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Abstract
Purpose This study investigates an efficient (nearly real-
time) two-stage spine labeling algorithm that removes the
need for an external training while being applicable to dif-
ferent types of MRI data and acquisition protocols.
Methods Based solely on the image being labeled (i.e., we
do not use training data), the first stage aims at detecting
potential vertebra candidates following the optimization of a
functional containing two terms: (i) a distribution-matching
term that encodes contextual information about the verte-
brae via a density model learned from a very simple user
input, which amounts to a point (mouse click) on a predefined
vertebra; and (ii) a regularization constraint, which penal-
izes isolated candidates in the solution. The second stage
removes false positives and identifies all vertebrae and discs
by optimizing a geometric constraint, which embeds generic
anatomical information on the interconnections between
neighboring structures. Based on generic knowledge, our
geometric constraint does not require external training.
Results We performed quantitative evaluations of the algo-
rithm over a data set of 90 mid-sagittal MRI images of
the lumbar spine acquired from 45 different subjects. To
assess the flexibility of the algorithm, we used both T1- and
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T2-weighted images for each subject. A total of 990 struc-
tures were automatically detected/labeled and compared to
ground-truth annotations by an expert. On the T2-weighted
data, we obtained an accuracy of 91.6% for the vertebrae and
89.2% for the discs. On the T1-weighted data, we obtained
an accuracy of 90.7% for the vertebrae and 88.1% for the
discs.
Conclusion Our algorithm removes the need for external
trainingwhile being applicable to different types ofMRI data
and acquisition protocols. Based on the current testing data, a
subject-specific model density and generic anatomical infor-
mation, our method can achieve competitive performances
when applied to T1- and T2-weighted MRI images.

Keywords Spine labelling · Distribution matching ·
Magnetic resonance imaging (MRI) · Regularization ·
Geometric constraints

Introduction

Precise detection and identification of individual spine struc-
tures, e.g., the vertebrae and inter-vertebral discs, provide
anatomical benchmarks that facilitate the evaluation and
reporting of frequent inter-vertebral disc deformities such as
protrusion [1]. Performing spine labelingmanually is tedious
and time-consuming, more so when the number of images in
a spine series is large as is the case in magnetic resonance
imaging (MRI),1 which is the bestmodality to assess disc dis-
orders [1]. MRI scans depict soft-tissue structures, thereby
allowing characterization/quantification of disc bulges and
protrusions. Automating or semi-automating spine label-
ing in MRI can reduce significantly the amount of user

1 Typically, spine MRI studies contain more than 100 images.
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inputs, allowing thorough, reproducible and fast diagnosis
of various spine diseases. This computational problem has
recently attracted significant research attention [2–14]. In
addition to their usefulness in spine diagnosis, such anatom-
ical labels yield a natural patient-specific coordinate system
that can be very useful in (i) mapping radiology reports
to the corresponding image segments, (ii) building seman-
tic inspection tools, and (iii) facilitating significantly other
difficult spine image processing tasks. Indeed, such label-
ing techniques can guide image registration and fusion
[15], and provide priors/constraints for image segmenta-
tion, retrieval, as well as shape and population analysis. For
instance, several recent spine segmentation methods rely on
a given labeling as input [16], or add a labeling process as a
part of a segmentation algorithm [3]. Unfortunately, and as
acknowledged by several studies [7,8,10], automating spine
labeling is a difficult computational problem for several rea-
sons:

– The intensity appearances of the structures of interest
change significantly with the modality and acquisition
protocol;

– There are wide variations in the positions, sizes and
shapes of the spine, vertebrae and discs;

– The number of visible vertebrae and discs can vary from
one image to another; and

– It is difficult to distinguish between individual spine
structures because of their repetitive nature and similar
appearances/shapes.

Prior art

Most of the existing algorithms require intensive and time
consuming training from a large, manually-labeled data
set (e.g., [5,7–11]), with the results often being depen-
dent on (i) the choice of a specific training set and (ii)
the choice of modality, image type and acquisition proto-
col. The purpose of such training phase is to build priors
on the shapes/appearances of spine structures and their
interconnections. These priors are subsequently embedded
within a classification or regression technique using, for
instance, deep convolution networks [5], graphical mod-
els [7,13,17], adaptive-boosting learning [8,14], support
vector machines [11], random forest regression [9], or gen-
erative probabilistic models [10], among others. Although
they can yield exceptional performance in cases similar to
the training set, training-based algorithms may have diffi-
culty in capturing the substantial variations encountered in
a clinical context. For instance, the existing excellent algo-
rithms that were recently designed for CT (e.g., [7,12,13])
are not directly applicable to MRI [8], mainly because of

the significant differences in appearances between these
two modalities. In MRI, the difficulties are compounded
by the intensity similarities and weak edges between dif-
ferent structures in the same spine image, abundant noise
and significant variations in appearances and resolutions
from one image to another. Such large variability also
results from numerous types of MRI sequences (e.g., T1-
weighted, T2-weighted, PD, etc.) and acquisition proto-
cols. For instance, an algorithm designed and trained on
T2-weighted MR data (e.g., [10]) may not be applica-
ble to T1-weighted MR images. Moreover, training-based
geometric models may not properly capture unseen (or
pathological) cases outside the range of geometric char-
acteristics learned from the training set. For instance,
in [10], the authors embedded training-based informa-
tion on the geometric interactions between pairs of discs,
enforcing the distance between neighboring discs to fall
within a range learned a priori from the training set.
Therefore, a pathological case, which does not necessar-
ily conform to these learned distances, may not be labeled
correctly.

Summary of contributions

In this study, we propose an efficient (nearly real-time) two-
stage spine MRI labeling algorithm that removes the need
for an external training while being applicable to different
types of MRI data. Based solely on the current image data,
the first stage aims at detecting potential vertebra candi-
dates following the optimization of a segmentation functional
containing two terms: (i) a distribution-matching term encod-
ing contextual information about the vertebrae via a density
model learned from a very simple user input, which amounts
to a point (mouse click) on a predefined vertebra; and (ii)
a regularization constraint, which penalizes isolated can-
didates in the solution. The second stage removes false
positives and identifies all vertebra and discs by optimizing
a geometric constraint, which embeds generic anatomical
information on the interconnections between neighboring
spine structures. Based on generic knowledge, our geometric
constraint does not require external training. We performed
quantitative evaluations of the algorithm over a data set of
90 mid-sagittal MRI images of the lumbar spine acquired
from 45 different subjects. To assess the flexibility of the
algorithm, we used both T1- and T2-weighted images for
each subject. A total number of 990 structures were auto-
matically detected/labeled and compared to ground-truth
annotations by a radiology expert. On the T2-weighted data,
we obtained an accuracy of 91.6% for the vertebrae and
89.2% for the discs. On the T1-weighted data, we obtained
an accuracy of 90.7% for the vertebrae and 88.1% for the
discs.
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Formulation

Regularized distribution matching functional

Let D : Ω ⊂ R
2 → F ⊂ R

k be a function defined over spa-
tial image domain Ω , and whose values are in a finite set F
containing k-dimensional features (or bins). For each point
x ∈ Ω , we build a feature vector D(x) = [D1(x) . . . Dk(x)]
that contains image statistics within several box-shaped
image patches of different orientations/scales. Such patch-
based features can encode contextual information about the
vertebrae and their neighboring structures, e.g., size, shape,
orientation and geometric relationships with neighboring
structures. The purpose of this stage of ourmethod is to detect
potential vertebra candidates via a regularized distribution
matching approach. Let u : Ω → {0, 1} denotes a binary
pixel classifier function, which defines a variable partition of
Ω: {x ∈ Ω/u(x) = 1}, corresponding to the classification
(or segmentation) region containing the vertebra candidates,
and its complement {x ∈ Ω/u(x) = 0}, corresponding to
non-vertebra pixels in Ω . We optimize the following func-
tional with respect to u, which yields an initial two-region
classification of the image domain:

E(u) = −
∑

f ∈F

√
Pu( f )M( f )

︸ ︷︷ ︸
Contextual Distribution matching

+ λ

∫

Ω

‖∇u‖dx
︸ ︷︷ ︸
Regularization

(1)

In the following, we describe each of the variables and nota-
tions that appear in the regularized classification problem in
(1):

– The regularization term is a standard total-variation (TV)
penalty [18],which encourages the solution to be smooth.
In the case of a discrete characteristic functionu of a given
set, the total variation of u is the perimeter of the set [18].
This term penalizes solutions with a large number of very
small isolated regions. This facilitates inference in the
next step, and keeps only strong vertebral candidates in
the solution.

– Pu is the kernel density estimate (KDE) of the distribution
of features D within the vertebral class (region) defined
by {x ∈ Ω/u(x) = 1}:

Pu( f ) =
∫
Ω
uK (D − f )dx∫

Ω
udx

(2)

and K is the Gaussian kernel given by:

K (t) = 1

(2πσ 2)
k
2

exp− ‖t‖2
2σ2 (3)

with σ the width of the kernel.

– The first term in (1) is the negative Bhattacharyya coeffi-
cient, which evaluates the similarity (or affinity) between
two distributions (or densities). The lower the value of
this coefficient, the better the affinity between the dis-
tributions: the range of the distribution matching term
is [−1, 0], with −1 indicating a perfect match between
the densities and 0 corresponding to a total mismatch.
The Bhattacharyya coefficient is very popular in statis-
tics for evaluating the affinity between densities, and
it has the following geometric interpretation: it corre-
sponds to the cosine of the angle between the unit vectors
(
√

Pu( f ), f ∈ F)T and (
√M( f ), f ∈ F)T . Therefore,

it considers explicitly Pu andM as distributions by rep-
resenting them on the unit hypersphere.
Minimization of this term aims at finding a classifica-
tion region whose contextual-feature distribution most
closely matches a model distribution M. The latter can
be either estimated interactively from a very simple user
input placed on one of the images within a spine MRI
series, or learned a priori from training data (i.e., a set of
expert-labeled images different from the testing data set).
In particular, our model is convenient in practice when
we do not have a large set of relevant training images. As
we will see later in the experiments, regularized classi-
fier (1) does not require an intensive external learning of
M to yield satisfying performances. We can estimateM
from the feature vectors within a small region centered
at a one-click user input (e.g., a point within a predefined
vertebra such as L5).

– λ is a positive constant that balances the contribution of
each term.

Optimization

Optimizing directly the high-order functional in (1) is a dif-
ficult problem because of (i) the high non-convexity (and
non-linearity) of the distributionmatching term in (1) and (ii)
the integer-value constraint imposed on classification vari-
able u. To obtain a solution efficiently, we split the problem
into a sequence of sub-problems, each optimizing a bound
(or auxiliary function) of (1) via a convex relaxation and
the augmented Lagrangian method. An auxiliary function
is an upper bound on the original energy, which verifies
a certain condition. Optimizing an auxiliary function iter-
atively guarantees that the original energy decreases at each
iteration (“Bound optimization and auxiliary function” sec-
tion). The auxiliary function in this work is a sum of a
linear function and a total-variation (TV) term. Therefore,
unlike the original difficult functional, it can be optimized
efficiently via a convex-relaxation (i.e., we relax the inte-
ger constraint) and an efficient multiplier-based algorithm.
Specifically, for computing a global minimum of our relaxed
auxiliary function, we solve an equivalent constrained prob-
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lem via the standard augmented Lagrangianmethod [19–21],
which embeds the constraint as a convex term (“Equivalent
constrained problems and augmented Lagrangian method”
section).

Bound optimization and auxiliary function

Bound optimization has recently led to competitive algo-
rithms in the computer vision community, including efficient
solutions to several difficult (high-order and integer-valued)
segmentation functions, e.g., entropy [22], non-submodular
pairwise terms [23] and distribution-matching constraints
[24]. Rather than optimizing directly E , we optimize a
sequence of auxiliary functions (bounds on E), denoted
A(u|ui ), i ≥ 1 (i is the iteration number), whose optimiza-
tion is easier than E :

ui+1 = min
u

A(u|ui ), i ≥ 1 s.t. (4a)

E(u) ≤ A(u|ui ), i ≥ 1 (4b)

E(ui ) = A(ui |ui ) (4c)

An auxiliary function of E is a function that verifies the
constraints in (4b) and (4c). Using these constraints, and by
definitionofminimumin (4a), one can show that the sequence
of solutions in (4a) yields a decreasing sequence of E :

E(ui ) = A(ui , ui ) ≥ A(ui+1, ui ) ≥ E(ui+1) (5)

Furthermore, E(ui ) is lower bounded and, therefore, con-
verges to a minimum of E . In this work, we consider the
following bound on the negative Bhattacharyya coefficient,
which we recently derived in [24].

Bound on the negative Bhattacharyya coefficient

Given a fixed ui , for any u : Ω → {0, 1} verifying {x ∈
Ω/u(x) = 1} ⊂ {x ∈ Ω/ui (x) = 1} and ∀α ∈ [0, 1

2 ], we
have the following bound (auxiliary function) on the negative
Bhattacharyya coefficient [24]:

−
∑

f ∈F

√
Pu( f )M( f ) ≤ Bα(u|ui )

−
∑

f ∈F

√
Pui ( f )M( f ) = Bα(ui |ui ) (6)

with Bα given by:

Bα(u|ui ) = −(1 + α)
∑

f ∈F

√
Pui ( f )M( f )

+
∫

Ω

{
αugi + (1 + α)(1 − u)hi

}
dx

where

gi =
∑

f ∈F
√

Pui ( f )M( f )
∫
Ω
uidx

;

hi (x) = ui (x)∫
Ω
uidx

∑

f ∈F
K (D(x) − f )

√
M( f )

Pui ( f )
(7)

It is easy to see that, using the result in (6), we have the fol-
lowing auxiliary function for our TV-regularized distribution
matching functional in (1):

Aα(u|ui ) = Bα(u|ui ) + λ

∫

Ω

‖∇u‖dx (8)

Convex relaxation of the auxiliary functions

The auxiliary function in (8) is the sum of a linear func-
tion Bα and a total-variation (TV) term. Therefore, it can be
optimized efficiently via powerful convex-relaxation tech-
niques, e.g., [20,21,25,26]. In fact, minu∈{0,1} Aα is still
a non-convex problem due to the integer-valued constraint
u ∈ {0, 1}. However, relaxing such constraint to interval
[0, 1] yields the following convex problem:

min
u∈[0,1] Aα(u|ui ) (9)

Furthermore, we can use a standard and powerful result in
the total-variation literature [18,20,21,25], which states that,
for problems of the same form as our auxiliary function (i.e.,
a total-variation term combined with a linear term), simply
thresholding the optimum u∗ ∈ [0, 1] of the relaxed convex
problem yields a global optimum of the non-convex discrete
problem over u ∈ {0, 1}.

Now, the following equivalence allows us to compute an
exact and global optimum of Aα over u ∈ {0, 1} using a
multiplier-based augmented Lagrangian method [20,21,25].

Equivalent constrained problems and augmented
Lagrangian method

The convex problem in (9) is equivalent to the following
constrained problem (The proof follows the ideas of [21]):

max
ph ,pg,p

min
u

∫

Ω

{
ph + u(div p − ph + pg)

}
dx s.t.

ph(x) ≤ (1 + α)hi (x);
pg(x) ≤ αgi (x); and |p(x)| ≤ λ a.e. x ∈ Ω (10)

where u is viewed as the multiplier to constraint div p −
ph + pg = 0. p : Ω → R, ph : Ω → R and pg : Ω → R

are variables in the form of scalar functions. Furthermore,
by simply thresholding the optimum u∗ ∈ [0, 1] of (10),
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we obtain an exact and global optimum of the non-convex
problemminu∈{0,1}Aα(u|ui ). From the equivalence between
(9) and (10), one can use an efficient multiplier-based algo-
rithm for computing a local optimum of E(u). The algorithm
follows the standard augmented Lagrangian method [19–
21]. This amounts to optimizing the following augmented
Lagrangian function, which corresponds to our problem in
(10) (Multiplier u is replaced here by v to avoid confusion
between inner and outer iterations in the algorithm presented
next):

Lc(ph, pg, p, v) =
∫

Ω

{
ph + v(div p − ph + pg) − c

2
∥∥div p − ph + pg

∥∥2
}
dx (11)

where c is a positive constant. A summary of the algorithm
is given in Algorithm 1 (i and j are the numbers of inner end
outer iterations respectively).

Algorithm 1: Multiplier-based augmented-
Lagrangian optimization

– Initialize u by u0(x) = 1 (i = 0)
– repeat
1. Update gi and hi according to the second line of (7)
2. set j = 0, p = p0, ph = p0h , pg = p0g and v = v0

3. repeat

– Optimize Lc with respect p:

p j+1 = max|p| ≤ λ − c
2

∥∥∥div p − p j
h + p j

g − v j

c

∥∥∥
2

This can be solved by the Chambolle’s algorithm
[27].

– Optimize Lc with respect to ph (closed-form solu-
tion):
p j+1
h = maxph<(1+α)hi

∫
Ω

×
{
ph − c

2

∥∥∥div p j+1 − ph + p j
g − v j

c

∥∥∥
2
}
dx

– Optimize Lc with respect pg (closed-form solu-
tion):

p j+1
g = maxpg≤αgi − c

2

∥∥∥ div p j+1

−p j+1
h + pg − v j

c

∥∥∥
2

– Update multiplier v:
v j+1 = v j − c(div p j+1 − p j+1

h + p j+1
g )

– Let j = j + 1

until Convergence;
4. Let v∗ the solution obtained from the inner iterations
above. Compute a binary solution by applying Otsu’s
thresholding to v∗.
5. Let i = i + 1
6. Let ui equal to the binary solution obtained at step 4.
until Convergence;

The scheme is amenable to parallel implementations on
graphics processing units (GPU), and yields nearly real-
time solutions (<1s) for labeling a typical 2D spine MRI

of size 512 × 512. This is an important advantage over
graph-cut solutions for distribution matching [24], which
do not accommodate parallel implementations. Also, it is
worth noting that our optimization scheme can be extended
to 3D. In our experiments, however, we focused on 2D
evaluations because, from a clinical-application perspec-
tive, spine labeling in MRI is typically required on 2D
mid-sagittal slices. One of the main applications is to use
such mid-sagittal labels to facilitate navigation through axial
slices via cross-reference features. Our 2D evaluations are
consistent with previous works on labeling spine MRI,
e.g., [10,28] (where the focus is also on 2D mid-sagittal
slices).

Embedding high-level anatomic constraints

This second stage of our method removes the false positives
obtained at the previous step, and identifies all the vertebrae
and discs in the image. It consists of optimizing a geometric
score (or constraint), which embeds anatomical informa-
tion on the interconnections between neighboring spine
structures. Based on anatomical knowledge, the proposed
geometric score does not require any additional training
effort. Let K denotes the number of connected regions
obtained from the previous pixel-level classification step; see
the examples in Fig. 4. Let [z1, . . . , zK ] ∈ ΩK be the cen-
troids of these regions, and yinput the user-provided point.
This step consists of finding an optimal set of N points
[ŷ1, . . . , ŷN ] ∈ ΩN among all the possible combinations
of N points in [z1, . . . , zK ] (N < K ). We propose to opti-
mize the following constraint, which, as illustrated in Fig. 1,
embeds priors on the geometric relationships between spine
structures:

[ŷ1, . . . , ŷN ] = max[y1,...,yN ]⊂[z1,...,zK ]G(y1, . . . , yN )

s.t. y1 = yinput with

Fig. 1 Illustration of the geometric scores. Left plausible distances and
angles between neighboring vertebrae;middle unlikely distance setting;
right unlikely angle setting
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G(y1, . . . , yN ) =
N−1∑

i=1

cos(Vi , Vi+1)

︸ ︷︷ ︸
Angles

+
N−1∑

i=1

min

( ‖Vi‖
‖Vi+1‖ ,

‖Vi+1‖
‖Vi‖

)

︸ ︷︷ ︸
Distances

(12)

where Vi is the vector pointing from yi to yi+1, i =
1, . . . , N − 1: Vi = yi+1 − yi . The function in (12) enforces
the following anatomical constraints (see Fig. 1 for an illus-
tration):

– Thedistance constraint ensures that the distances between
neighboring vertebrae are not significantly different. For
instance, the geometry of the labeling in the middle
of Fig. 1 is not likely: the distance between vertebrae
(yi , yi+1) is much smaller than the distance between ver-
tebrae (yi+1, yi+2).

– The angle constraint ensures that each three succes-
sive vertebrae correspond to a plausible (not excessive)
bending of the spine. For instance, the geometry of the
the three successive vertebrae in the right-hand side of
Fig. 1 corresponds to a very sharp angle (or a high cur-
vature), which is not consistent with the geometry of
human spines (not even those showing significant defor-
mities/abnormalities).

Wefind the optimumof (12)with an exhaustive search.We
can vary N from 1 to K in the exhaustive search, and choose
the combination that yields the highest value ofG in Eq. (12).
In our implementation, we start with a plausible minimum
number of N , e.g., N = 5 (because, typically, a lumbar spine
image contains at least the five vertebrae from L1 to L5).
Then, we increase N gradually by searching for candidate
points that yield the best possible increase of criterionG. For
our problem, such an exhaustive search can be performed in
real-time because our regularized distribution matching does
not result in a very large number of connected regions (refer
to the examples in Fig. 4). In our implementation, it took
about 10−3s for a typical 2D spine MRI scans of size 512×
512. The optimal set [ŷ1, . . . , ŷN ] yields the target vertebrae.
The target discs are computed from the optimum as follows:
ti = ŷi+ŷi+1

2 ∀i ∈ [1, . . . , N − 1] and t0 = 3ŷ1
2 − ŷ2

2 . The
individual labels of the structures follow directly from the

detected structures by using the known spatial organization
of the structures, e.g., L1 below T12, L2 below L1, etc.

Experiments

Data set, model parameters and features

We performed quantitative evaluations of the algorithm over
a data set of 90 mid-sagittal MRI images of the lumbar spine
acquired from 45 different subjects (45 images of the type
T2-weighted and45of the typeT1-weighted). The purpose of
using both the T1- and T2-weighted images of each subject is
to assess the ability of the algorithm to handle different types
of MRI data, with significant changes in appearances and
various levels of resolution and noise. For the T1-weighted
data, the slice thickness is in the range [3, 4mm], and the pixel
spacing is in the range [0.47, 0.57 mm]. For the T2-weighted
data, the slice thickness is in the range [0.88, 4 mm], and the
pixel spacing is in the range [0.41, 0.90 mm]. The details of
the datasets are presented in Table 1. A total of number of
990 structures were automatically detected and labeled: in
our evaluations, we focused on 11 lumbar structures/labels
per image: 5 vertebra labels (T12, L1, L2, L3 and L4) and 6
disc labels (T12-L1, L1-L2, L2-L3, L3-L4, L4-L5 and L5-
S1). ModelM is estimated from the feature vectors within a
disc centered at a very simple user input: amouse click placed
within the L5 vertebra for each subject. The parameters of
the model were invariant for all the test images in the data
set, and were fixed as follows: λ = 1 and N = 6. The
contextual-feature function D is computed from the input
image as follows. For each point x ∈ Ω , we built a feature
vector of dimension 3: D(x) = [D1(x), D2(x), D3(x)], with
D1 the mean of intensity within a 3×10 rectangular-shaped,
vertically-oriented patch, D2 the mean of intensity within a
10 × 3 rectangular-shaped, horizontally-oriented patch, both
centered at point x, and D3 the intensity of x. Note that other
features based on image gradients or textures can be used
within the same framework. Finally, the radius of the disc for
estimating model M is fixed equal to 5 pixels.

Typical examples and computational time

Figure 2 depicts typical results obtained with the proposed
algorithm on T1-weighted and T2-weighted images with

Table 1 Details of the
T1-weighted and T2-weighted
MR datasets. Pixel resolution
and slice thickness are given in
mm

Description T2-weighted T1-weighted

Image size (320 × 320)–(640 × 640) 512 × 512

Pixel resolution (0.41 × 0.41)–(0.90 × 0.90) (0.47 × 0.47)–(0.57 × 0.57)

Slice thickness 0.88–4.00 3.00–4.00
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Fig. 2 Typical results obtained with the proposed algorithm on T1-
weighted and T2-weighted images with significant changes in appear-
ances and geometric characteristics such as the degree of bending of
the spine and the shapes/sizes of individual vertebrae and discs. These
examples show that the proposed algorithm handles effectively these
variations, without the need for external training

significant changes in appearances and geometric character-
istics such as the degree of bending of the spine and the
shapes/sizes of individual vertebrae/discs. These examples
show that the proposed algorithm effectively handles these
variations, without the need for intensive external training.
For each of these examples, the user click is placed at the
L5 vertebra, and the solutions were obtained in near real-
time: for a typical MRI scan of size 512 × 512, the first
stage took less than 1s, and the second took about 10−3s.
Figure 3 depicts experiments with 5 different choices of the
initial label. One can see from these typical examples that the
choice of the initial label does not have a significant impact
on the results. This makes sense because the feature distribu-
tions of the vertebrae are quite close. It is worth noting that
from user perspective, L5 might be the easiest and fastest to
identify. The convex relaxation optimizer was run in parallel
on a graphics processing unit (GPU) of the type NVIDIA
Quadro FX3700, with 112 Cuda cores.

Examples of intermediate segmentation results

Figure 4 depicts typical examples of the regularized distribu-
tionmatching segmentation resultswe obtained using images
from six different subjects (three T2-weighted in the first
row of the figure and three T1-weighted in the third row).
Below each image, we plot the corresponding evolution of
the distribution matching term (the negative Bhattacharyya
coefficient) as a function of the iteration number. Notice that,
for each example, this segmentation step yielded a single con-
nected region for each vertebral structure. Also, the number

Fig. 3 A typical T1-weighted
MR example, which shows that
the choice of the initial label
(red) does not have a significant
impact on the results
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Fig. 4 Examples of regularized
distribution matching and the
corresponding evolutions of the
distribution matching term as a
function of the iteration number.
First and second row
T2-weighted examples; third
and fourth row T1-weighted
examples

of the remaining irrelevant regions (i.e., the false positives
that do not correspond to vertebral structures) is, typically, of
the sameorder as thenumber of truepositives (or even smaller
in some cases). This shows how our regularized distribution
matching discriminates well between the target structures
and the rest of the image, significantly facilitating subse-
quent detection/annotation steps. Finally, it is worth noting
that our distribution matching converges within a few itera-
tions (typically less than 10 iterations); see the plots in Fig. 4.

Quantitative evaluations

We evaluated two performance measures: (i) the Euclidean
distances (in mm) between the automatically obtained anno-
tations and ground-truth annotations (Ground-truth labels
are manually placed by a radiology expert at about the
center of mass of each structure) and (ii) the detection
accuracy given by the percentage of correctly detected and
labeled vertebrae/discs. Similar to the study in [10], a struc-
ture (vertebra or disc) is considered correctly detected and
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Fig. 5 Performance evaluations for each structure of the lumbar spine: percentage of correctly detected and labelled vertebrae/discs for the
T1-weighted images (left) and T2-weighted images (right)

Fig. 6 The median, 5th percentile and 95th percentile values of
Euclidean distances (in mm) between the automatically obtained anno-
tations and ground-truth annotations for different pixel resolutions.
Comparisons over 990 annotations showed that the performance of the
algorithm did not vary significantly with pixel resolution

labelled if (a) the detected point is within the structure and
(b) the automatic label is consistent with the ground-truth
label. Table 3 reports the percentages of correctly detected
and labeled vertebrae/discs over all the data set, and the
Euclidean distances (expressed in mean ± standard devi-
ation) between the automatically obtained annotations and
ground-truth annotations. Figures 5 and 7 plot the detailed
performances of our method for each individual structure of
the lumbar spine. Figure 6 depicts the Euclidean distances
(in mm) between the automatically obtained annotations and
ground-truth annotations for the different pixel resolutions
in our data set. This plot illustrates how the performance
of the algorithm did not vary significantly with pixel spac-
ing.

Comparison with prior work

Table 2 reports a meta-analysis of accuracy2 for several
state-of-the-art spine labeling techniques, including: the
training-based method in [28], which proposed a deformable
part model object detector combined with dynamic program-
ming; the probabilistic model in [10], which integrates both
pixel-level (appearance and shape) and context; the deep
learning technique in [29], which combines image-to-image
network,message passing and sparsity regularity; themethod
in [30], which uses supervised classification forests; and the
deep convolutional neural network method in [31]. The per-
formance of these techniques are reported in term of the
percentage of correctly labeled structures. For each method,
we report a range of accuracies as the authors of these studies
report several performances, each corresponding to a differ-
ent proportion of testing/training data, a different imaging
protocol, or a differnt part of the spine (lumbar, thoracic
or cervical). Notice that, for each of the methods (includ-
ing ours), the best performance is close to 90% accuracy.
Of course, we do not expect our algorithm to outperform
training-based techniques because our algorithm uses much
less information. However, the results (Table 3) suggest that
the proposed algorithm can reach a performance compara-
ble to training-based algorithms, although it does not use
any external training data (i.e., model learning in our case is
subject-specific and is based on a very simple user input). The
study in [10] reported a performance comparable to us over an
MRI data set of about the same size (105 subjects, with about
half of the population for testing and the rest for training):
the accuracy [10] is in the range [87.7, 89.1%]. However,
the method in [10] is based on intensive training informa-
tion from annotated data sets of over 50 subjects. It is worth

2 Our meta-analysis of accuracy is not a direct comparison between the
methods because the used data sets are different, andmight have various
levels of difficulties. For instance, theCTdata set in [29] contains several
unusual appearances (e.g., abnormal spine curvature), and undergo large
variations in the field of view, image noise and resolutions.
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Fig. 7 The median, 5th percentile and 95th percentile values of Euclidean distances (in mm) between the automatically obtained annotations and
ground-truth annotations for the T1-weighted images (left) and the T2-weighted images (right)

Table 2 A meta-analysis of
accuracies for several
state-of-the-art spine labeling
techniques

Method Training Accuracy range Dataset

Alomari et al. [10] Yes [87.7, 89.1%] 105 MRIs (T2-SPIR weighted)

Lootus et al. [28] Yes [84.1, 92.9%] 371 MRIs (T2-weighted)

Yang et al. [29] Yes [78, 93%] 302 CT images

Glocker et al. [30] Yes [70, 89%] 302 CT images

Chen et al. [31] Yes [76, 92%] 302 CT images

Proposed algorithm No [88.1, 91.6%] 90 MRIs (T1- and T2-weighted)

Table 3 The overall labeling
performances and Euclidean
distances (in mm) with respect
to ground-truth labels

Modality Accuracy Euclidean distances (mm)

Vertebra (%) Disc (%) Vertebra Disc

T2-weighted 91.6 89.2 4.62 ± 3.19 4.54 ± 2.69

T1-weighted 90.7 88.1 5.12 ± 3.09 4.94 ± 2.88

noting that a systematic comparison between our interactive
method and such training-based methods on the same data is
not possible because our algorithm does not use any external
training information. In fact, our method is not in direct com-
petition with these learning-based techniques. It can be used
when training information is not available, or as a tool that
can efficiently build large annotated data sets for learning-
based algorithms (e.g., convolutional neural networks)

Discussion

We proposed a fast (nearly real-time) spine MRI label-
ing algorithm that removes the need for external training
while being applicable to different types of MRI data and
acquisition protocols. The algorithm was based solely on
the current testing image and a subject-specific model den-
sity, which is learned from a very simple user input. When
applied to T1- and T2-weighted MRI images, our regular-
ized distribution-matching formulation, followed by a simple
geometric filtering step, achieved performances comparable

to state-of-the-art training-based techniques. Such compar-
isons are based on a meta-analysis of accuracies. In fact,
our method is not in direct competition with these learning-
based techniques: a systematic comparison on the same data
(including training images) is not possible because our algo-
rithm does not use any external training information. Our
interactive method can be used when training information is
not available or, also, to rapidly build massive annotated data
sets, which can boost the performances of learning-based
algorithms (e.g., convolutional neural networks).

The fact that our algorithm does not use external train-
ing information is a practical advantage over the existing
methods. However, it comes at the price of a user input
(a mouse click). Such an input makes the problem easier
because off-by-one errors are less likely to occur. Also, learn-
ing a distribution from the testing imagemakes the algorithm
flexible: it can be readily applied to different types of MRI
data and acquisition protocols without re-training.

Our method was evaluated on patient data, but we did not
focus on a specific pathologyor injury.Our goalwas to design

123



Int J CARS (2017) 12:1911–1922 1921

a system that performs well for the majority of patient data
sets that are collected from clinical routineMRIs of the spine,
with no exclusion criteria. Our data involved spine patients
with typical disorders such as herniation or degenerative disc
disease (DDD).

One of the limitations of the method is that the geomet-
ric refinement step does not account for missing structures.
Another limitation is that the image features that we used
for building the distribution-matching term are hand-crafted.
There are several possible extensions to address these limita-
tions.As our algorithm runs in nearly real-time, an interesting
and practical extension would be to embed minimal user
interactions in the form of constraints so as to rapidly cor-
rect possible errors in the results. Such an extension would
prompt the user to add interactively new clicks, which the
algorithm account for in a subsequent result-improvement
step. For instance, interactive manual corrections would be
useful when the method fails in labeling some parts of the
spine, particularly in cases of atypical images such as those
of patients with spine injuries. Another extension would be
to learn the range of our geometric features (e.g., the angles)
from a few annotated examples, or to learn a set of image
features in order to build the distribution matching term.
Also, there are several possible evaluations of the proposed
method and its extensions, which we intend to investigate in
the future. For instance, it would be interesting to evaluate
the algorithm in the context of other modalities, e.g., com-
puted tomography (CT), or on Thoracic and Cervical spine.
We anticipate that our method works reasonably on these
parts of the spine as well. Similarly to the lumbar spine, the
Thoracic/Cervical features should not change significantly
from one vertebra to another and the geometric prior seems
to be plausible.
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