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Abstract
Purpose The bag of visual words (BoVW) model is a pow-
erful tool for feature representation that can integrate various
handcrafted features like intensity, texture, and spatial infor-
mation. In this paper, we propose a novel BoVW-based
method that incorporates texture and spatial information for
the content-based image retrieval to assist radiologists in clin-
ical diagnosis.
Methods This paper presents a texture-specific BoVW
method to represent focal liver lesions (FLLs). Pixels in
the region of interest (ROI) are classified into nine texture
categories using the rotation-invariant uniform local binary
pattern method. The BoVW-based features are calculated for
each texture category. In addition, a spatial cone matching
(SCM)-based representation strategy is proposed to describe
the spatial information of the visual words in the ROI. In a
pilot study, eight radiologists with different clinical experi-
ence performed diagnoses for 20 cases with and without the
top six retrieved results. A total of 132 multiphase computed
tomography volumes including five pathological types were
collected.
Results The texture-specific BoVW was compared to other
BoVW-basedmethods using the constructed dataset of FLLs.
The results show that our proposed model outperforms
the other three BoVW methods in discriminating different
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lesions. The SCM method, which adds spatial information
to the orderless BoVW model, impacted the retrieval per-
formance. In the pilot trial, the average diagnosis accuracy
of the radiologists was improved from 66 to 80% using the
retrieval system.
Conclusion Thepreliminary results indicate that the texture-
specific features and the SCM-based BoVW features can
effectively characterize various liver lesions. The retrieval
system has the potential to improve the diagnostic accuracy
and the confidence of the radiologists.

Keywords Content-based image retrieval · Texture-
specific · Bag of visual words · Spatial cone matching

Introduction

Computer-aided diagnosis (CAD) systems can assist radi-
ologists in clinical diagnoses based on image analysis [1].
Studies of CAD systems development primarily follow two
routes. Classification-based CAD systems have been exten-
sively investigated for decision support employing machine
learningmethods, such as the support vector machine (SVM)
[2,3]. The other route is to construct a content-based image
retrieval (CBIR) system. Given an image dataset with diag-
nosis information, images in the repository with the most
similar appearance and morphological characteristics to the
query image are retrieved and rendered to support diagnostic
decision making [4,5].

Currently, contrast-enhanced computed tomography (CT)
is the most crucial imaging modality employed to detect
and characterize focal liver lesions (FLLs) [6–8]. Contrast-
enhanced CT scans are divided into four phases before and
after contrast injection. An examination is performed before
contrast injection to obtain a noncontrast-enhanced (NC)
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scan. After-injection phases include the arterial (ART) phase
(30–40s after contrast injection), portal venous (PV) phase
(70–80s after contrast injection), and delay (DL) phase (3–
5min after contrast injection). Several CAD systems based
on CT images have been proposed to identify different types
of liver lesions [1,2,4–9]. In most previous studies, only
one single-phase CT scan was used for feature extraction
[3,4], which neglects the pivotal information conveyed by
multiphase scans. Several studies were conducted verifying
that the features derived from multiphase contrast-enhanced
images are more effective than the original features derived
from nonenhanced images or single-phase scans [1,7,8].

Some published studies reported the characterization of
FLLs using multiphase images to capture the temporal infor-
mation among phases. Roy et al. [7] proposed a CBIR
framework for liver lesions based on spatiotemporal features
derived from multiphase CT volumes. Density features (the
normalized average intensity of a lesion), texture features
(the gray-level co-occurrence matrix [GLCM]), temporal
density features (the intensity enhancement over the three
enhancement phases compared to the noncontrast phase), and
temporal texture features (the normalized difference in tex-
ture at the three enhancement phases) were used for image
retrieval. Chi et al. [1] extracted multiphase features (den-
sity features, density derivative features, texture features and
texture derivative features) to represent the FLL. In our pre-
vious work [9], we proposed a temporal density feature and
a novel 3D shape feature for CBIR of liver lesions in addi-
tion to conventional density and texture features (3D uniform
local binary pattern [LBP] [10]). All the methods mentioned
above used low-level features.

There are several ways to generate mid-level or high-
level image representations in various fields including the
medical field. The bag of visual words (BoVW) has been
a popular strategy to represent medical images for classi-
fication or CBIR [2,3,6,8] and achieves promising results
in image analysis [8,11–13]. The BoVW method clusters a
low-level feature space into a number of regions that poten-
tially correspond to visual concepts that are called visual
words. Vocabulary-pruning strategies such as probabilistic
latent semantic analysis (pLSA) [14] can be used to remove
nonmeaningful visual words [15]. The Riesz transform is a
multiscale method that can analyze texture at multiple scales
and yield an overcomplete representation of local orienta-
tion properties [16,17]. The features extracted by the Riesz
transform can also be merged with the BoVW [16]. In [16], a
texture-based organ classification algorithm was developed
by combining the Riesz transform and the BoVW. The Riesz
transform has been applied in lung texture analysis [17,18].
The Fisher vector [19] was proposed as an extension of the
BoVW approach. It has been adopted in CAD-based celiac
disease classification using endoscopic image data [20,21]
and used in recognition of the fetal facial standard plane

using ultrasound imaging [22]. Deep learning is emerging
as a state-of-the-art method in the computer vision domain,
and its performance is improved when applied using large
training sets [23]. However, in the medical domain, such
largedatasets are not always available.Althoughchallenging,
there are some recent applications of deep learning to med-
ical tasks [23], such as lesion detection [24,25] and object
segmentation [26,27]. There is some work applying the deep
neural networks trained on nonmedical training sets for chest
pathology retrieval [28] and identification [29,30]. Though
there has also been some work applying the deep neural net-
works on liver tissues such as classification of age or gender
based on liver images [31] and detection or segmentation
of liver lesions [32–35], there is little work on liver lesion
classification or retrieval in CT images.

Several studies were conducted to show that the BoVW
is a powerful feature representation method in liver CT
image analysis and is an extensively used feature model-
ing approach that can integrate various handcrafted features
like intensity, texture, and spatial information. Diamant et
al. [2] employed the BoVW model for automatic classifi-
cation of liver lesions in four-phase images based on raw
intensity. They generated a different vocabulary for each
phase and concatenated the histograms for multiple phases
to represent the lesions. Yu et al. [6] divided the lesions into
distinct regions using a distance transformation technique
and extracted BoVW-based features from each subregion.
Some handcrafted features like intensity, texture, and shape
features were also computed and combined with the his-
tograms for image representation. Yang et al. [8] employed
the BoVW model to construct a visual category-specific
vocabulary for each pathological type. The histograms of
each single phase were merged together to represent multi-
phase images. Besides, there is still other work applying the
BoVW approach modeling other handcrafted features like
texture. Burner et al. [11] proposed texture bags based on
local 3D extension of the LBP for anomaly retrieval in lung
images. In the research field of computer vision, a method
known as bag of LBPwords (BoWL) [12] has been proposed
to incorporate texture features into the BoVW model. How-
ever, our experiments indicated that theBoWLmodelwas not
very effective in representing FLLs (this is shown in Sec. 4).
Several strategies were introduced to embed spatial informa-
tion into the BoVW model [36]. The most typical approach
is the spatial pyramid matching (SPM) method proposed by
Lazebnik et al. [37], which repeatedly subdivides the image
and computes histograms for each subregion. Some improve-
ments to the SPM method were suggested [38]. The SPM
was proven to be effective in characterization. The regular
grid partition strategy is not appropriate for liver CT images
because the general shape of a liver lesion in a slice is always
elliptical or circular.
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Table 1 Distribution of the different diagnosis types

Diagnosis type Cyst FNH HCC HEM METs

Quantity 36 22 27 27 20

In this paper, we propose two methods to improve the
conventional BoVW model for effective FLL representa-
tion by integrating texture and spatial information and apply
the novel methods to develop a retrieval system to assist
radiologists in clinical diagnosis. Specifically, we make the
following contributions: (1) A feature extraction method
called texture-specific BoVW is proposed by incorporat-
ing texture information in the conventional BoVW model,
which can effectively improve the representation ability. (2)
Inspired by the SPM [37], a spatial cone matching (SCM)
strategy which is specific for circular objects such as FLLs
is proposed to describe the spatial information of the visual
words in the ROI. (3) A dataset of 132 multiphase contrast-
enhanced liver CT images that contains five types of lesions
was built. (4) Combining the texture-specific BoVW features
and the SCM-based BoVW with our previously proposed
shape and temporal features [9], we developed a CBIR sys-
tem to assist radiologists in clinical diagnosis. (5) A pilot trial
is conducted to evaluate the influence of the system in clini-
cal diagnoses. The details of the proposed methods, dataset,
experiments and the pilot trial are described later.

Materials and methods

Materials

Though ImageCLEF provides a benchmark for liver lesion
annotation [39], the CT scans contain only one single
phase and are not suitable for our study. We therefore con-
structed a multiphase CT image database for our study. The
contrast-enhanced multiphase CTs were performed using a
multidetector helical CT scanner between 2011 and 2015.
The multiphase CT scans were collected from 132 patients
and included five types of lesions with confirmed pathol-
ogy/diagnosis, i.e., cysts, focal nodular hyperplasia (FNH),
hepatocellular carcinoma (HCC), hemangiomas (HEM), and
metastasis (METS). Table 1 displays the distribution of dif-
ferent lesions. One lesion per patient was analyzed and
outlined by experienced radiologists. The major lesion was
selected for patients with more than one lesions. The CT
scans were acquired with a slice collimation of 5/7 mm, a
matrix of 512 × 512 pixels and an in-plane resolution of
0.57–0.89mm. For each patient, all slices containing lesions
were used to comprise the image dataset.We extracted image
features from all slices containing lesions for the task. Fig-
ure 1 shows typical images of different kinds of lesions over
multiple phases.

Methods

A multiphase CT retrieval system is developed in this study.
The flowchart of the retrieval system is shown in Fig. 2.
Data are preprocessed prior to feature extraction. The region
of interest (ROI) of each case is first outlined by experi-
enced radiologists. The liver parenchyma and hepatic lesions
are segmented synchronously using a random walk-based
interactive segmentation algorithm [40] according to the
manually drawn outlines. Then, features including the pro-
posed texture-specificBoVW, SCM-basedBoVW, shape and
temporal features are extracted from the lesion regions for
multiple phases. A feature database containing all the fea-
tures extracted from the images with their confirmed pathol-
ogy type labels was constructed. Histogram intersection is
used to compute similarity. In this section, we mainly focus
on representations of FLLs and evaluation methodology.

BoVW model

The BoVW model is adapted from the bag of words (BoW)
methodology, which was first proposed for text documents
[41] and involves, in our application, using sets of visual
words to represent images. For the patch-based BoVW
model, patch extraction is the first step in the procedure. Fea-
ture vectors are extracted from these patches to construct the
visual vocabulary. Clustering algorithms, such as k-means,
are commonly used to generate clusters of visual words that
comprise the visual vocabulary. The image is represented by
a histogram of the generated visual words.

Texture-specific BoVW

The proposed texture-specific BoVWmodel is implemented
on the basis of the rotation-invariant uniformLBP,which is an
effective texture representation strategy introduced by Ojala
et al. [42]. Figure 3 illustrates a computation of the classic
LBP code.ALBP is uniform if it contains atmost two bitwise
transitions from 0 to 1 or vice versa when the binary code is
considered circular. The measure of the uniform patterns is
as follows:

U =
P∑

i=1

|s(gi − gc) − s(gi−1 − gc)|, gP = g0 (1)

Here, P is the number of neighbors. gc represents the gray
value of the central pixel, and gi represents the gray value
of the encircled neighborhoods. It is a uniform pattern when
U ≤ 2. For classic LBP codes, the number of patterns satis-
fyingU ≤ 2 is P(P − 1) + 2. If these patterns are rotated to
obtain the minimum value, the number of patterns satisfying
the rotation-invariant uniform pattern is P + 1. Therefore,
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Fig. 1 Typical images of five liver lesions over the three phases

Fig. 2 Framework of our proposed CBIR system

LBPriu2P,R =
{∑p−1

i=0 s(gi − gc), U ≤ 2
P + 1, otherwise

(2)

where the superscriptriu2 reflects the use of a rotation-
invariant uniform pattern that has a U value of at most 2.
In our study, we used eight neighbors of the central pixel to
extract the binary code and to calculate the rotation-invariant
uniform LBP. Therefore, the number of texture categories in
our study is 8 + 1 = 9.

For each pixel in the ROI, the LBP is calculated and the
pixel is classified into one texture category using the rotation-
invariant uniform LBP. All pixels in the ROI are classified

Fig. 3 Illustration of the computation of the classical LBP code

into a total of nine categories. The BoVW-based features
are calculated for each texture category. Patches of pixels
belonging to the same texture category are extracted from the
liver image. Raw-intensity-based descriptors are generated
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Fig. 4 Illustration of the proposed texture-specific BoVW method.
Step 1, LBP image calculation. Step 2, texture classification based on
rotation-invariant uniform LBP, assigning a texture category label to

each pixel. Step 3, patch-based feature extraction for each texture cat-
egory. Step 4, vocabulary generation. Step 5, quantization

from these patches to extract the texture-specific vocabularies
V = {V1, Vu, . . . , V9}. Each vocabulary Vu = {w1, . . . , wk}
is determined by

argmin
Vu={w1,...,wk }

{
∑

i

min
j

∥∥xi − w j
∥∥2

}
, xi ∈ Tu

Tu = {x|x belongs to the uth texture category} (3)

where xi is the i th feature vector (patch), w j is the j th cen-
ter vector (visual word), k is the number of visual words of
each texture category and the total dimension of histogram
K = 9× k. Figure 4 illustrates the proposed texture-specific
BoVW method. Figure 5 shows two texture-specific vocab-
ularies (Category 1 and Category 7) trained by the k-means
clustering algorithm in the ART phase.

Spatial cone matching (SCM)-based method

As an improvement in the SPM, we propose a spatial cone
matching (SCM) method for circular object representation
such as FLLs. We partitioned the FLLs into increasingly
fine concentric circular regions and computed histograms for
each subregion. For the segmented lesion region of the CT
slices, we first calculated the centroid of the pixels in the
ROI. Let I be the set of coordinates (x, y) of all pixels in

Fig. 5 Two texture-specific vocabularies trained by k-means clustering
algorithm of the ART phase
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the ROI and denote the centroid as C = (xc, yc). The dis-
tance between the pixels in the ROI and the centroid can be
calculated via Euclidean distance as shown here:

Di =
√

(xi − xc)2 + (yi − yc)2, (xi, yi) ∈ I, (4)

where Di denotes the distance between the i th pixel in the
ROI and the centroid. The ROI of the liver images can be
outlined by a circle with the centroid at the center. Let r be
the radius of the new ROI, which is defined as the maximum
value ofD. We construct a sequence of annular subregions
with resolutions of 0, . . . , L . The resolution level l corre-
sponds to the number of concentric circles. The ROI at level
l is divided into l annular subregions by uniformly dividing
the radius into l equal portions. Then, we draw l circles with
C at the center and nr/ l(1 ≤ n ≤ l). The k-means clustering
technique is applied to the vectors in the ROI to generate the
vocabulary, and all feature vectors are quantized into K types
based on the visual words. The matching kernel for calcu-
lating the total matching degree is the sum of each separate
kernel:

ML(X,Y ) =
K∑

m=0

κL(X,Y ). (5)

The match kernel for each separate level is defined as

κL(X,Y ) =
L∑

l=0

wl × Nl , (6)

where wl is the weight associated with level l, which is set
to 1

2l
, and Nl represents the number of matches at level l.

Nl = I (Hl(X), Hl(Y )) − I (Hl−1(X), Hl−1(Y )) (7)

I (Hl(X), Hl(Y )) =
D∑

i=1

min(H (i)
l (X), H (i)

l (Y )),

D = L − l + 1 (8)

H (i)
l (X) denotes the proportion of the total number of points

in theROI that fall into the i th subregion at level l. As the sizes
of the lesions are always different, we represent the match
degree at level l via the histogram intersection [43] using
the normalized value instead of the true number of points.
An illustration of the construction of a spatial histogram for
visual words based on the SCM is shown in Fig. 6.

Shape feature

Shape features are important for distinguishing different
types of lesions. In this paper, the sphericity of a lesion
extracted by principle component analysis (PCA) is used

as the shape feature of the lesion. Considering that the
shape of the lesion shows no obvious change in different
phases, we extract the shape features from the ART phase
images. The shape feature F is denoted by three eigenvalues
λ1, λ2, λ3(λ1 > λ2 > λ3) calculated via PCA as follows:

F = {λ2/λ1, λ3/λ1} (9)

Temporal feature

The temporal feature, TF, is designed to discriminate the evo-
lution patterns after the injection by denoting the enhance-
ment of density in the ART and PV phases compared with
the density in the NC phase. Some typical images of the evo-
lution pattern of different lesions are shown in Fig. 1. The
calculation of TF is

TF =
{(
dARTlesion − dNClesion

)
/dNClesion,

(
dPVlesion − dNClesion

)
/dNClesion

}
,

(10)

where dNClesion and dNCliver are, respectively, the average voxel
intensity of the lesion and the normal liver tissue in the NC
phase. dARTlesion, d

ART
liver , d

PV
lesion, and d

PV
liver have similar definitions

for different phases.

Evaluation methodology

The total of 132 cases is divided into two parts: 32 cases are
chosen as test data, and the remaining 100 cases are used as
training data. For each lesion type, about one-quarter of cases
are randomly selected to constitute the test data. The optimal
parameters are determined based on the training data using
the fivefold cross-validation, and the test data are only used
to evaluate the system performance. Each case in the test
data is a query case (an unlabeled case), and the FLLs in the
training data are used as labeled cases for retrieving similar
lesions. Twenty cases were selected from the test data for the
pilot trial, and the remaining cases including the other twelve
cases of the test data were used to construct the database
for retrieving similar lesions in the pilot trial. To estimate
the effectiveness of the retrieval system, several performance
evaluation measures are proposed. The results are evaluated
based on a precision–recall curve, precision of the top M
retrieved FFLs (Prec@M), and the mean average precision
(mAP). Precision and recall are defined as follows:

precision = Number of relevant samples retrieved

Total number of samples retrieved
(11)

recall = Number of relevant samples retrieved

Total number of relevant samples
(12)
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Fig. 6 Illustration of the construction of the spatial histogram for visual words based on the SCM

Prec@M represents the proportion of relevant FLLs in the
top M results. Average precision (AP) is the average of the
precisions for the positions where there is a relevant sample.
AP is defined as follows:

AP = 1

N+

N∑

j=1

rel( j) × Pr ec@ j (13)

where N is the total number of samples and rel( j) is a binary
function on the relevance of the sample at the position j (1
for relevant, and 0 for irrelevant). mAP is the mean of the AP
over all queries.

Experiment and results

A series of experiments were conducted to verify the effec-
tiveness of the texture-specific BoVW and the SCM-based
method. The detailed experimental designs and results are
described in the following subsections. All the experiments
were conducted with a MATLAB® implementation, on an
Intel(R) Core(TM) i7-6700K, 4-GHz CPU with 32 GB of
RAM.

Fig. 7 System performance with various vocabulary sizes

Experiments on parameter selection

We conducted a group of experiments to analyze the impact
of the vocabulary size and the patch size of our algorithm
on the retrieval performance. The performance of different
parameters was evaluated on the 100 training data using the
fivefold cross-validation. The average result of fivefold is
used as a measure of performance for a given parameter set-
ting. The optimal parameters are selected based on the best
performance. The patch size was set to 9×9 when assessing
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Table 2 System performance
with various patch sizes

Patch size Prec@2 Prec@5 Prec@10 Prec@15 Prec@20

3 × 3 0.6621 0.6504 0.5854 0.5444 0.5119

5 × 5 0.6821 0.6565 0.6057 0.5585 0.5244

7 × 7 0.6721 0.6563 0.6128 0.5632 0.5330

9 × 9 0.6821 0.6482 0.6139 0.5707 0.5335

11 × 11 0.6766 0.6522 0.6070 0.5645 0.5264

13 × 13 0.6663 0.6361 0.5999 0.5613 0.5203

the impact of the vocabulary size. We varied the vocabulary
size (k) from 4 (32/9) to 114 (1024/9) for each texture cat-
egory. Figure 7 shows that larger vocabularies lead to better
results. However, a larger vocabulary results in higher com-
putational cost. We can see from the results in Fig. 7 that the
gain on performance is not significant when the vocabulary
size is greater than 57 (512/9). We can see that a vocabulary
size of k = 57 is an appropriate value for our texture-
specific method in balancing the retrieval performance and
the computational cost. The vocabulary size was set to 57
when evaluating the impact of the patch size. Table 2 lists
the experimental results and shows that the system gets a
relatively better performance when the patch size is set to
9 × 9. In the following experiments, the vocabulary size of
the texture-specific BoVW for each texture category is set to
57, which produces a total vocabulary size of 57 × 9 = 513
and the patch size is set to 9 × 9.

System performance comparison for different texture
representation methods

The performance of different texture description strategies is
compared in this subsection. We first compared our texture-
specific BoVW with three texture descriptors, i.e., the 3D
GLCM applied in [7], the classic LBP [42,44], and the pre-
viously proposed improved LBP (imLBP) [9] based on 3D
lesion volumes. The offset was given as 1, and 13 directions
were considered when computing the GLCM. Six texture
coefficients, including energy, entropy, inverse difference
moment, inertia, cluster shade and correlation, were derived
from thematrixes. The results are shown in Fig. 8 using preci-
sion versus recall curve. We also compared our method with
another LBP-based BoVW representation model known as
BoWL [11], which has been reported to be effective in scene
image classification. The BoWL was introduced by Banerji
et al. based on multineighborhood LBP for small patches.
The total size of the vocabulary for each phase was set to
128, which performed best on our dataset. The results are
exhibited in Fig. 8 and Table 3. The results indicate that our
method significantly outperforms the low-level features and
is superior to the BoWL method. These results also show

Fig. 8 Results of different texture representations

Table 3 Retrieval performance of different image descriptors

Descriptor mAP Pre@6 Pre@10

Low-level descriptors

GLCM [7] 0.3790 0.2727 0.2697

LBP histogram [21] 0.4478 0.2576 0.2424

imLBP [9] 0.5020 0.3384 0.3242

Mid-level descriptors

Fisher vector [30] 0.6759 0.5960 0.5576

Global BoVW [8] 0.6746 0.5758 0.5273

Category-specific BoVW [8] 0.7045 0.5808 0.5303

BoWL [11] 0.6551 0.5505 0.5030

Texture-specific BoVW 0.7563 0.6717 0.6515

that LBP-based methods are more effective than GLCM as a
texture descriptor.

Comparison of the texture-specific BoVW method and
the conventional BoVW methods and the Fisher vector

Several BoVW methods were implemented in the experi-
ments, i.e., the category-specific BoVW and global BoVW
methods proposed by Yang et al. [8], and the BoWL method
proposed by Banerji et al. [11]. For fair comparison, we first
conducted a series of experiments to determine the optimal
parameters (the vocabulary size and the patch size for the
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Fig. 9 Comparison of BoVW-based methods and the Fisher vector

Fig. 10 mAP of the category-specific BoVW and the texture-specific
BoVW at single phase and multiple phases

BoVW-based methods and the number of Gaussian compo-
nents for the Fisher vector) for each method on our training
data using the fivefold cross-validation. For the globalBoVW
and the BoWL, the vocabulary size of each phase was set
to 128. The category-specific BoVW was performed with a

vocabulary size of 26 (128/5) for each pathological category.
The patch size was determined to be 11 × 11 for the BoWL
and the category-specific BoVW and 9 × 9 for the global
BoVW. For our proposed texture-specific BoVW method,
the vocabulary size of each texture category was set to 14
(128/9) and 57 (512/9) for comparison. As for the Fisher
vector, we exploited patch-based features as local descriptors
and the number of Gaussian components was fixed at 10. The
results are shown in Fig. 9. Table 3 lists the retrieval perfor-
mance of different low-level features and mid-level features
in terms of mAP, Prec@6, and Prec@10 for multiple phases.
As shown, all mid-level features in the experiments yield bet-
ter results than the low-level descriptors, and our proposed
texture-specific BoVWapproach outperforms the other three
BoVW methods and the Fisher vector.

Comparison of results based on single-phase and
multiphase images

A group of experiments were conducted comparing the sys-
tem performance on multiphase and single-phase features
extracted by the proposed texture-specific BoVW method
and the category-specific BoVW methods. The results are
shown in Fig. 10. We can see that the features extracted from
multiphase images have stronger discriminative capability in
retrieval of similar lesions than those extracted from single-
phase images.

Experiments on the validation of the SCM-based
method

To validate the effectiveness of our proposed SCM method,
we combined the SCM processing with the conventional
BoVW and category-specific BoVW methods proposed by
Yang [8] and compared the results with the original meth-
ods without the SCM processing. The results are shown

Fig. 11 System performance of applying the SCM to BoVW-based methods. a Applying the SCM to conventional BoVW. b Applying the SCM
to category-specific BoVW
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Fig. 12 Retrieval performances using combined features and each sin-
gle feature

in Fig. 11. We can see from the figure that the application
of the SCM effectively improved the retrieval performance.
We also compared the SCM methods using different res-
olutions with L to be 1 and 2. The results displayed in
Fig. 11 show that higher resolution performed better than
low resolution. In our research, we have tried to apply the
SCM method with our proposed texture-specific BoVW, but
the SCM-based texture-specific BoVW was not effective in

representing FLLs compared to the texture-specific BoVW.
We have analyzed the results and suppose that it is prob-
ably because processing of the texture classification can be
regarded as a kind of partitioning approach to a certain extent.

System construction

Wedeveloped a CBIR system based on our proposed texture-
specific BoVW and SCM-based descriptor. In addition to the
features in this study, we also employed the shape and tem-
poral features, which were introduced in our previous study
for image retrieval [9]. The retrieval performance using the
combined features and each single feature is presented in
Fig. 12. The combination of proposed methods can signifi-
cantly improve the system performance. Figures 13 and 14
show the retrieval system interface. We can see from Fig. 14
that in a retrieval task, the query case information is shown on
the left side of the interface. Radiologists click the Retrieve
button to retrieve similar cases. The information of the six
most similar results retrieved by the system is displayed in the
right side of the interface. When one of the retrieval results
is chosen by the radiologist, its multiphase CT images and
corresponding diagnosis report are shown. More details of
the case are shown when the More button is clicked. In the

Fig. 13 Interface of segmentation
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Fig. 14 Interface of retrieval

pilot trial, radiologists determined the diagnosis based on the
reference information.

Pilot trial

To evaluate the influence of the retrieval system for liver
lesions in clinical diagnosis, a pilot trialwas performed. In the
pilot study, eight radiologists were invited to perform diag-
noses with and without the top six similar retrieved results
identified by the retrieval system.

The participants were divided into two groups: group A
and group B, reflecting the same seniority and similar diag-
nostic ability. A total of 20 cases (4 cases for each class)
were selected by a radiologist with more than 10 years of
experience as the query data. The selected query cases were
separated from the dataset, and we used the remaining cases
as the retrieval dataset for the retrieval system. Determining
the number of images used for query is a trade-off problem.
The user test reliability could be raised by increasing the
number of query images, but we had to consider the work-
load of the radiologists. The user test is a time-consuming
and labor-intensive task, and we determined the number of
query images based on the radiologists’ suggestions.

We randomly arranged the query data asNo. 1,No. 2…, to
No. 20, respectively, in the first round of diagnoses. Only the
CT ID reallocated by the engineer and the CT images of the
query caseswere provided for the radiologists in groupA. For
the radiologists in group B, both the CT images of the query
cases and their corresponding top six similar retrieved results
rendered by our retrieval systemwere provided. The radiolo-
gists performed the first round of diagnoses fromNo. 1 toNo.
20 and gave their diagnosis results (the type of lesion) and
their confidence level (1–10: 1 indicates no confidence, and
10 indicates fully confident) of the corresponding decision.
Two weeks later, we rearranged the query data randomly as
No. 1 through No. 20. The radiologists were requested to do
a second round of diagnoses on the same query cases. In this
trial, the radiologists in groupAwere providedwith the refer-
ences from the retrieval system and the radiologists in group
B performed diagnoses without use of the decision support.
The radiologists again gave their diagnoses and confidence
levels.

The results of the two rounds of trials were analyzed in
terms of their diagnostic accuracy, which is defined as the
ratio of the number of true positives to the total number of
query cases. The diagnostic confidence level was assigned
a value of 0 when the diagnosis was wrong. The average
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Table 4 The results of the diagnoses with and without the top six retrieved results

Participant Diagnoses Average diagnostic accuracy Mean average confidence value

Group A Round 1 (without retrieved results) 0.66 5.96

Round 2 (with retrieved results) 0.80 6.75

Group B Round 1 (with retrieved results) 0.78 5.33

Round 2 (without retrieved results) 0.71 4.86

confidence values of each radiologist in a round of test (20
diagnoses) were calculated as the confidence level estima-
tion. The average diagnostic accuracy and the mean average
confidence value of the radiologists in each group were cal-
culated. The comparison of the two rounds of diagnoses is
shown in Table 4. From the results, we can see that with
the help of the retrieval system, the average diagnosis accu-
racy and the confidence levels of the radiologists in group A
achieve pronounced improvements. Without the references
of the retrieval system information, the average diagnosis
accuracy and the confidence levels of radiologists in group B
decreased compared to the first round test. The preliminary
results demonstrate that the retrieval system has the poten-
tial to improve the diagnostic accuracy and the confidence of
radiologists.

Conclusion and future work

In this paper, we developed a CBIR system for FLLs
based on multiphase contrast-enhanced CT images to assist
radiologists in clinical diagnosis. We have proposed a
texture-specific BoVW and an SCM-based method for the
effective representation of FLLs incorporating texture and
spatial information.We also combined the proposedmethods
with our previously introduced shape and temporal features
to achieve more effective image retrieval. The prelimi-
nary results indicate that the proposed texture-specific and
SCM-based features extracted from multiphase images can
effectively characterize various liver lesions. The retrieval
system has the potential to improve the diagnostic accuracy
and the confidence of radiologists. The precision at the top
six retrieved similar cases is 0.74, which can be improved
by increasing the size of the database. Our texture-specific
and SCM-based methods are proposed as frameworks for
integrating texture or spatial information into the BoVW
model. As an extension, our proposed frameworks can also
be combined with, and thus improve, the Fisher vector and
the super vector methods, which will be done in our future
work. Furthermore, the texture-specific method with tex-
ture information and the SCM-based method with spatial
information cannot complement each other in the current
research. In future work, we will develop a more effec-

tive SCM-based texture-specific descriptor for the retrieval
task. Currently, the BoVW-based features in our work are
independently extracted from the images of each phase and
linearly combined, which neglects the temporal information
and relationship among phases.Wewill explore the temporal
co-occurrence information of multiple phases in our future
work and will increase the dataset and apply deep learning
to feature extraction.
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