.2242

UDWT and PCA Kaur [36] 39.2626 0.1276 0.7359 0.9215 0.0277

DTCWT Hill et al. [37] 14.4919 0.3576 0.8125 0.3660 0.3199

UDWT and DTCWT Bhandari et al.
[38]

23.5776 0.2965 0.8493 0.3002 0.2059

Cascaded shift invariant wavelets and
PCA (proposed)

42.6831 0.0016 0.9253 0.9785 0.0165

bior1.3 bior2.4 bior2.6 bior3.3 bior3.5 bior4.4 bior5.5 bior6.8
0
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4

6

8
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tro
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db2 db3 db4 db5 db6 db7 db8 db10
0

2

4

6

8

En
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Daubchies wavelets 
Image set 1
Image set 2

Fig. 8 Comparison results of entropy for different families (biorthogonal, Daubechies)

Fig. 9 Comparison of fused image (set 1) using cascaded shift invariant WTs and PCA method using different wavelets a bior 5.5 (E = 7.1700),
b db2 (E = 7.0999), c coif1 (E = 7.1013), d sym2 (E = 7.0999), e rbio5.5 (E = 7.1105)

the fused images using different wavelet families for two
image sets are shown in Figs. 9 and 10.

It is observed that Figs. 9a and 10a yield more visual
information with the entropies 7.1700 and 6.2809, respec-
tively, compared to the other wavelet families. It is noticed
that the proposed fusion approach gives better entropy and

PSNR values. The selection of fusion rule is also an impor-
tant criterion for the enhancement of information and quality
metrics. Table 3 shows the comparison results using different
fusion rules. The higher values of entropy, PSNR and stan-
dard deviation obtained using maximum fusion rule for two
sets of images are highlighted in Table 3.
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Fig. 10 Comparison of fused images (set 2) using cascaded shift invariant WTs and PCAmethod using different wavelets a bior 5.5 (E = 6.2809),
b db2 (E = 5.9007), c coif1 (E = 5.9179), d sym2 (E = 5.9007), e rbio5.5 (E = 5.8164)

Table 3 Comparison of
performance metrics using
different fusion rules

Fusion rule Entropy PSNR(dB) Standard deviation

Image set 1

Minimum fusion rule 6.6208 151.0352 46.5541

Average fusion rule 6.7428 151.0860 47.4024

Maximum fusion rule 7.0681 151.1353 48.6061

Image set 2

Minimum fusion rule 5.3342 148.1932 76.7102

Average fusion rule 5.7257 148.4450 78.7716

Maximum fusion rule 5.8625 148.5987 82.9352

PCA UDWT UDWT AND PCA UDWT AND DTCWT UDWT, PCA 
AND DTCWT

5

5.5

6

6.5

7

7.5

En
tro

py

(a) Comparison of entropy based on different fusion methods

Entropy

PCA UDWT UDWT AND PCA UDWT AND DTCWT UDWT, PCA 
AND DTCWT

0

50

100

150

200

PS
N

R
 in

 d
B

(b) Comparison of PSNR based on different fusion methods

PSNR

Image set 2

Image set 1

Image set 2

Image set 1

Fig. 11 Comparison of entropy and PSNR for different fusion techniques

It is manifested that the maximum fusion rule provides
higher values in terms of entropy (E), PSNR and standard
deviation (SD). The entropy and PSNR variations of the
resultant images obtained using different fusionmethods like
DWT,UDWT, PCA,UDWT and PCA,UDWT andDTCWT,

combined UDWT, PCA and DTCWT have also been com-
pared, and the results are depicted in Fig. 11.

Experimental outcomes presented in this section illustrate
that the proposed methodology performs better than conven-
tional multiscale transforms. The improved performance of
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the fused image is due to shift invariance and accessibility
of phase information in imaginary part of the DTCWT. The
biorthogonal wavelet family offers more desirable outcome,
as it can retain information of individual images like lines,
curves, edges, boundaries in a better way. Besides, the spatial
domain representation of the image imparts high spatial res-
olution but the images have blurring problem. The proposed
fusion technique could further reduce artifacts and produce
more smooth transitions at boundaries with less blurriness.
Thus, the combination of spatial and shift invariant-based
transform domain fusion method ameliorates the perfor-
mance as compared to the individual fusion algorithms.

Conclusion

In this paper, a novel image fusion framework based on
the cascade of shift invariant wavelet transform (UDWT,
DTCWT and PCA) has been presented. The property of shift
invariance is important in image fusion for enhancing direc-
tional features and extracting fine edge details. Furthermore,
the artifacts and distortions can be reduced due to the intro-
duction of undecimated wavelet transform. The redundant
details of the image can also be removed by the applica-
tion of PCA. The complex wavelet transform (DTCWT)
can even fuse misregistered images and significantly pre-
serves the edges. Since DTCWT operates in the complex
domain, it provides phase information. Other wavelets like
DWT, UDWT do not have this feature. Thus, directional and
spatial information extracted from the biomedical images
can greatly improve the objective metrics performance. The
experimental results demonstrated that the proposed method
outperforms the other fusion methods in terms of objective
evaluation.
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