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Abstract
Purpose Image guidance for minimally invasive surgery
is based on spatial co-registration and fusion of 3D pre-
interventional images and treatment plans with the 2D live
intra-interventional images. The spatial co-registration or
3D–2D registration is the key enabling technology; however,
the performance of state-of-the-art automated methods is
rather unclear as they have not been assessed under the same
test conditions. Herein we perform a quantitative and com-
parative evaluation of ten state-of-the-artmethods for 3D–2D
registration on a public dataset of clinical angiograms.
Methods Image database consisted of 3D and 2D
angiograms of 25 patients undergoing treatment for cere-
bral aneurysms or arteriovenous malformations. On each
of the datasets, highly accurate “gold-standard” registra-
tions of 3D and 2D images were established based on
patient-attached fiducial markers. The database was used
to rigorously evaluate ten state-of-the-art 3D–2D registra-
tion methods, namely two intensity-, two gradient-, three
feature-based and three hybrid methods, both for registra-
tion of 3D pre-interventional image to monoplane or biplane
2D images.
Results Intensity-based methods were most accurate in
all tests (0.3mm). One of the hybrid methods was most
robust with 98.75% of successful registrations (SR) and
capture range of 18mm for registrations of 3D to biplane
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1000 Ljubljana, Slovenia

2 Faculty of Electrical Engineering, University of Ljubljana,
Tržaška 25, 1000 Ljubljana, Slovenia

3 Sensum, Computer Vision Systems, Tehnološki park 21, 1000
Ljubljana, Slovenia

2D angiograms. In general, registration accuracy was sim-
ilar whether registration of 3D image was performed onto
mono- or biplanar 2D images; however, the SR was substan-
tially lower in case of 3D to monoplane 2D registration. Two
feature-based and two hybrid methods had clinically feasible
execution times in the order of a second.
Conclusions Performance of methods seems to fall below
expectations in terms of robustness in case of registration of
3D to monoplane 2D images, while translation into clinical
image guidance systems seems readily feasible for methods
that perform registration of the 3D pre-interventional image
onto biplanar intra-interventional 2D images.

Keywords Endovascular image-guided intervention ·
Angiograms · 3D–2D image registration · Gold standard ·
Validation

Introduction

Treatment for vascular pathologies is almost exclusively in
the domain of minimally invasive interventions, which are
driven by increasing complexity of imaging and image pro-
cessing techniques. For instance, treatment application by
endovascular image-guided intervention (EIGI) [1] involves
navigation of the catheter through the vasculature to the site
of pathology and optimal application of treatment devices
by two-dimensional (2D) fluoroscopic and angiographic
image guidance. Besides the dynamic 2D+t images, recent
C-arm systems enable acquisition of contrast-enhanced 3D
images during EIGI, i.e., 3D digitally subtracted angiograms
(3D-DSA). The 3D-DSA image is usually segmented and
displayed to the clinician just before the start of EIGI so as
to select the optimal 2D view(s) or working projection(s)
that are then used during the EIGI to aid guidance [2]. How-
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ever, the clinician still needs to mentally reconstruct the pose
of interventional tools and blood flow characteristics from
dynamic 2D+t images with respect to (w.r.t.) the displayed
3D vascular morphology.

A solution is to augment the pre-EIGI 3D-DSA, com-
puted tomography or magnetic resonance angiography (CTA
or MRA, respectively) with the information of the current
state of EIGI present in dynamic 2D+t image(s), thus result-
ing in augmented 3D+t images. By incorporating augmented
3D+t images into the current EIGI workflow, the navigation
and application of treatment devices could be done easier and
faster. The key enabling technology for obtaining augmented
3D+t images is 3D–2D registration.

Translation of 3D–2D registration technology into clinical
theater requires an extensive evaluation and rigorous vali-
dation of any newly developed and state-of-the-art methods
under the same test conditions [3,4]. In this paper, we employ
an extended publicly available clinical image database [5]
of 3D and 2D angiograms, all acquired during cerebral
EIGI. On each dataset, accurate “gold-standard” registra-
tions were established based on fiducial marker alignment.
Quantitative and comparative evaluation of ten state-of-the-
art methods for registration of 3D and 2D angiograms was
performed using standardized evaluation protocols and met-
rics [6,7].

State-of-the-art methods

Recently, we performed a review of state-of-the-art 3D–2D
registration methods [8], wherein the methods were classi-
fied w.r.t. nature of registration basis, strategy to establish
dimensional correspondences, and type of geometric trans-
formation. Geometric transformations used are either rigid
or non-rigid. The rigid methods are typically applied in
cerebral EIGI, since cerebral vessels have limited non-rigid
motion duringEIGI. In the case of liver and abdominal EIGIs,
several authors have shown that the rigid geometric transfor-
mation may not be sufficiently accurate; nevertheless, the
rigid methods are still widely used to initialize the non-rigid
methods [9]. Since this paper is focused on cerebral EIGI,
we consider hereafter only rigid 3D–2D registration meth-
ods.

According to registration basis, 3D–2D image registra-
tion methods can be categorized as calibration-based and
(extrinsic or intrinsic) image-based methods. The intrinsic
image-based methods seem readily compatible with current
EIGIworkflow, as they rely solely on anatomical information
observed in the 3D and 2D images. We will thus focus on the
intrinsic image-based methods that can be further classified
into intensity-, feature- and gradient-based, and hybridmeth-
ods [8]. Basic principles of these methods are illustrated in
Fig. 1.

Intensity-based 3D–2D registration methods [10,11] rely
on voxel- or pixel-wise matching of 3D and 2D images by
means of a similaritymeasure (SM).The3D–2Ddimensional
correspondence can be achieved either by reconstruction of
3D image from several 2D images and 3D-to-3D image
matching, or by projection of 3D image to 2D and 2D-to-
2D image matching [10,11], where the projection images
are obtained by techniques like digitally reconstructed radio-
graphs (DRRs) [10] or maximum intensity projection (MIP)
[11]. Kerrien et al. [11] registered 3D-DSA and 2D-DSA
cerebral images in three steps: first, initial registration was
obtained by C-arm calibration, and then, the in-plane transla-
tionswere determined bymatching 2D-DSAandMIP images
using normalized cross-correlation SM, followed by regis-
tration based on a modified optical flow method. Hipwell
et al. [10] analyzed six different SMs for registration of
cerebral MRA to 2D-DSA images and obtained best results
using gradient difference and pattern intensity. In general,
the main drawback of intensity-based methods is compu-
tationally demanding generation of DRRs/MIPs, but which
may be remedied by graphical processor units (GPU)-based
implementations and computational approximations.

Feature-based methods [9,12–16] rely on matching cor-
responding features extracted from 3D and 2D images, such
as vessel centerline points [12], orientations or tangent lines
[12], and bifurcations [13]. To initialize the 3D–2D registra-
tion of MRA and 2D-DSA cerebral images, Feldmar et al.
[12] searched for corresponding bitangent lines in 3D and
2D centerlines to initialize the registration, followed by a
refinement based on modified iterative closest point (ICP)
matching of 3D and 2D vessel centerline points and tan-
gents.Kita et al. [15] found initial 2D translations by template
matching of projected 3D vessel tree skeleton and the 2D-
DSA image, followedby amodified ICP, inwhich anisotropic
region akin to Voronoi regions around the projected 3D
skeleton points constrained the search for corresponding
2D skeleton points. While feature-based methods achieve
computational speedup through large data reduction, their
registration accuracy and robustness are directly influenced
by the quality of vessel segmentation.

Gradient-based methods [17–19] exploit the fact that the
observed 2D gradient represents a component of the 3D
gradient that is perpendicular to incident ray. Tomaževič
et al. [17] back-projected gradients from 2D image(s) into
3D surface tangent subspace and matched the 3D gradient
using weighted dot product of the two vectors. Markelj et
al. [18] reconstructed a 3D gradient field by summing back-
projected 2D gradients from two or more 2D images. The
reconstructed 3D gradient field and the gradient field of 3D
image were matched using RANSAC to estimate the initial
transformation, which was subsequently refined by method
of Tomaževič et al. [17]. For efficiency, gradient-basedmeth-
ods match only a subset of distinctive 3D and 2D gradients.
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Fig. 1 Basic principles of intensity-, feature-, gradient-based and hybrid 3D–2D intrinsic image-based registration methods

Hybrid methods [5,20–26] use different registration bases
in 3D and 2D and can be divided into two main subclasses.
Methods from the first subclass generate the simulated 2D
images by projecting a model of segmented 3D vessel, simi-
larly as a DRR. For instance, Chan et al. [20] created a model
of 3D vessel tree from MRA using a set of 3D spheres with
radii equal to the radii of corresponding vessels. By pro-
jecting the 3D spheres to the imaging plane, they obtained
a binary DRR, which was matched to the 2D-DSA image
using sum of squared differences. The second subclass of
methods first preprocess the pre-EIGI 3D image to extract

features that can be efficiently projected from 3D to 2D
and matched to 2D images. Jomier et al. [23] projected 3D
vessel tree centerline points to 2D-DSA images and then
summed the corresponding smoothed intensities, weighted
by vessels’s radii. From cerebral 3D-DSA,Mitrović et al. [5]
extracted 3D vessel orientations, which were projected to 2D
and matched to the orientations of strong 2D intensity gra-
dients in a local neighborhood-based SM. In general, hybrid
methods employ 3D image preprocessing and omit the often
difficult to perform real-time processing and/or segmentation
of intra-operative 2D images.

123



196 Int J CARS (2018) 13:193–202

Methods in comparative evaluation

Ten state-of-the-art 3D–2D registrationmethods were imple-
mented; namely two intensity-, two gradient-, three feature-
based and three hybrid methods. The intensity-based meth-
ods were based on maximum intensity projection (MIP)
of 3D-DSA and maximized mutual information (MIP-
MI) and gradient correlation (MIP-GC) SMs. Gradient-
matching methods were the back-projection gradient-based
[17] (BGB) and robust gradient reconstruction-based [18]
(RGRB). Of the feature-based methods ICP with distance
transform of 2D vessel tree skeleton [16] (DT-ICP), ICP
with region-based correspondence search [15] (RCS-ICP)
and segmentation-driven ICP registration [14] (SEG-ICP)
were implemented. The three hybrid methods were based
on matching of 2D-DSA to binary DRR of projected spheres
of the 3D vessel tree model [20] (MBDRR), matching by
summing the smoothed 2D-DSA intensities at positions
of projected 3D vessel tree centerline points (MSSI) and
matching of geometric primitives [5] (i.e., vessels’ center-
line points, orientations and radii) (MGP). Table 1 gives the
list of tested methods and their classification.

In all testedmethods, the rigid-body parameterswere opti-
mized simultaneously by Powell’s directional set method
[27]. The methods were mainly implemented and executed
in MATLAB (The MathWorks, Inc., USA) on Intel(R)
Core(TM) i7CPU860@2.80GHzmachinewith 8GBmem-
ory, with the exception ofMIP generation, which was written
inCUDAand executed onNVIDIAGeForceGTS450 graph-
ics card.

Clinical image datasets

For evaluation, we employed 25 clinical image datasets,
each containing 3D and 2D images of patients that under-
went cerebral EIGI. Two patients underwent arteriovenous
malformation (AVM) and 23 patients underwent aneurysm
treatment. All images were acquired on Siemens Axiom
Artis dBA biplane flat detector angiography system. Image
sets consisted of enhanced and non-enhanced cone-beam
computed tomography (CBCT) images, which were used
to generate 3D-DSA image. All 3D images had voxel size
of 0.46 × 0.46 × 0.46mm3 and image dimension up to
512 × 512 × 391. Prior to registration, the 3D images were
resampled to 0.75mm isotropic resolution using cubic spline
interpolation to reduce size and speed up the registration pro-
cess.

For each patient, a set of 2D-DSA and contrast-enhanced
2D fluoroscopic images (2D-MAX) were acquired dur-
ing EIGI (Fig. 2). The 2D images had pixel sizes either
0.154 × 0154mm2 or 0.184 × 0.184mm2 with dimensions
up to 2480 × 1920. The 2D images were acquired in lat-

eral (LAT) and anterior–posterior (AP) gantry orientation
so as to best capture cerebral vasculature of interest for
EIGI.

“Gold-standard” registration

Establishing an accurate “gold-standard” registration of 3D
and 2D images was based on retrospective calibration of
the C-arm system and finding the optimal rigid transfor-
mation, using fiducial markers visible both in 3D and
2D images. Procedure to obtain “gold-standard” 3D–2D
registration was detailed in a previous paper [5], and an auto-
mated “gold-standard” creation framework was presented in
[28].

Experiments and results

The clinical image datasets were used to quantitatively
evaluate the performance of ten state-of-the-art 3D–2D reg-
istration methods (Table 1). The experiments consisted of
registrations of a 3D-DSA image to either one or two 2D
views, referred to as monoplane or biplane registration,
respectively. The two intensity-based, three hybrid, BGB and
DT-ICP methods were capable of both mono- and biplane
registration. RCS-ICP and SEG-ICP methods were devel-
oped specifically for monoplane registration, while RGRB
required at least two 2Dviews or biplane registration context;
therefore, these methods were tested accordingly in mono-
or biplane registration context. Furthermore, two subsets of
experiments were performed, one by using 2D-DSA and the
other by using 2D-MAX images.

Evaluation protocol

Standardized methodologies as proposed by van de Kraats
et al. [7] and Markelj et al. [6] were used to evaluate the
performance of the methods across the 25 clinical image
datasets. Registration error was measured by mean repro-
jection distance (mRPD) and mean target registration error
(mTRE) for monoplane and biplane registration, respec-
tively. Figure 3 illustrates the two measures of registration
error.

Each method was evaluated across multiple registration
tests, in which 3D images were initially displaced from the
“gold-standard” position by aknown, randomlygenerated six
degrees of freedom (3 rotations, 3 translations) rigid transfor-
mation and then registered by the automated method. Initial
displacements were in the range of 0–20mm of mTRE, with
20 registrations per 1mm subinterval. Although our previous
study [29] suggests that machine-based initial registration on
C-arm systems may lead to initial mTRE of up to 37mm,
to limit the amount of computations, the 20-mm interval as
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Table 1 List and classification of state-of-the-art 3D–2D registration methods in comparative evaluation

Method Nature of registration basis 3D–2D dimensional
correspondence

3D processing 2D processing Scope of application

MIP-MI [10] Intensity-based Projection – – General-purpose

MIP-GC [10] – Gradients

BGB [17] Gradient-based Back-projection Strong edge
gradients

Gradients General-purpose

RGRB [18] Reconstruction Gradients,
reconstruction
of 3D gradient
field

DT-ICP [16] Feature-based Projection Vessel
centerlines

Vessel
centerlines and
its distance
transform

Vascular images

RCS-ICP [15] Vessel
centerlines,
region-based
corresp. search

SEG-ICP [14] Iterative ML
segmentation
and vessel
centerline
extraction

MBDRR [20] Hybrid Projection Vessel
centerlines and
radii

– Vascular images

MSSI [23] Gaussian
scale-space

MGP [5] Vessel
centerlines,
orientations
and radii

Gradients and
integral images

dataset 3 dataset 8 dataset 19 dataset 20 dataset 23
aneurysm AVM aneurysm aneurysm aneurysm

Fig. 2 2D-DSA (top) and 2D-MAX (bottom) images of representative clinical datasets with corresponding pathology
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Fig. 3 Illustration of the
reprojection distance (RPD) and
target registration error (TRE)
used to assess registration
accuracy in monoplane and
biplane 3D–2D registration,
respectively

Fig. 4 Example registration results as a color-coded overlay of the 3D-
to-2D projected DSA onto 2D DSA image and corresponding mTRE
values. Note that initial displacement was a maximum of 20mmmTRE
and a failure threshold for the final mRPD or mTRE (mRPD≤mTRE)

was set to 2mm.The 2mm threshold is approximately the radius of large
cerebral vessels, which are typically in focus of cerebral endovascular
interventions

suggested by two of the standardized validation protocols
[6,7] was chosen in this study. An example of the degree of
3D–2D alignment error with 20-mm initial mTRE is shown
in Fig. 4. Clearly, the 20-mm mTRE alignment can be eas-
ily achieved by manual co-registration prior to running the
automated 3D–2D image registration.

Registration was considered successful if the final reg-
istration error (mRPD or mTRE) was less than 2mm. The
2mm threshold is also application motivated since it rep-
resents approximately the radius of large cerebral vessels,
which are typically in focus of cerebral endovascular inter-
ventions, and such registration accuracy thus provides good
enough localization for navigation and guidance during the
intervention. This threshold may be reasonable also for other
vascular anatomies, since the fixed size of the catheter will
limit the scope of endovascular intervention to vessels of cer-

tain minimal radius. Similar thresholds were previously used
by other authors in the other application contexts of 3D/2D
registration. Exemplar registrations with various mTRE val-
ues are shown in Fig. 4.

Registration accuracy was defined as mean±STD of
mRPD or mTRE of the successful registrations, while the
capture range (CR) was defined as the lowest mTRE subin-
terval with less than 95% of successful registrations. The
95% percentile was chosen to eliminate the impact of out-
liers in the results. Success rate (SR) was defined as the
percentage of successful registrations. To visualize registra-
tion error, the range of initial mTRE was divided into 20
accumulative subintervals: 0–1, 0–2, …, 0–20mm, and for
each subinterval the 95th percentile of mRPD or mTRE reg-
istration error was computed. Registration times were also
measured.
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Table 2 MEAN and STD of
mRPD values of successful
registrations, success rates (SR),
capture ranges (CR) and
registration times averaged 25
datasets using monoplane LAT
DSA/MAX images

Method Symbol MEAN ± STD (mm) SR (%) CR (mm) Time (s)

DSA MAX DSA MAX DSA MAX

Optimal N/A 0.00 ± 0.00 0.00 ± 0.00 100 100 20 20 0.0

MIP-GC [10] • 0.27 ± 0.28 0.28 ± 0.30 38.32 36.58 3 2 82.1

MIP-MI [10] © 0.31 ± 0.28 0.68 ± 0.50 77.60 41.78 5 1 82.2

BGB [17] � 0.41 ± 0.34 0.42 ± 0.34 52.65 48.58 3 2 11.4

DT-ICP [16] � 0.42 ± 0.30 50.92 0 0.5

RCS-ICP [15] � 0.56 ± 0.35 0.51 ± 0.30 78.15 54.98 9 0 13.0

SEG-ICP [14] � 0.39 ± 0.27 62.83 0 33.0

MBDRR [20] ∗ 0.68 ± 0.39 0.87 ± 0.39 59.72 18.03 0 0 69.6

MSSI [23] · 0.53 ± 0.34 0.74 ± 0.33 45.98 15.08 0 0 0.5

MGP [5] × 0.64 ± 0.36 0.64 ± 0.38 74.70 71.82 5 4 0.6

Table 3 MEAN and STD of
mTRE values of successful
registrations, success rates (SR),
capture ranges (CR) and
registration times averaged 25
datasets using biplane
(LAT+AP) DSA/MAX images

Method Symbol MEAN ± STD (mm) SR (%) CR (mm) Time (s)

DSA MAX DSA MAX DSA MAX

Optimal N/A 0.00 ± 0.00 0.00 ± 0.00 100 100 20 20 0.0

MIP-GC [10] • 0.25 ± 0.21 0.26 ± 0.23 42.37 40.18 4 4 117.9

MIP-MI [10] © 0.26 ± 0.20 0.49 ± 0.33 97.17 45.80 16 1 117.1

BGB [17] � 0.38 ± 0.29 0.43 ± 0.29 57.35 51.08 5 5 17.4

RGRB [18] + 0.25 ± 0.13 0.27 ± 0.14 69.07 66.88 6 6 25.4

DT-ICP [16] � 0.36 ± 0.26 87.48 8 0.7

MBDRR [20] ∗ 0.56 ± 0.36 1.12 ± 0.37 87.67 31.63 7 0 105.3

MSSI [23] · 0.36 ± 0.23 0.77 ± 0.29 96.35 40.75 14 0 0.9

MGP [5] × 0.47 ± 0.25 0.59 ± 0.30 98.75 90.47 18 11 1.1

Registration results

Registration results are presented in Tables 2 and 3 for mono-
plane and biplane registration, respectively, while Fig. 5
shows accumulative mTRE subintervals for all tested meth-
ods.

Registration accuracy

For registrations of 3D-DSA to either mono- or biplane
2D-DSA views, all methods achieved subvoxel registration
accuracy (<0.75mm, which is the voxel size of the 3D
image). The intensity-based methods [10] performed best,
with mRPDs andmTREs less than 0.4 and 0.3mm for mono-
and biplane 2D-DSA registration, respectively. In biplane
registration, the gradient-based RGRB [18] method achieved
comparable accuracy (Table 3). Surprisingly, the feature-
based DT-ICP [16] and SEG-ICP [14] methods were quite
accurate even though they relied on error-prone 3D and 2D
centerline extraction. The accuracy of BGB [17] was com-
parable to DT-ICP, while the hybrid methods were the least
accurate.

When registering 3D-DSA to the 2D-MAX images, the
accuracy of all methods decreased, but was still far below
the failure threshold of 2mm. The MIP-MI, MBDRR [20]
and MSSI [23] methods were most affected with approxi-
mately twice higher registration error. Registration accuracy
of gradient-based methods (MIP-GC, BGB [17], RGRB [18]
andMGP[5]) remained comparable to that of 3D- to 2D-DSA
registrations. The DT-ICP and SEG-ICP [14] methods used
the segmentations and centerlines extracted from the 2D-
DSA, assuming that these can be similarly extracted from
2D-MAX.

Robustness

The ability of 3D–2D registrationmethod to maintain its per-
formance in the presence of disruptive factors, such as image
artifacts, interventional tools, bony structures, and occlu-
sions, is referred to as robustness. In this study, robustness
was expressedbySRandCRandbycomparingperformances
on 2D-DSA and 2D-MAX images.

For registration of 3D-DSA to single 2D-DSA image,
MIP-MI and MPG [5] methods demonstrated the highest
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Fig. 5 Registration error in terms of mRPD (left) and mTRE (right)
of tested state-of-the-art methods for mono- and biplane registration,
respectively, for each of the 1mm subintervals of the initial mTRE (hor-

izontal axes). The error was computed across the 25 image datasets. A
robust method exhibits small registration error across a wide range of
initial mTRE. See Tables 2 and 3 for corresponding methods’ symbols

robustness over all evaluated methods (Fig. 5). The RCS-
ICP [15] performed quite robust with SR of 78.15% and CR
of 9mm, owing to good estimation of in-plane translations.
In registrations of 3D-DSA to biplane 2D-DSAs, MGP [5]
method outperformed all the other evaluated methods.

Feature-based DT-ICP method and SEG-ICP [14] per-
formed poorly because of non-corresponding centerlines
extracted from 3D and 2D images. SEG-ICP was especially
sensitive to overlapping of the vessels on 2D images, since
equal values of topological timestamps in 3D and 2D ves-
sel tree skeletons did not correspond to the correct 3D–2D
point pair. Lastly, the MIP-GC, BGB [17] and RGRB [18]
methods had constantly lower SR in comparison with other
methods as these are based onmatching locally sensitive gra-
dient information.

Although themethods based on intensity information, i.e.,
MIP-MI,MBDRR [20] andMSSI [23], performed quite well
on 2D-DSA images, in 2D-MAX images, they were affected
by lower vessel-to-background contrast and the presence of
bony structures and interventional tools, which caused, on
average, a decrease in SR of 39.6%. On the other hand, meth-
ods using gradient information, i.e., MIP-GC, BGB [17],

RGRB [18] andMGP [5], produced comparable results using
either 2D-DSA or 2D-MAX images. (Average SR difference
was 4.3%.)

Execution time

The obtained results show significant advantage of one
feature-based DT-ICP [16] and two hybrid methods, i.e.,
MSSI [23] and MGP [5], with mean registration time in
the order of seconds achieved in all registration tests. As
expected, the slowest methods were those using simulated
projection, i.e., MIP-GC, MIP-MI [10] and MBDRR [20],
with mean registration times at least a factor of two longer
than all other methods.

Discussion

Translating the 3D–2D registration technology into EIGI
requires extensive evaluation and rigorous validation of the
state-of-the-art methods. This paper makes two important
contributions in this respect: (1) a clinical image database of
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25 patients with corresponding reference or “gold-standard”
registrations was created, and (2) ten state-of-the-art 3D–
2D registration methods were objectively and comparatively
evaluated.

Is the 3D–2D registration technology ready for applica-
tion in EIGI? The results of methods’ evaluation indicate
that there does not exist a method clearly superior in all
registration attributes (registration accuracy, robustness and
execution time). However, there are methods clearly supe-
rior according to certain registration attributes. As expected,
the intensity- and gradient-based methods were the most
accurate, while the feature-based and hybrid methods were
somewhat less accurate owing to errors in 3D and/or 2D seg-
mentation. It should be noted that intensity-based methods
are perfectly suited for the case of monomodal registra-
tion as performed herein. Nevertheless, all of the tested
methods achieved registration accuracy far below failure
threshold of 2mm. Intensity-based methods were highly
sensitive to low vessel-to-background contrast, bony struc-
tures and interventional tools visible in 2D-MAX images.
Feature-based methods are also sensitive to these artifacts
due to the need for 2D image segmentation; however, in
this study the segmentations were performed on 2D-DSA
images. On the other hand, the gradient-matching methods
were more robust. Feature-based and hybrid methods had
execution times feasible for application in EIGI. Overall,
the hybrid MGP [5] method demonstrated the highest poten-
tial among all methods (Fig. 5). The answer to the posed
question is “Yes” in the case of biplane, and “Yes, provided
a good initial alignment” in case of monoplane registra-
tion.

The above answers are also supported by the capabili-
ties and operation of a commercial application SmartBrush
Angio (www.brainlab.com), which enables the fusion of pre-
interventional 3D and intra-interventional 2D images using
an automated registration method. Albeit the specifics of the
employed method are not given, they state that “aligning
the images manually aids the fusion algorithm and improves
[registration] results.” Before proceeding to fusion, the algo-
rithm requires visual verification of the registration similarly
as in Fig. 4 and lets the user manipulate the scale and rota-
tions of the 3D vessel layer, to better match the underlying
2D image data. This process clearly aims to reduce the initial
registration error to within the capture range of the method
being used.

The choice of the optimizer may have a large impact on
the success rate and capture range. The probability to get
stuck in a local optimum greatly affects the capture range
and is a function of the optimizer and the smoothness of
the similarity measure in the search space. Our choice of
the Powell optimizer was a trade-off between the sensitiv-
ity to local optima and efficiency. Other authors have used
simple gradient descent and quasi-Newton-based methods,

which could be more efficient, but also more susceptible to
local optima. On the other hand, stochastic optimizers like
the covariance matrix adaptation evolution strategy [30] and
simulated annealing could be less sensitive to local optima,
but they require orders of magnitude more evaluations of the
cost function.

Most methods in the evaluation were originally devised
for establishing correspondence of the vascular informa-
tion between 3D and 2D images. Obtaining the vascular
information, however, generally requires that the 3D and
2D angiograms are acquired through the injection of poten-
tially toxic iodine (or gadolinium in case of MRA) contrast
agent into the patient’s blood stream, with the excep-
tion of time-of-flight MRA technique. For this reason, the
reduction in contrast agent usage is a relevant clinical
application, but which should be approached with different
3D–2D registration methods. For instance, registration could
exploit proxy structures like the bony landmarks, which is
a promising avenue for research in the context of cerebral
angiograms, since cerebral vessels generally do not move
with respect to the bony structures and provided that the
vascular anatomy does not change as a result of pathologic
process or treatment between the acquisition of 3D and 2D
images.

Using MRA techniques to acquire the pre-interventional
3D image also helps to reduce the overall patient’s dose
exposure. However, multimodality 3D–2D registration is
then required, which might prove more challenging than
monomodal registration considered in this study. This is
also supported by the observed results for intensity-based
methods like MIP-MI, using which the 3D- to 2D-DSA
registrations were far more successful than the 3D-DSA to
2D-MAX registrations, a precursor to performance charac-
teristics in true multimodality 3D–2D registration. Using
monoplane 3D–2D registration, which is most frequently the
case during EIGI, but also more challenging as the results
show, is also preferred over the biplane setting because of
reduced patient dose.

In conclusion, translation to EIGI seems feasible, espe-
cially for situations, in which the 3D image is registered
to biplane 2D images, while for registration to monoplane
2D image a good initial alignment may be required. Gen-
erally, most methods seem to fall below expectations in
terms of robustnesswhen it comes tomonoplane registrations
(Table 2); thus, improvements should focus on increasing
their SR and CR. Besides, reliable automatic identification
of registration failure may be needed for real applications
of 3D–2D registration in EIGI and thus remain a challenge
for future work. To encourage the further development in the
field, the entire clinical imagedatabasewill bemade available
upon request from the authors (http://lit.fe.uni-lj.si/tools).
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8. Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of
3D/2D registration methods for image-guided interventions. Med
Image Anal 16(3):642–661

9. Groher M, Zikic D, Navab N (2009) Deformable 2D–3D registra-
tion of vascular structures in a one view scenario. IEEE Trans Med
Imaging 28(6):847–860

10. Hipwell JH et al (2003) Intensity-based 2-D–3-D registration of
cerebral angiograms. IEEE TransMed Imaging 22(11):1417–1426

11. Kerrien E, Berger M-O, Maurincomme E, Launay L, Vaillant R,
Picard L (1999) Fully automatic 3D/2D subtracted angiography
registration. In: Medical image computing and computer-assisted
intervention—MICCAI 1999. Springer, London, pp 664–671

12. Feldmar J, Ayache N, Betting F (1997) 3D–2D projective regis-
tration of free-form curves and surfaces. Comput Vis Image Und
65(3):403–424

13. GroherM, JakobsTF, PadoyN,NavabN (2007) Planning and intra-
operative visualization of liver catheterizations: new CTA protocol
and 2D–3D registration method. Acad Radiol 14(11):1325–1340

14. Groher M, Bender F, Hoffmann R-T, Navab N (2007)
Segmentation-driven 2D–3D registration for abdominal catheter
interventions. In:Medical image computing and computer-assisted
intervention—MICCAI, 2007, vol 10. Springer, Berlin, pp 527–
535

15. Kita Y, Wilson DL, Noble A (1998) Real-time registration of 3D
cerebral vessels toX-ray angiograms. In:Medical image computing
and computer-assisted interventation—MICCAI 1998, vol 1496.
Springer, Berlin, pp 1125–1133

16. Rivest-Hénault D, Sundar H, Cheriet M (2012) Nonrigid 2D/3D
registration of coronary artery models with live fluoroscopy for
guidance of cardiac interventions. IEEE Trans Med Imaging
31(8):1557–1572
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