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Abstract
Purpose The target registration error (TRE) is a crucial
parameter to estimate the potential usefulness of computer-
assisted navigation intraoperatively. Both image-to-patient
registration on base of rigid-body registration and TRE pre-
diction methods are available for spatially isotropic and
anisotropic data. This study presents a thorough validation
of data obtained in an experimental operating room setting
with CT images.
Methods Optical tracking was used to register a plastic
skull, an anatomic specimen, and a volunteer to their respec-
tive CT images. Plastic skull and anatomic specimen had
implanted bone fiducials for registration; the volunteer was
registered with anatomic landmarks. Fiducial localization
error, fiducial registration error, and total target error (TTE)
were measured; the TTE was compared to isotropic and
anisotropic error prediction models. Numerical simulations
of the experiment were done additionally.
Results The user localization error and the TTE were mea-
sured and calculated using predictions, both leading to results
as expected for anatomic landmarks and screws used as fidu-
cials. TRE/TTE is submillimetric for the plastic skull and the
anatomic specimen. In the experimental data a medium cor-
relation was found between TRE and target localization error
(TLE). Most of the predictions of the application accuracy
(TRE) fall in the 68% confidence interval of the measured
TTE. For the numerically simulated data, a prediction of TTE
was not possible; TRE and TTE show a negligible correla-
tion.
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Conclusion Experimental application accuracy of
computer-assisted navigation could be predicted satisfacto-
rily with adequate models in an experimental setup with
paired-point registrationofCT images to apatient. The exper-
imental findings suggest that it is possible to run navigation
and prediction of navigation application accuracy basically
defined by the spatial resolution/precision of the 3D tracker
used.
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Introduction

Navigation is widely used in ENT surgery to support
the surgeon. A crucial part of the whole navigation pro-
cess is the registration of the patient to the preoperative
CT/MRI images. Usually paired-point matching [1–3] or
more recently surface registration [4,5] is used for registra-
tion. Homologous points on the patient and in the image
(fiducials) are used to find the rigid transformation between
them. Errors in localizing fiducials in image and patient
space FLE lead to the FRE [6], which is the Euclidean dis-
tance between the corresponding fiducials after registration.
Usually, fiducials on the surface of the patient are used for
registration, but the operating area is inside the head. Track-
ing errors and errors in localizing fiducials on the patient
or in the images prohibit perfect navigation. The TRE [6]
allows surgeons estimating the accuracy of navigation inside
the patient at the surgical target zone. This is thus a good
measure for the theoretical clinical application accuracy of
a navigation system. Knowing TRE before surgery is a key
component for a reliable intraoperative use of information

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-017-1653-y&domain=pdf


426 Int J CARS (2018) 13:425–441

guidance provided by navigation systems. The use of CAS
systems might improve surgery, reduce peri- and postoper-
ative complications, and thus might allow faster healing of
patients [7]. Therefore, a prediction of the error in special
regions inside the head, especially close to critical structures,
is highly desirable. Different prediction methods for TRE
were developed [6,8–11]. From a clinical perspective good
predictions should overestimate the real application error.

Theoretical comparisons [12], numerical simulations [6,
8–11], and clinical studies [13–15] tried proving the meth-
ods for predicting TRE. To the best of our knowledge, a
comprehensive analysis of available prediction methods of
application accuracy against experimental data in a surgical
setup is not available yet.

The first raw analysis of the data presented in this paper
has already been published in [16], where only isotropic reg-
istration with an isotropic FLE model was investigated. The
present work extends [16] with a comprehensive analysis
of the data by including isotropic and anisotropic errors of
measurements, registrations, and prediction methods. The
emphasis is on the most frequently used prediction method
[6] or methods that fit the simulated surgery best: anisotropic
prediction [8] and a general approach [10]. This investigation
presents a critical appraisal of predictions and measurements
for computer-assisted navigation, based on real data from
experiments collected under realistic conditions.

Numerical simulations of the experiment that by definition
fulfill all theoretical requirements served to compare purely
theoretical predictions against predictions on base of exper-
imental data. For both “experiments” statistical correlations
between measured and predicted quantities (such as TRE)
were calculated. For the simulated data also distributions of
the measured and predicted errors were analyzed. The spe-
cific advantage of both experiments (numerical and real life)
is that ALL positions in patient and image spaces, including
target positions, are available and can be used for relevant
calculations and measurements.

The next sections describe the data acquisition, all errors,
measured and predicted, are defined, and the whole exper-
iment is described. In the final sections, the results are
presented and discussed.

Materials and methods

Data acquisition

For the experiments a plastic skull, an anatomic specimen,
and a volunteer (“patient”), were registeredwith paired-point
matching registration to their CT images [17,18].

CT data for the plastic skull and the anatomic specimen
were acquired with a Siemens Sensation 16 CT (Siemens,
Erlangen, Germany). A Siemens Somatom Plus 4 Volume
Zoom was used to acquire the imaging data for the vol-

unteer. The imaging parameters were: for the plastic skull:
convolution kernel H60s, 120 kV, 74 mA, 1 mm slice thick-
ness; for the anatomic specimen: convolution kernel H30s,
120 kV, 175 mA, 0.6 mm slice thickness; for the volun-
teer: reconstruction filter H30s, 140 kV, 150 mA, 1.25 mm
slice thickness. Navigation was done with open4Dnav [19],
an IGSTK-based application with optical tracking (active
Polaris, first generation, NDI, Ontario, Canada) [20]. MAT-
LAB R2012a (The Mathworks, Inc., USA) was used for
analyzing the data.

Isotropic [17] and anisotropic [18] image-to-patient regis-
trationwas executedwithMATLAB to get the transformation
between image and patient space. Fiducials and targets were
defined before starting the registration process for each
patient.

For image-to-patient registration 3, 5, 7, and 9 fiducial
points were used. For the anatomic specimen (with Ti-
screws) and the volunteer (with anatomic landmarks), 10
target points were used and 11 targets were used for the plas-
tic skull (with Ti-screws).

To verify the registration, the surgeon used a probe to point
on the fiducials in patient space (FRE). This is normal clin-
ical practice and done prior to each surgical intervention to
verify navigation. If the FRE was appropriate, the TTE was
determined by measuring the difference between positions
as displayed by the system and “real” target points in image
space. TheTREwas predicted for the real target (detailed def-
initions are presented in “Definition of the measured errors”
section).

This process was repeated 10 times for each patient and
each fiducial arrangement (i.e., 3, 5, 7, and 9 fiducials), yield-
ing 240 registration points in total for each patient, 100 targets
for the anatomic specimen and the volunteer, and 110 targets
for the plastic skull.

For each target in image space, the mean value of the
10 repetitions of the localization data in image space was
analyzed and set as reference target points [21].

A detailed description of the experiment can be found in
[16]; the setup can be seen in Fig. 1.

Definition of the measured errors

Let xi j and yi j represent corresponding points (fiducials) in
image and patient space, respectively, where i = 1, . . ., 10
is the number of the registration and j = 1, . . .,m is the
number of the fiducials; m = 3, 5, 7, 9.

Let rik and qik be the corresponding targets in image and
patient space, respectively,where i = 1, . . ., 10 is the number
of registration, k = 1, . . ., n is the number of the target;
n = 10 for anatomic specimen and volunteer, and n = 11
for the plastic skull.

Reference targets rk(m) in image space are defined as
rk(m) = ∑10

i=1
rik
n , the mean of target k over all registra-

123



Int J CARS (2018) 13:425–441 427

Fig. 1 Experimental setup. The patient is fixed on the OR table. For all experiments the surgeon was using the same probe. The active NDI camera,
the navigation system’s monitor, and the tracker unit are placed in optimal working distance. The DRF is attached near the patient

tions with m = 3, 5, 7, and 9 fiducials, respectively. For
each experiment with m fiducials, the reference targets are
calculated separately.

Isotropic registration: Image fiducials were registered to
patient fiducials with the transformation that minimizes

FRE2
iso,i = 1

m

m∑

j=1

(
Riso,i xi j + tiso,i − yi j

)2
. (1)

For registration i , the rotation matrix Riso,i , the translation
tiso,i , and FREiso,i were saved.

The experimental TTE is the norm of the difference vec-
tors of measured and navigated targets using

TTEexp,i =‖ rk − (
Riso,i q jk + tiso,i

) ‖2 . (2)

The values of TTEexp,i were used as the reference TRE to be
compared with the TRE of the different prediction methods.

RMS(FLEi,img) and RMS(FLEi,pat) in image and patient
space, respectively, were estimated as the traces of the
covariance matrix of image and patient fiducials of the i-th
repetition, respectively:

RMS
(
FLEi,img

) =
√
trace

(
cov

(
xi j

))
, (3)

and

RMS
(
FLEi,pat

) =
√
trace

(
cov

(
yi j

))
. (4)

The total FLE for registration i, TFLE2
i = (RMS(FLEi,img))

2

+ (RMS(FLEi,pat))
2, can be treated as a single random vari-

able [22–24].
The target localization error for registration i (similar to

FLE) is defined as

TLE2
i = TLE2

i,img +TLE2
i,pat (5)

TLE2
i,img and TLE2

i,pat are defined as RMS
(
TLEi,img

) =
√
trace

(
cov

(
ri j

))
andRMS

(
TLEi,pat

)=
√
trace

(
cov

(
qi j

))
,

respectively. The TLE is equivalent to the FLE, but measured
on targets, not on fiducials. Knowing all target positions in
image and patient space allows to calculate the TLE, con-
trary to the definition in [25,26] where the target positions
are unknown.

Anisotropic registration considers anisotropic noise in the
measurement data, image data, etc., and FRE becomes

FRE2
aniso,i = 1

m

m∑

j=1

Wi j
∣
∣Raniso,i xi j + taniso,i − yi j

∣
∣2 (6)

has to be minimized. Wi j = V T
i j diag

(
σ−1
j1 , σ−1

j2 , σ−1
j3

)
Vi j

is the weighting matrix, where I = V T
j Vj , a 3×3 identity

matrix, and the columns of Vj are the principal axes of the
FLE for fiducial j , and σ jα, α = 1, 2, 3, are the standard
deviations of the FLE, resolved in three uncorrelated com-
ponents along orthogonal principal axes [18].
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TRE prediction methods

For TRE prediction 6 different estimation methods were
used and are described in this section: TREF,FLE,TREF,FRE,

TTEF,FLE,TTEF,FRE,TRED , and TREW ;< . > denotes the
expected value.

(a) Fitzpatrick [6] derived an expression for the expected
value of the TRE which is based on the linearization of
the rigid point registration problem. It is a closed-form
solution to estimate the TREF , where FLE follows an
independent and identically distributed (iid) zero-mean
Gaussian distribution. The expected TREF of a target r
obtained on base of the FLE,TREF,FLE, is

〈TRE2
F,FLE (r)〉 = 〈FLE2〉

N

(

1 + 1

3

3∑

k=1

d2k
f 2k

)

(7)

where dk is the distance of r from the principal axis k
of the fiducial configuration and fk is the RMS distance
of the fiducials from that principal axis. For the predic-
tion of TREF,FLE the measured TFLE j was used as an
approximation to 〈FLE2〉.

(b) In addition, TREF,FRE was predicted with the expected
value of 〈FLEiso,est, j 〉 estimated from 〈FREiso, j 〉 of reg-
istration j , 〈FLE2

iso,est, j 〉 = m
m−2 〈FRE2

iso, j 〉 [6]; m is the
number of fiducials used for registration.

(c) The target localization error (TLE) is the error made in
localizing the target (the probe is placed at target r, but
the system reports target r′ [26]). The system makes a
TLE, which is uncorrelated to TRE and so 〈TTE2

F,x 〉 =
〈TRE2

F,x 〉+〈TLE2〉. TLE can be measured (see “Defini-
tion of the measured errors” section), and so the TTEF,x

can be reported. Here 〈TRE2
F,x 〉 and 〈TTE2

F,x 〉 indi-
cate TREF,FLE,TREF,FRE,TTEF,FLE and TTEF,FRE,
respectively.

(d) Wiles [8] presented a closed-form solution estimation
of TREW similar to [6], but with anisotropic normally
distributedFLE.With this approach the 〈RMS(TREW )2〉
and the covariance matrix of TREW can be obtained for
predicting anisotropic application accuracy.

(e) The generalized prediction of Danilchenko [10], given
as 〈TRED〉, is valid for anisotropic and isotropic FLE
and arbitrary weighting of the fiducials.

Isotropic registration was used for TTEexp, TREF,x , and
TTEF,x ; anisotropic registration was used for TTEexp,aniso,
TREF,x,aniso, TTEF,x,aniso, TRED , and TREW , with x =
FLE or FRE. In [16] anisotropy of fiducials, measurements,
and the setup was detected. Thus, it is clear that anisotropic
registration had to be used for this analysis.

ULE

The user localization error (ULE) is the pure user error of
placing the probe on a fiducial and has already been defined
and evaluated in [16]. Twodifferent approacheswere defined:
Predict the ULEF with TTEF,FRE or calculate the ULE with
measured errors (TFLE,FLEimg,FLEtracker,FLEprobecalib):

〈ULE2
F 〉 = 1

1 + 1
N

(

1 + 1
3

∑N
k=1

d2k
f 2k

) ×
[

〈
TTE2

F,FRE

〉
.

− 1

N

(

1 + 1

3

N∑

k=1

d2k
f 2k

)
(
〈FLE2

tracker〉 + 〈FLE2
probecalib

〉
)
]

−〈FLE2
img〉 (8)

and

〈ULE2〉 = 〈TFLE2〉 − 〈FLE2
img〉 − 〈FLE2

tracker〉
−〈FLE2

probecalib
〉. (9)

Since measurement errors had occurred that we were not
aware of in [16] (see “Data inspection and analysis” section),
the results of the ULE are reported here correctly, calculated
with formulae 8 and 9.

Data inspection and analysis

While assessing anisotropic registration doubts arose about
the validity of the raw data; re-analysis revealed that the
experimental conditions must have changed during the mea-
suring sessions. Unfortunately this was not discovered in our
previous work [16]. All patients’ data weremeasured relative
to a DRF; thus, changes that occurred due to temporal drift
can be well observed. It was detected that the raw exper-
imental data for the anatomic specimen, registration with
three fiducials, repetitions 9 and 10, were off up to 2 mm in
x-, y-, and z-direction in tracker space. This is not possible
when bone-anchored fiducials are used that are still rigidly in
place. Obviously the anatomic specimen, the patient tracker
(dynamic reference frame, DRF), or the whole setup was
slightly changed unnoticed. Therefore, these two repetitions
were eliminated from further analysis.

The raw data for the volunteer for registrations with 7
and 9 points were not utilizable either: Every fiducial under-
went a change of up to 10 mm in x-, y-, and z-directions.
As this was an investigation with a volunteer, no general
anesthesia was used and the volunteer’s head was fixed
to the operating table with a tape, which is a common
practice in our hospital [27]. Thus, it is probable that the
causes for this discrepancy were unnoticed movements of
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the head and/or a warming of the plastic material and a sub-
sequent thermally induced mechanical deformation of the
supporting material on the OR table. Certainly, user errors
cannot be 100% excluded. Therefore, the experiments with
7 and 9 registration fiducials were eliminated from further
analysis.

No problematic issues were detected for the data of the
plastic skull.

All outliers that found were clearly detectable visually.
These outliers were also detected by an outlier detection
algorithm [28]. The algorithm found somemore outliers, and
clearly this is depending on the defined threshold. If one fidu-
cial in one experiment was detected as an outlier, the whole
repetition had to be removed. For the plastic skull repetitions
2, 2, 5, and 5 had to be removed for the 3, 5, 7, and 9 fiducial
experiments, respectively. For the cadaver repetitions 2, 3, 1,
and 5 for the 3, 5, 7, and 9 experiments, respectively, had to
be removed.

For the volunteer parts of 7- and 9-point registrations
had to be removed. For the 7-point registration only two
repetitions and for the 9 points registration only 4 repeti-
tions remained; thus, no statistically relevant result could
be expected, and for this reason, the complete series was
removed.

This generated a rather limited set of measurements, and
so only the “obvious” outliers were excluded. The removal
of outliers did not have significant influence on the data, see
Tables 1 and 2.

In contrast to prior analysis [16], this work has used a
reduced dataset without systematic errors. Therefore, a total
data number of 240, 234, and 80 fiducials were available for
the plastic skull, the anatomic specimen, and the volunteer,
respectively.

Due to the rather small size of the dataset, a robust covari-
ance matrix estimator for the FLE had to be used [29]; results
were compared to the standardly implemented non-robust
approach.

Contrary to [16] this work has used FREiso,i (for the cur-
rent experiment i) instead of the expected value of 〈FRE2

iso,i 〉
to estimate 〈FLE2

iso,est,i 〉. Moreover, the FLE of probe cali-

bration (FLEprobe_calib) was corrected from 0.182 mm2, as
used earlier [16], to 0.362 mm2.

Summarizing, this is expected to provide a fairly compre-
hensive analysis of the application accuracy in rigid-body
registration for computer-assisted surgery systems.

Statistics

As from [30] the predicted TRE is influenced by the TLE,
which leads to a larger (TTE) prediction error:

〈TTE2
F,x 〉 = 〈TRE2

F,x 〉 + 〈TLE2〉. (10)

Equation (10) assumes that TREF,x and TLE are uncor-
related, which is considered “likely” to be true in [30].
A significant correlation between TREF,x and TLE in
“real” world would suggest that TTEF,x as defined in (10)
might not be useful for real intraoperative use/experiments.
The correlation of the before-mentioned quantities was
investigated with Kendall’s τ and Spearman’s correlation
coefficient.

Normality of the distributions of measured data was sta-
tistically tested with a one-sample Kolmogorov–Smirnov
test. The equality (non-equality) of the different distribution
pairs was tested with a two-sample Kolmogorov–Smirnov
test.

The two-sided Wilcoxon signed rank test for zero median
was applied to test for statistically significant differences
between predictions and measurements. The null hypothe-
sis for this test was H0: the median of M − P = 0, and the
alternative hypothesis was H1: the median of M − P �= 0,
with M = measurement and P = prediction. From a clinical
perspective it is senseful to provide an upper limit for the
TRE, since overestimating the uncertainty in the application
accuracy provides a larger safety margin to surgeons intra-
operatively. The one-sided Wilcoxon signed rank test was
used to test whether the predictor overestimates the “real”
measured error (with H0: the median of M − P = 0; H1: the
median of M − P < 0).

Throughout the analysis, the level of significance was
0.05.

Numerical simulation of TRE prediction and
measurements

A numerical simulation of the experiment might give infor-
mation concerning eventual correlation of TRE and TLE
random variables and how localization errors affect target
errors. Two different experiments were made: an indepen-
dent (unpaired) and a dependent (paired) one: Predicting the
TREwith FLE led to an independent experiment, because all
repetitions were used for the estimation of FLE (compared to
the real experiments). On the other hand, the experiment is
dependent if the FREwas used for the prediction of the TRE,
because the very same samples were used both for measure-
ment and for prediction.

The following simulationwas repeated100,000 timeswith
3, 5, 7, and 9 fiducials, respectively:

(a) Creation of registration fiducials:Draw N 3-dimensional
random patient fiducial points Xi , i = 1, . . ., N , in
patient space inside a cube with an edge length of 200
mm. These are the true patient fiducials. N = 3, 5, 7, or
9.

(b) Create a random rotation matrix Rrand and apply to the
Xi to yield N true image points Yi .
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Fig. 2 Plastic skull. Mean TREs of anisotropic (right) and isotropic
(left) registration. Three (blue dotted line), 5 (red chain line), 7 (green
dashed line), and 9 (cyan solid line) fiducials were used for registration.
TTEexp wasmeasured, and the different TREswere calculated. Thiswas

repeated 10 times. The mean of the 10 repetitions was calculated. For
a clear view, no standard deviation is plotted. Using more fiducials for
registration a decrease in TREF,FLE, TREF,FLE, TRED , and TREW can
be observed

(c) Select a specific localization error in patient and image
space, FLEsim,pat = 1/3 mm and FLEsim,img =
0.0001 mm, combined to FLE2

sim = FLE2
sim,img +

FLE2
sim,pat.

(d) Perturb Xi with Δx , a zero-mean Gaussian noise with
standard deviation FLEsim,pat in all directions and Yi
withΔy, a zero-meanGaussian noisewith standard devi-
ation FLEsim,img in all directions, so that X ′

i = Xi +Δx ,
and Y ′

i = Yi + Δy.
(e) Register the X ′

i to Y
′
i to get rotation Rsim, translation tsim,

and FREsim.
(f) Create one “true” random target patient point r inside the

cube and transform it to image space with Rrand ∗ r = q.
(g) Generate M perturbed random target points r j with

mean(r j ) = r and std(r j ) = FLEsim,pat, j =
1, . . ., M; M = 100, 000.Transform r j into image space
(q j = Rsim ∗ r j + tsim) and calculate the measured TRE
for the M points, TTEsim(q j ) = ‖q − qi‖.

(h) Calculate TREsim,F,FRE for q and qi (see Sect. 2.3b).

For the independent experiment, all steps (except h) are
repeated again and TREsim,F,FLE is calculated (see Sect.
2.3a).

The simulation was repeated 10 times to calculate mean
and standard deviation of all errors.

The distributions of TREsim,F,FLE, TREsim,F,FRE, and
TTEsim were analyzed. Correlations between the errors were
tested with Pearson’s correlation coefficient. Equality or dif-
ference of prediction and measurement was tested using a
Wilcoxon signed rank test (in case of paired samples) and a

Wilcoxon rank sum test (in case of unpaired samples). Power
and effect sizes of the experiments were evaluated.

Results

The results for all patients with isotropic registration and
prediction are presented on the left half of Figs. 2, 3, 4, 5,
6, and 7. The right half of Figs. 2, 3, 4, 5, 6, and 7 shows
the results for anisotropic registration and predictions. For
each target the mean measured and mean predicted error is
visualized for the registrations with 3, 5, 7, and 9 fiducials.
Tables 1, 2, 3, 4, 5, and 6 show the measured and predicted
TREs and TTEs for all objects studied.

A robust estimation of the covariancematrix led to smaller
TREs (Tables 4, 6). If the outliers are not included, and a
robust estimation is used, the TREgets larger again (Tables 1,
2). For the anatomic specimen robust approach gives an
overall improvement, where more predictions equal the mea-
surements in terms of statistical equivalence (see Table 8).
We focus on the results of non-robust covariance matrix esti-
mations. The detailed results with robust estimation can be
seen in the mentioned tables. Table 10 shows ULEexp and
ULEF as determined from the data. Table 11 shows the FLE
as determined over all registrations and fiducials. Tables 7, 8,
and 9 give the total number of targets, where equality or over-
estimation of the prediction can be statistically confirmed
for all patients. The results of the numerical simulation are
reported in Table 12.

Detailed remarks on the data:
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Fig. 3 Plastic skull.MeanTRE results of 3, 5, 7, and 9 fiducial arrange-
ments (from top to bottom) and 10 repetitions. Standard deviation of
TTEexp (red solid line) is shown; it can be observed that most of the
predicted TREs are lying within TTEexp ± standard deviation. Isotropic

registration on the left, anisotropic registration on the right side. Differ-
ences between anisotropic and isotropic registration can be observed,
but also the similarity of predictions and measurements
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Fig. 4 Anatomic specimen. Mean TREs of anisotropic (right) and
isotropic (left) registration. Three (blue dotted line), 5 (red chain line), 7
(green dashed line), and 9 (cyan solid line) fiducials were used for regis-
tration. TTEexp was measured, and the different TREs were calculated.
This was repeated 10 times. The mean of the 10 repetitions was cal-

culated. For a clear view, no standard deviation is plotted. Using more
fiducials for registration a decrease in TREF,FLE, TREF,FLE, TRED ,
and TREW can be observed. The predictions lead to larger errors than
the measurements (different to the plastic skull)

Plastic skull The lowest application error, TTEexp, could be
achieved with a registration with 9 fiducials; with anisotropic
registration TTEexp was improving.

Table 7 shows good correspondence of experiments and
predictions. Regarding isotropic registration, TREF,FLE and
TTEF,FRE gave the most similar results for TTEexp for 3
registration points. (with the statistical power ≤0.61 for
3-fiducial registration, ≤0.94 for 5 fiducials, ≤0.24 for
7 fiducials, and ≤0.00001 for 9 fiducials for TREF,FLE).
All targets were overestimated with TTEF,FRE using 5
and 7 registration points. Regarding anisotropic registra-
tion TREF,FLE,aniso and TREW were predicting TTEexp,aniso

in about 70%. TTEF,FRE,aniso and TREF,FRE,aniso were
overestimating TTEexp for all 11 targets in all experi-
ments.

Anatomic specimen Predictions of target errors for differ-
ent registration alternatives overestimated themeasurements;
this can clearly be seen in Figs. 4 and 5.

In case of isotropic registration TREF,FLE and TREF,FRE

were predicting TTEexp almost always (statistical power
≤0.99 for 3-fiducial registration, ≤1 for 5 fiducials, ≤0.98
for 7 fiducials, and ≤0.99 for 9 fiducials for TREF,FLE).
TTEF,FRE was overestimating TTEexp for most of the tar-
gets.

In the anisotropic case, for TREW and TREF,FLE,aniso

equality to TTEexp,aniso could be confirmed statistically in
82% of the targets. For all targets TREF,FRE,aniso overesti-
mated TTEexp,aniso.

The results for the volunteer (Figs. 6, 7) show that isotropic
TREF,FLE was the best prediction method for TTEexp; most

overestimations were given by TREF,FRE and TTEF,FRE.
The statistical power for TREF,FLE is≤0.91 for the 3-fiducial
registration and ≤0.99 for the 5-fiducial registration.

With anisotropic registration TREF,FRE,aniso was equal to
TTEexp,aniso for 8 out of 10 targets, with 3 registration points.
TTEF,FRE,aniso overestimated TTEexp,aniso with 3 fiducials
only; using 5 fiducials no prediction method gave satisfying
results.

The correlation between TREF,FLE and TLE was always
larger than between TREF,FRE and TLE (Table 13), except
in the case of the volunteer, where the correlation between
TREF,FRE and TLE reached 0.47.

Almost all target errors, measured and predicted, were not
normally distributed.

The results of ULEF and ULEexp are similar to each
other for the anatomic specimen, but not for the plastic
skull and the volunteer. The plastic skull with Ti-screws had
the smallest ULE (ULEexp = 0.4 mm), while the volun-
teer, using anatomic landmarks only, had the largest ULE
(ULEexp = 1.6 mm).

As a result of the numerical simulation it can be seen
that the mean of the measured TTEsim is always similar to
the mean of the predicted TREsim,F,FRE; TREsim,F,FLE is
the largest error (Table 12). The smallest measured and pre-
dicted errors could be achieved using 9 fiducials, which is in
agreement with earlier experiments and theory. The mean of
TREsim,F,FRE of all perturbed targets equals TREsim,F,FRE

on the true target (this is also valid for TREsim,F,FLE).
No correlation could be found between FREsim and

TRErmsim,F,FLE and between TTEsim and TREsim,F,FLE and
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Fig. 5 Anatomic specimen.
Mean TRE results of 10
repetitions of 3, 5, 7, and 9
fiducial arrangements (from top
to bottom). Standard deviation
of TTEexp (red solid line) is
shown; it can be observed that
most of the predicted TREs are
lying within TTEexp ± standard
deviation. Isotropic registration
on the left, anisotropic
registration on the right side.
Differences between anisotropic
and isotropic registration can be
observed, but also the similarity
of predictions and
measurements

TREsim,F,FRE, respectively (the mean correlation coeffi-
cient is always smaller ±0.02 ±0.00). The correlation of
TREsim,F,FRE, and FREsim was always 1.

Visual inspection showed that none of the errors were nor-
mally distributed. Statistical testing with the Kolmogorov–
Smirnovmethod, theH0 hypothesis (that the error is normally
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Fig. 6 Volunteer.Mean TREs of anisotropic (right) and isotropic (left)
registration. Three (blue dotted line) and 5 (red chain line) fiducialswere
used for registration.TTEexp wasmeasured, and the differentTREswere
calculated. This was repeated 10 times. The mean of the 10 repetitions
was calculated. For a clear view, no standard deviation is plotted. With

a 5-point registration, the target error is smaller than with a 3 points reg-
istration for TREF,FLE, TREF,FLE, TRED , and TREW . The predictions
lead to larger errors than the measurements with isotropic registration,
different to anisotropic registration

distributed) had to be rejected for all errors at the 5% sig-
nificance level. Since the measured errors are Euclidean
distances of normally distributed points, their distribution is
expected to resemble the Maxwell distribution [31,32]. Fig-
ure 8, a plot of the pdf of the errors, shows this. The power of
the numerical simulation is 1,with a small effect size. The dif-
ference of the distributions of measured and predicted errors
could always be statistically confirmed. The distributions of
the independent TREs were the same as in the dependent
situation.

Discussion

For rigid-body registration in clinical navigation, a complete
and detailed analysis of anisotropic and isotropic prediction

methods for TRE is presented. Twomajor groupswere distin-
guished based on isotropy and anisotropy. For the isotropic
case, isotropic registration and isotropic prediction methods
were used to measure and predict the TRE. The anisotropic
case handled anisotropic registration with anisotropic pre-
diction methods; the most widely used prediction method
(TREF,x,aniso) was added, though it is, strictly speaking,
defined for isotropic FLE only [6].

The prediction methods studied gave a good estimation of
the application error in the surgical environment for the plas-
tic skull and the anatomic specimen. A two-sided test was
used to statistically compare predicted and measured target
errors. The one-sided test might be a better approach for
predicting surgically relevant application accuracy (TRE),
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Fig. 7 Volunteer. Mean TRE results of 10 repetitions of the 3 and
5 fiducial arrangements (from top to bottom). Isotropic registration
on the left, anisotropic registration on the right side. Standard devi-
ation of TTEexp (red solid line) is shown; it can be observed that only

TREF,FLE,iso is lying within TTEexp ± standard deviation when using
isotropic registration. For anisotropic registration TTEexp,aniso is much
higher than all the predicted TREs

Table 1 Isotropic registration

Mean target error TTEexp (mm) TREF,FRE (mm) TREF,FLE (mm) TTEF,FRE (mm) TTEF,FLE (mm)

Plastic skull 0.90 ± 0.31 0.63 ± 0.24 0.56 ± 0.29 1.24 ± 0.35 1.21 ± 0.39

Anatomic specimen 0.79 ± 0.39 0.93 ± 0.80 0.87 ± 0.53 1.33 ± 0.88 1.28 ± 0.66

Volunteer 2.30 ± 0.46 4.52 ± 2.12 1.78 ± 0.79 5.38 ± 2.03 3.35 ± 0.83

All outliers found with the MCD algorithm [29] are removed (see Sect. 2.6). FLE is calculated via the robust estimation matrix. Results of
experimental and predicted TREs. The mean value ± standard deviation over all registration is given in mm

Table 2 Anisotropic registration

Mean target
error

TTEexp,aniso
(mm)

TREF,FRE,aniso
(mm)

TREF,FLE,aniso
(mm)

TRED (mm) TREW (mm) TTEF,FRE,aniso
(mm)

TTEF,FLE,aniso
(mm)

Plastic skull 0.84 ± 0.24 2.58 ± 1.27 0.56 ± 0.29 0.75 ± 0.47 0.59 ± 0.31 2.84 ± 1.19 1.21 ± 0.40

Anatomic specimen 0.86 ± 0.39 2.34 ± 1.45 0.87 ± 0.53 1.25 ± 0.94 0.87 ± 0.52 2.53 ± 1.50 1.28 ± 0.66

Volunteer 5.67 ± 2.83 4.59 ± 2.01 1.78 ± 0.79 1.49 ± 0.58 1.72 ± 0.66 5.43 ± 1.92 3.35 ± 0.83

All outliers found with the MCD algorithm [29] are removed (see Sect. 2.6). FLE is calculated via the robust estimation matrix. Results of
experimental and predicted TREs. The mean value ± standard deviation over all registration is given in mm

Table 3 Isotropic registration

Mean target error TTEexp (mm) TREF,FRE (mm) TREF,FLE (mm) TTEF,FRE (mm) TTEF,FLE (mm)

Plastic skull 0.88 ± 0.31 0.80 ± 0.42 0.74 ± 0.38 1.34 ± 0.41 1.30 ± 0.40

Anatomic specimen 0.81 ± 0.40 0.91 ± 0.79 0.99 ± 0.61 1.35 ± 0.85 1.40 ± 0.72

Volunteer 2.30 ± 0.46 4.52 ± 2.12 1.86 ± 0.82 5.38 ± 2.03 3.40 ± 0.85

Results of experimental and predicted TREs. Themean value± standard deviation over all registrations is given inmm (3-, 5-, 7-, 9-point registration
for plastic skull and anatomic specimen and 3- and 5-point registration for the volunteer). Only extreme and visible outliers are removed

because predictions should indicate a lower limit for the TRE
on a specific target, rather than underestimate the real error.
Underestimations can be very critical for patients in a real

intervention. For most of the targets, however, a good esti-
mation or overestimation of the TRE was found; equality
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Table 4 Isotropic registration

Mean target error TREF,FLE (mm) TTEF,FLE (mm)

Plastic skull 0.58 ± 0.30 1.21 ± 0.35

Anatomic specimen 0.81± 0.49 1.33 ± 0.73

Volunteer 1.78 ± 0.79 3.35 ± 0.83

FLE estimated with a robust covariance matrix. Results of TREF,FLE and TTEFLE, all other TREs do not change, compared to Table 3. The mean
value ± standard deviation over all registrations (3, 5, 7, 9 points for plastic skull and anatomic specimen and 3 and 5 points for the volunteer) is
given in mm

Table 5 Anisotropic registration

Mean target
error

TTEexp,aniso
(mm)

TREF,FRE,aniso
(mm)

TREF,FLE,aniso
(mm)

TRED (mm) TREW (mm) TTEF,FRE,aniso
(mm)

TTEF,FLE,aniso
(mm)

Plastic skull 0.75 ± 0.20 2.57 ± 1.15 0.74 ± 0.38 0.82 ± 0.52 0.74 ± 0.38 2.80 ± 1.12 1.30 ± 0.40

Anatomic specimen 0.83 ± 0.42 2.12 ± 1.55 0.99 ± 0.61 1.36 ± 1.07 1.02 ± 0.66 2.35 ± 1.58 1.40 ± 0.72

Volunteer 5.67 ± 2.83 4.60 ± 2.01 1.86 ± 0.82 1.66 ± 0.65 1.81 ± 0.70 5.44 ± 1.92 3.40 ± 0.85

Results of experimental and predicted TREs. Themean value± standard deviation over all registrations is given inmm (3-, 5-, 7-, 9-point registration
for plastic skull and anatomic specimen, 3- and 5-point registration for the volunteer). Only extreme and visible outliers are removed

Table 6 Anisotropic registration

Mean target error TREF,FLE,aniso (mm) TRED (mm) TREW (mm) TTEF,FLE,aniso (mm)

Plastic skull 0.58 ± 0.30 0.72 ± 0.45 0.60 ± 0.32 1.21 ± 0.35

Anatomic specimen 0.81 ± 0.49 0.88 ± 0.54 0.82 ± 0.48 1.26 ± 0.62

Volunteer 1.78 ± 0.79 1.49 ± 0.58 1.72 ± 0.66 3.35 ± 0.83

FLE estimated with a robust covariance matrix. Results of TREF,FLE,aniso, TTEF,FLE,aniso, TREW , and TRED , all other TREs do not change,
compared to Table 5. The mean value ± standard deviation over all registrations (3, 5, 7, 9 points for plastic skull and anatomic specimen and 3
and 5 points for the volunteer) is given in mm

Table 7 Results of the statistical tests for the plastic skull

No. of fiducials 3 5 7 9 Total number of targets

M = P M < P M = P M < P M = P M < P M = P M < P Not robust Robust

M = P M < P M = P M < P

Plastic skull

TREF,FLE 9 4 0 8 2 0 7 6 0 1 0 0 25 2 18 0

TREF,FRE 1 0 8 7 3 5 6 1 0 15 9

TTEF,FRE 9 2 0 11 0 11 4 8 13 32

TTEF,FLE 7 8 7 5 0 11 0 1 11 4 7 8 6 11 37 16 33

TREF,FLE,aniso 8 2 0 8 5 2 0 7 6 2 7 5 0 30 6 24 2

TREF,FRE,aniso 0 11 0 11 0 11 0 11 0 44

TTEF,FRE,aniso 0 11 0 11 0 11 0 11 0 44

TTEF,FLE,aniso 0 11 0 2 11 10 0 11 0 1 11 0 44 3 43

TRED 3 8 8 3 7 6 4 3 7 6 2 0 7 5 0 24 14 25 6

TREW 8 2 0 8 6 2 0 7 6 2 0 7 5 0 30 6 25 0

Equality of measurement and prediction: H0: The median of M − P = 0, H1: M − P �= 0, where M is the measurement and P is the prediction.
Overestimation of the measurement: H0: The median of M − P = 0. H1: M − P < 0. The number of targets where H0 cannot be rejected (M = P)
or has to be rejected (M < P) is reported. TRED and TREW were used with anisotropic registration only. The last column shows the total number
of targets for 3-, 5-, 7-, and 9-point registration for each prediction method where M = P and M < P. In each column the numbers on the right
show the results of the statistical testing, if a robust covariance matrix is used for calculating FLE, calculated with all fiducials defined in the data
analysis section (240 for the plastic skull). Only the number of targets where the result has changed is reported
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Table 8 Results of the statistical testing for the anatomic specimen

No. of fiducials 3 5 7 9 Total number of targets

M = P M < P M = P M < P M = P M < P M = P M < P Not robust Robust

M = P M < P M = P M < P

Anatomic specimen

TREF,FLE 7 9 3 0 6 9 4 2 9 10 3 0 7 6 2 0 29 12 34 2

TREF,FRE 6 5 4 9 0 8 0 6 0 29 5 4

TTEF,FRE 0 3 10 7 1 10 1 10 1 9 3 39 6 36

TTEF,FLE 0 10 0 10 0 10 0 1 10 9 0 40 1 39

TREF,FLE,aniso 8 9 3 1 7 10 5 0 10 2 0 5 9 5 0 30 15 38 1

TREF,FRE,aniso 0 10 0 10 0 10 0 10 0 40

TTEF,FRE,aniso 0 10 0 10 0 10 0 10 0 40

TTEF,FLE,aniso 2 4 9 8 0 10 0 1 10 0 10 2 39 5 38

TRED 1 9 9 1 0 5 10 7 4 10 7 2 10 5 0 15 26 29 10

TREW 7 9 3 1 7 10 5 0 10 1 0 6 9 5 0 30 14 38 1

Equality of measurement and prediction: H0: The median of M − P = 0, H1: M − P �= 0, where M is the measurement and P is the prediction.
Overestimation of the measurement: H0: The median of M − P = 0. H1: M − P < 0. The number of targets where H0 cannot be rejected (M = P)
or has to be rejected (M < P) is reported. TRED and TREW were used for anisotropic registration only. The last column shows the total number
of targets, where M = P and M < P, for 3-, 5-, 7-, and 9-point registration for each prediction method. In each column the numbers on the right
show the results of the statistical testing, if a robust covariance matrix is used, calculated with all fiducials defined in the data analysis section (234
for the anatomic specimen). Only the number of targets where the result has changed is reported

Table 9 Results of the
statistical testing for the
volunteer

No. of fiducials 3 5 Total number of targets

M = P M < P M = P M < P Not robust Robust

M = P M < P

Volunteer

TREF,FLE 6 5 1 1 9 3 2 1 9 7 3 1

TREF,FRE 1 9 3 9 4 18

TTEF,FRE 0 10 1 9 1 19

TTEF,FLE 1 9 2 8 3 17

TREF,FLE,aniso 0 0 0 0 0 0

TREF,FRE,aniso 8 0 0 1 8 1

TTEF,FRE,aniso 1 8 4 1 2 9

TTEF,FLE,aniso 3 2 1 0 4 2

TRED 0 0 0 0 0 0

TREW 0 0 0 0 0 0

Equality of measurement and prediction: H0: The median of M − P = 0, H1: M − P �= 0, where M is the
measurement and P is the prediction. Overestimation of the measurement: H0: The median of M − P = 0.
H1: M − P < 0. The number of targets where H0 cannot be rejected (M = P) or has to be rejected (M < P)
is reported. TRED and TREW were used with anisotropic registration only. The last column shows the total
number of targets, where M = P and M < P , for 3 and 5 fiducials registration for each prediction method.
In each column the numbers on the right show the results, if a robust covariance matrix is used, calculated
with all fiducials defined in the data analysis section, 80 for the volunteer. Differences between robust and not
robust covariance matrix can only be observed calculating TREF,FLE

Table 10 Mean values of the
ULEs of all patients, calculated
with Eqs. (8) and (9)

Mean ULE ULEexp (Eq. 8) (mm) ULEF (Eq. 9) (mm)

Plastic skull 0.38 0.80 ± 0.23

Anatomic specimen 0.98 0.62 ± 0.21

Volunteer 1.61 3.92 ± 4.60

All values are given in mm
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Table 11 Experimental fiducial localization errors

Mean TFLE TFLE (mm) FLEimg (mm) FLEpat (mm)

Plastic skull 0.64 0.31 0.55

Anatomic specimen 0.85 0.61 0.55

Volunteer 2.23 1.16 1.85

Mean TFLE, FLEimg, and FLEpat over all registrations and fiducials. The differences between anatomic landmarks (volunteer) and Ti-screws (plastic
skull and anatomic specimen) can be well observed. All values are given in mm

Table 12 Results of an example of a numerical simulation

Mean ± std TTEsim TREsim,F,FRE TREsim,F,FLE

3 points 2.09 ± 1.96 2.26 ± 1.76 2.46 ± 1.48

5 points 0.73 ± 0.50 0.80 ± 0.37 0.83 ± 0.31

7 points 0.64 ± 0.37 0.70 ± 0.22 0.72 ± 0.18

9 points 0.44 ± 0.27 0.48 ± 0.19 0.49 ± 0.17

The mean of 100,000 error measurements, repeated 10 times, was cal-
culated for 3-, 5-, 7-, and 9-point registration. The errors are getting
smaller, the more the fiducials are used for registration, as expected

or that the prediction was an upper limit can be statistically
confirmed.

Comparing true and reference targets (compared to [16])
showed that better agreement of measured and predicted

errors could be achieved if the mean of the targets of
all repetitions was used for each experiment, because
eventual biases were eliminated [21]. As a result, the
TTEs were smaller and prediction approached the measured
values.

Graphically it could be observed that for all patients the
errors of measurements and predictions were getting smaller,
when more fiducials were used for registration, as expected
(Figs. 2, 4, 6). Using 5 fiducials or more leads to very sim-
ilar results and shows that there is no need for using a
large number of fiducials to improve accuracy of the nav-
igation, as already investigated by many authors, e.g., [33].
An important result is that predictions were approaching
measurements already when 3 or 5 fiducials were used for
registration. Using 7 or 9 fiducials for registration TTE and

Table 13 Mean experimental
correlation coefficients

Correlation coefficient Corr(TREF,FLE,TLE) Corr(TREF,FRE,TLE)

Plastic skull 0.48 0.38

Anatomic specimen 0.65 0.64

Volunteer 0.41 0.47

The highest correlation can be found for the anatomic specimen for all variables studied

Fig. 8 Example of a pdf of the measured TTEsim (left) and the
predicted TREF,FRE (right) in a numerical simulation. A 3 points reg-
istration was used to calculate 100,000 TTEs and TREs. TTEsim =
2.43±1.63mm, TREF,FRE = 2.70±1.13mm. The difference between

the two functions can clearly be seen and is statistically significant. The
Gamma distribution and the Nakagami distribution are the best fits for
TTEsim and TREF,FRE, respectively, for this experiment
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TRE did not improve much, but less predicted TREs were
similar to measurements.

Generally, the trend of predictions was always similar to
measurements. Most of the predicted results were inside the
measured TTE ± one standard deviation.

Usually TTEF,FRE was overestimating TTEexp, but the
overestimation was sometimes too large to be relevant (see
Tables 7, 8, 9).

The best estimator for TTEexp was TREF,FLE; it predicted
TTEexp in 56.8, 72.5, and 45% of all targets of the plastic
skull, the anatomic specimen, and the volunteer, respectively
(the exact numbers of targets are shown in Tables 7, 8, 9).

In case of anisotropy, both TREF,FLE,aniso and TREW pre-
dicted 68.2 and 75% of all targets for the plastic skull and the
anatomic specimen, respectively. For the volunteer TTEexp

could be predicted with TREF,FRE in 40% of all targets (the
exact numbers of targets are shown in Tables 7, 8, 9).

It has to be mentioned that all prediction methods are
grounded on the same theory and the predicted TREs (all but
the TTEF,x ) led to very similar results. This can be clearly
seen in all figures and tables. However, the results of sta-
tistical testing showed that for these particular experiment
settings different prediction methods did not lead to equal
results; the number of targets where prediction was equal to
measurement is different for all methods.

These findings confirm the importance of estimating FLE
for the predictions; this was possible since the used navi-
gation system provides access to all data. In a real surgical
setup, it is difficult to estimate the FLE at the patient. It is
always depending on how experienced the surgeon is with
navigation, if the fiducials are in regions difficult to reach or
if the probe at certain fiducials can be detected by the tracker.

TTEexp is submillimetric for plastic skull and anatomic
specimen. For the volunteer a TTEexp = 2.3 mm is in a
clinically acceptable range, with an ULEexp = 1.61 mm due
to anatomic landmarks only. The difference in using screws
and anatomic landmarks can be observedwell. Screws lead to
smaller errors due to the “exact” fiducial that can be located
accurately, whereas locating anatomic landmarks accurately
is difficult and leads to larger user errors.

In case of the real experiments medium correlation [34]
could be found between TREF,FLE and TLE and between
TREF,FRE and TLE (Table 13). Concerning this correlation
considerable care must be taken using TTEF,x , which can
onlybedefinedas is, if no correlationofTREandTLEoccurs.
No correlations could be found for the results of numeri-
cal simulation, as required for the theoretical approach of
TTE.

It could be observed that experiments with the navigation
system and its simulation were leading to different results.
A numerical simulation might be a good proof for theory,
but it clearly differs from experiments in a real surgical sit-
uation. In reality, more complex error sources, like bias,

non-normality, and temporal variations of distributions, influ-
ence the experiments andmake them difficult to generalize or
predict.

Although the sample size of the real experiments is rel-
atively small, especially for the volunteer, the results are
providing a good insight into the possibilities of prediction
methods for the TRE. The statistical power is large compared
to the sample size; this is because the difference between
prediction and measurement can be clearly seen for a lot of
targets. Thus, the overestimation could be confirmed statisti-
cally with a one-sided test with a small alpha value.When the
difference between themeans ofmeasurement and prediction
was small, the power was getting smaller as well, especially
when no overestimation of the measurement could be pro-
vided. For the numerical experiment the power was always 1
due to the very large sample size. Decreasing the sample size
led to a smaller power also for the numerical simulations, as
can be expected.

Due to the small sample size using a robust estimate for the
covariance matrix of FLE is suggested, because the covari-
ance matrix is sensitive to outliers. With a robust estimation
TREW and TRED were changing and could predict more
TTEs as with a non-robust calculation. Especially for the
anatomic specimen results improved, the prediction gotmore
“accurate.”Though the overallmeans did not change a lot, the
equality of measurement and prediction could be confirmed
more oftenwhen a robustmethodwas used, and less overesti-
mations occurred (see Tables 1, 2). For the other two patients
no remarkable changes could be observed (see Tables 4, 6).

Taking into consideration thatmore fiducials were outliers
and thus less registrations could be used for calculation, we
had less variance of the experiments. This makes it more
difficult for the prediction to be within the standard deviation
of the experimental results.

The analysis of results is hardly affected whether outliers
are removed or not. However, care should be taken when
outliers are removed. For the experiments the FLE and TRE
values decreased if the outliers were removed, but the whole
measurement process itself is characterized as is and is not
affected by this.

Only those points were excluded, where an obvious mis-
take in the measurement occurred, such that it was easy to
confirm visually the impossibility to reach the position under
consideration in the experimental setup. All other outliers
found by the algorithm were a result of, i.e., systematic, tem-
porally varying bias and non-static bias which are inherent to
the measurement process (cf. “Data inspection and analysis”
section). A detailed investigation of the effect of bias was
already done in [35].

Registration had no influence on FLE; thus, there was
no difference between TREF,FLE and TREF,FLE,aniso and
furthermore between TTEF,FLE and TTEF,FLE,aniso (c.f.
Tables 3, 5).
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Surface registration might benefit of these results as well.
Though the registration is different, it uses point correspon-
dences too [4]. It is clear that only tracker and calibration
error influence the FLE in surface registration; ULE and
FLEimage are negligible. As we observed in our experiments
eventual anisotropy did not influence the prediction much,
Fitzpatrick’s TRE is an adequate model to estimate the TRE
in a surgical setting.

Previous numerical experiments were not analyzing the
distributions of the predicted and measured errors ([6,8–
11]). Detailed analysis of the numerical simulation showed
that prediction and measurement were coming from differ-
ent distributions (an example is shown in Fig. 8). Thus, it is
clear that the results of prediction and measurement could
not be equal, both in real experiments and in simulation In
general, the distribution of a measurement of a vector length
is similar to aMaxwell distribution [32]. In general, it is very
challenging to know and to characterize the distribution of
the experimental data, specifically for small sample sizes and
when data acquisition is a lengthy and labor-intensive under-
taking. For one repetition of the numerical experiment, the
difference between the distributions ofmeasurement and pre-
diction could always bewell observed and tested (Fig. 8). The
means and standard deviations of measured and predicted
TREswould suggest that it is possible to predict themeasured
TTE, because they were similar for prediction and measure-
ment. However, predictions did not result in an upper limit.
Whether overestimation of the measurement can be achieved
with TREF,FLE is dependent on the FLE defined for the sim-
ulation. This indicates that the FLE is the important factor
for the prediction and should be estimated well prior to the
experiments. In the independent case, the difference between
measurement and prediction was getting larger, because dif-
ferent fiducials and targets were used. Like real experiments,
where measurement, tracking, and user errors influenced the
prediction, numerical experiments showed that an improve-
ment in the simplest TRE prediction (TREF,FRE) might not
be necessary.

Conclusion

Experiments with a plastic skull, an anatomic specimen, and
a volunteer were analyzed to predict and measure intraop-
erative application errors made before and during surgery.
Isotropic and anisotropic registration and prediction meth-
ods were used, and prediction of the TRE was compared to
the measured TRE. Best results for an upper limit of TRE
were provided by TTEF,x ; the most similar results were
achieved with TREF,FLE and TREF,FRE. According to our
experiments, using anisotropic registration and/or prediction
methods did not significantly improve the results of the pre-
dictions. The smallest ULE was found for the plastic skull

with Ti-screws only; the largest ULE was found for the vol-
unteer with anatomic landmarks only.

To our knowledge, this is the first investigation where
the accuracy of navigation of simulated clinical experiments
is compared to commonly used prediction methods, using
anisotropic and isotropic registrations. A detailed error anal-
ysis of three patients in an experimental clinical setup was
conducted, possibly due to a detailed data collection, that
demonstrated the usefulness of an open navigation system.
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