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Abstract
Purpose This paper presents a new micro-motion-based
approach to track a needle in ultrasound images captured
by a handheld transducer.
Methods We propose a novel learning-based framework to
track a handheld needle by detecting microscale variations
of motion dynamics over time. The current state of the art
on using motion analysis for needle detection uses absolute
motion and hence work well only when the transducer is
static. We have introduced and evaluated novel spatiotempo-
ral and spectral features, obtained from the phase image, in
a self-supervised tracking framework to improve the detec-
tion accuracy in the subsequent frames using incremental
training. Our proposed tracking method involves volumetric
feature selection and differential flow analysis to incorpo-
rate the neighboring pixels and mitigate the effects of the
subtle tremor motion of a handheld transducer. To evaluate
the detection accuracy, the method is tested on porcine tis-
sue in-vivo, during the needle insertion in the biceps femoris
muscle.
Results Experimental results show themean, standard devi-
ation and root-mean-square errors of 1.28◦, 1.09◦ and 1.68◦
in the insertion angle, and 0.82, 1.21, 1.47 mm, in the needle
tip, respectively.
Conclusions Compared to the appearance-based detection
approaches, the proposed method is especially suitable for
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needles with ultrasonic characteristics that are imperceptible
in the static image and to the naked eye.
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Introduction

Ultrasound (US) is a widespread imaging tool used to
guide interventional procedures such as biopsies, treatment
injections, and anesthesia [1].During such applications, visu-
alization of the needle and its accurate placement into the
target is crucial. The visualization of the needle in the US
image, however, is challenging due to specular reflection off
the smooth surface of the needle [2]. Needle visualization
is especially challenging with steep insertion angles, due to
non-axial specular beam reflection off the smooth surface of
the needle and similar line-like anatomical features. A sam-
ple of the literature is provided below to summarize the wide
variety of approaches to enhance needle visibility.

(1) Signal and image processing methods such as line
detection [3–5] and projection-based [6,7] approaches were
used to augment and localize the needle in the ultrasound
image. 3D imaging is also used to help with out-of-plane
insertions [8,9]; the main issue of needle visibility due to
poor echo still remains. Most of these types of approaches
rely on the initial visibility of the needle in the US image
as a long line-like structure. (2) Hardware-based enhancing
methods, such as sensors and actuators [10,11], echogenic
technology [12], needle guides [13], and robot-assisted nee-
dles [14,15] are used to detect the needle in US. Each of
these have advantages and disadvantages; disadvantages are
additional cost and complexity, and in the case of needle
guides, restrictions on the freedom of needle trajectory paths
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Table 1 A sample of the
literature summarizing the
variety of approaches to
enhance needle visibility

Signal/image processing Hardware modification Others

Line detection [3–5] Sensors/actuators [10,11] beam steering [16]

Projection-based [6,7] Echogenic technology [12] Tremor detection [17,18]

3D ultrasound [8,9] Mechanical needle guides [13]

Robot-assisted [14,15]

relative to the transducer, making them too cumbersome for
some applications. In addition, the current clinical demand
is inclined toward standard needles, and methods using cus-
tomized apparatus represent a relatively small percentage of
those used clinically. (3) Beam-steering approaches for linear
transducers are also used to enhance the visibility of the nee-
dle shaft by adaptively steering the beam to a perpendicular
degree to the needle [16]. In summary, previous approaches
either rely on needle appearance as a high intensity line of
pixels, require changes to the current workflow or are spe-
cific to linear transducers. A clinically suitable approach for
curvilinear transducers to detect a steep needle when it is
invisible or partially visible, is still needed.

The summary of the sample literature is in Table 1.
Recently, the idea of analyzing the natural hand tremor
motion to localize a handheld needle in ultrasound was pro-
posed in [17,18]. In [17], a multi-scale spatial decomposition
followed by a temporal filtering was used to estimate the
motion and detect pixels moving at the tremor frequency. In
[18], a block-based approach is used to first select the regions
with motion pattern similar to the motion pattern of the block
at the puncture site. The time trace of the displacement was
then computed along the spatiotemporal linear paths aris-
ing from the puncture site and the needle was identified as
the path with maximum spectral correlation with the motion
pattern of the puncture site. That method works best with
curvilinear transducers because the initial portion of the shaft
is usually detectable near the puncture site where the beam
is perpendicular. Upon further testing in-vivo, the individual
pixel-based analysis in these methods was found to be sen-
sitive to noise and also resulted in localization errors due to
the surrounding tissue that also moved with the needle.

The proposed system is calledCASPER:Computer-Aided
Segmentation of imPERceptible motion, which is a learning-
based framework to track a needle by detecting variations
of imperceptible features over time. The state of the art
on using tremor motion for needle detection uses absolute
motion and hence work well when the transducer is fixed
[17,18]. We propose a tracking framework using differen-
tial optical flow and spatiotemporal micro-motion features
to incorporate neighboring pixels and mitigate the effects of
subtle tremor motion of a handheld transducer. Phase-based
analysis of motion in complex-valued pyramids is used to
extract spatial features as it is more robust to subtle changes

[17]. Our main novelty is incorporating the relative flow
analysis and characteristics of the nearby regions in the detec-
tion framework.We also introduce a self-supervised tracking
approach capable of improving the performance in the sub-
sequent frames using spatial analysis and dynamic training
update. Our contributions are: (1) including the surrounding
spatiotemporal neighborhood in the analysis of the pixel data,
(2) incorporating the direction of the flow field in addition
to its magnitude, (3) tracking of the needle during insertion
instead of detection at a fixed spatial position, and (4) exten-
sion to free-hand imaging: where both the needle and the
transducer are handheld. Qualitative and quantitative analy-
sis is performed in vivo on porcine subjects.

Methods

Method overview

An overview of our tracking method is shown in Fig. 1. It
consists of three main steps: motion description using phase-
based analysis and optical flow, spatiotemporal and spectral
feature extraction from the micro-motion in cuboids, and
needle tracking using incremental support vector machine
(SVM). Steerable pyramids with oriented Gabor filter banks
are designed in the range of insertion angles to isolate motion
mainly at the orientation of the needle. The differential flow
map of the magnitude-weighed phase of consecutive frames
is computed from the optical flow analysis. Spatiotemporal
and spectral features are then extracted for cells surrounding
each pixel, and the feature vector is sent to an incremental
SVM for classification. Classified pixels are analyzed based
on the morphological estimate obtained from spatial analysis
of the labels and their position. Mislabeled data are added as
new training example and the model is updated, to enhance
the prediction for subsequent frames. The tracking proce-
dure continues, while the model as well as the classification
results are updated iteratively. The details of the method will
be described in the following sections.

Motion descriptors

Needle insertion involves micro-motion of the impercepti-
ble needle features and the tissue surrounding the needle.
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Fig. 1 Block diagram of the proposed approach: Complex steerable
pyramids are used for spatial decomposition, and motion descriptors
are computed at each spatial scale. Spatiotemporal and spectral features
are extracted within the spatiotemporal cells around each pixel and for-
warded to an incremental SVM for classification. Classification results
are spatially analyzed for continuity of the positive needle pixels and
false-positive non-needle pixels are fed into the adaptive training for
online learning. Detection result is overlaid on the current frame, and
the procedure is repeated for the subsequent frames

Although the needle motion may not be perceptible in the
B-mode data, it could be extracted from the analysis of low-
level motion features. Since pixel-based motion descriptors
are more sensitive to noise, we introduce an efficient feature
representation from low-level motion descriptors in cuboids
of pixel.

Multi-scale spatial decomposition

Beingmore robust to subtle intensity changes thanmagni-
tude, phase-based analysis of motion could be used to extract
such micro-motion [17]. According to the shift property of
theFourier transform, the displacement in time/space induces
a phase shift proportional to the displacement and frequency.
Based on Fourier series, to extract motion, the displaced
intensity profile (I ) of a frame in a B-mode sequence at time t
and spatial position (x, y) can be decomposed into its spatial
sub-bands sbω(x, y, t) = Aωeiω(x+y+Δxy(t)) as follows:

I (x + Δx (t), y + Δy(t)) �
∑

k

Ake
i2πk(x+y+Δxy(t)) (1)

3 filters 2 scales

3 orientations 
per location

Complex Steerable Pyramid
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Fig. 2 Multi-scale spatial decomposition using oriented Gabor filters.
a Half-octave bandwidth filters: three filters in the insertion angle range.
b Multi-scale phase-based decomposition of each frame (i) according
to the reference frame (r)

where each band contains a complex sinusoid at spatial fre-
quency ω = 2πk.

Upon testing, the phase of each sub-band, denoted by
Pω(x, y, t) = ω(x + y + Δxy(x, y, t)), was found to be
more robust, than intensity, to compute the motion map. As
shown in Fig. 2, a complex steerable pyramid of two scales
and three orientations (50◦, 65◦ and 80◦) is used to decom-
pose the signal into its spatial frequency bands. The tuned
complex steerable pyramid, isolates motion mainly at the
angle of interest, i.e., the expected range of insertion angles.
To further reduce noise, phase responses are attenuated at
stationary regions where intensity variation is low. This is
obtained by computing the magnitude-weighted phase with
respect to the reference frame as shown in Fig. 2b.

Optical flow maps

To characterize moving regions, we begin by computing
the optical flow of the superposition of magnitude-weighted
phase responses Pω at multiple orientations and scales, for
consecutive frames:

It + uIx + v Iy = 0 (2)

where u = dx/dt and v = dy/dt are the lateral and axial
components of the optical flow and (Ix , Iy) and It are spa-
tial and temporal gradients of the phase images with respect
to position (x, y) and time t , respectively. Spatial gradients
are approximated in the lateral and axial directions of the
phase image using the first derivative of Gaussian masks
along the rows and columns of the phases of the filtered
frames Ix/y(x, y, t) = I (x, y, t) ⊗ gx/y . The temporal gra-
dient is simply estimated as the difference of the Gaussian
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Fig. 3 a Captured frames containing the needle, arrow is perpendicu-
lar to the invisible needle shaft. b Several spatiotemporal cells (STCs)
constructed for the captured frames. c Frame selection for spatiotempo-
ral analysis at the current frame, and the spatiotemporal cells for each
candidate pixel (two candidate pixels in this example). d Optical flow
is computed for each pair of the previous consecutive frames

smoothed images at the consecutive frames It (x, y, t) =
I (x, y, t) ⊗ g − I (x, y, t − 1) ⊗ g.

To estimate the flow parameters (u, v), we use the regu-
larized Lucas–Kanade approach [18], based on the constant
flow constraint on the neighboring pixels within a defined
window w. Regularized least square is then used to find the
best estimate by minimizing the error term:

E(u, v) =
∑

∀i∈w

w(xi , yi )
[
(u, v)T · ∇ I (xi , yi , t)

+It (xi , yi , t)]
2 + T ikc |(u, v)|2 (3)

where ∇ I (x, y, t) = (Ix , Iy) and w is the Gaussian weight-
ing function and T ikc is the constant in the Tikhonov
regularization term [18].

Given a sequence of Lt frames up to the current frame{
f1, . . . , fr , f p, fc

}
, the collection of the optical flow from

all consecutive frames is defined as a time dependent flow
field F .

F = {〈u(I1), v(I1)〉 , . . . , 〈u(Ir ), v(Ir )〉 ,
〈
u(Ip), v(Ip)

〉
,

〈u(Ic), v(Ic)〉} . (4)

where Ir , Ip, and Ic are the reference, previous and current
images, respectively. The reference frame is also updated
with eachnew frameand the optical flow is computed for each
pair of the previous consecutive frames. Figure 3 describes
the frame selection for phase-based analysis and optical
flow computation. Features are obtained for several cuboids,
called spatiotemporal cells (STCs), constructed around each
pixel. STCs are of size Ln ×Ln ×Lt , in which Ln is approxi-
mately the same size as the needlewidth and Lt is thewindow
size for temporal analysis.

Grid of cells

Fig. 4 Differential flow scheme shown for a 3 × 3 grid of cells as an
example. The center cell is the spatial cross section of the imagewith the
corresponding STC of size 5× 5× Lt as an example. Arrows represent
the diagonal direction of the relative flow

Differential flow maps

To use motion analysis for needle detection in US data,
captured by a handheld transducer, features are required
to characterize needle motion well while being resistant to
transducer and intrinsic body motion. The main issue with
previous approaches is that, absolute motion detection works
best when the transducer is approximately stationary in place
and direct analysis of the motion cannot well distinguish the
needle from the surrounding tissue moving with the needle.

We introduce differential flow features to better represent
the needle in an US image, captured by a handheld trans-
ducer. While spatial gradients of the flow capture the sharp
changes, the relative flow is basically the large-scale spatial
differences at various locations. In more detail, the tremor
motion on a handheld transducer is globally distributed along
the image with the additive motion vector (u probe, vprobe).
Depending on the image intensity, a scale of the transducer’s
motion vector is added to the optical flow field of each pixel.
Therefore, assuming that the intensity is relatively uniform
around the needle (invisible needle in the tissue), differential
flow computation cancels out most of the transducer’s tremor
effect.

Differential flow is computed for Lg × Lg grid of cells,
centered at each pixel. As shown in Fig. 4, in each of the sur-
rounding cells, the relative flow is computed for each pixel, as
the flow difference with respect to the corresponding pixel
in the center cell. The spatial size of the cell is defined to
approximately match the needle width, therefore the flow
differences relative to the neighboring tissue mainly detects
the motion due to insertion.

Feature extraction

To represent the micro-motion due to needle insertion, we
introduce spatiotemporal and spectral features, extracted
from the optical flow and differential flow maps of the flow
field F in the constructed STCs. Features are obtained for
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each scale separately and the classification results on both
scale outputs are superimposed to get the final result. Care
is taken in selecting the STC temporal dimension to ensure
that the window size includes a complete cycle for temporal
analysis. The computed flow field of the last Lt frames are
stored in a buffer, where the oldest component is replaced
by the flow field of the previous frame, with parsing of each
new frame.

Spatiotemporal feature selection

Spatiotemporal features are first extracted from the sequence
of phase images. At every pixel within the STC of the candi-
date pixel, the spatiotemporal motion descriptors of optical
flow (u, v), and differential flows (Δu,Δv) are computed.
The spatiotemporal features, introduced to detect the nee-
dle, are to address the effects of tremor motion induced on
a handheld transducer, detect the needle from neighboring
tissue more accurately and distinguish needle motion from
the intrinsic body motion more robustly.

The optical flow parameters are represented in polar coor-
dinate with AOF = √

u2 + v2 and θOF = arctan(u/v). A
set of seven features are used for every scale of the sequence.
Our first pair of features f1,2 = ( ĀOF , skewness(θOF )) is
the average of magnitude and the skewness of phase of the
superposition of the optical flow along the temporal length Lt

of an STC. For all pixels within an STC, we also compute the
average of the optical flow field along Lt . Magnitudes of the
average flow vectors for all pixels are concatenated, normal-
ized, and histogrammed for the distribution of the average
optical flow magnitudes in an STC. Statistical moments,
median and skewness of the histogram of magnitude of the
average optical flow then form f3,4.

Pixel-wise average of differential flow field is computed
along Lt , for all outer cells within the grid around each STC.
The average differential flow for each pixel is described by

AΔOFi =
√

Δu2i + Δv2i and θΔOFi = arctan(Δui/Δvi ),
∀i ∈ grid. AΔOFi values are concatenated for all corre-
sponding pixels within all of the outer cells Atot (Fig. 4).
Auto-correlation function is then computed for Atot obtained
from the concatenated amplitude vectors, to find the motion
patterns of pixels within the grid. The lag t auto-correlation
function is defined as:

rt (Atot ) =
∑T−t

s=1

(
Atot (s) − Ātot

) (
Atot (s + t) − Ātot

)

∑T
s=1

(
Atot (s) − Ātot

)2

(5)

Auto-correlation function is computed for every lag and
the median of the auto-correlation value of the lags is used as
f5. The skewness of the differential angle θΔOFi is computed,
to (1) extract the direction of movement of the neighboring

cells and (2) distinguish the needle using its different angular
pattern. Skewness of θ̄ΔOFi is used as f6.

Spectral feature selection

The trace of the optical flow (F) from all consecutive frames
within an STC is computed for all pixels within the STC. The
key concept is that pixelsmoving together has greater spectral
correlation at the corresponding frequency of motion. There-
fore considering the fact that STCwidth is approximately the
same as the needle width, if the candidate pixel (center of the
STC) is on the needle, pixels within the corresponding STC
have similar spectral coherency pattern especially around the
tremor frequency [18].

The flow field along a sequence of frames contains vari-
ations resulting from insertion and intrinsic body motion,
and due to their constant statistical parameters over time, the
sequence is considered a stationary process. Spectral coher-
ence is obtained between the flow field of the center pixel
F0 = F(p0) at STC versus the flow fields of all the neigh-
boring pixels Fi = F(pi ) within the STC as follows:

Cp0 pi ( f ) = |PSD(F0Fi )|2
PSD(F0)PSD(Fi )

, ∀pi ∈ STC−{p0}
(6)

where PSD(p0), PSD(pi ) and PSD(p0 pi ) are the power
spectral densities (PSD) (Fourier transform of the auto-
correlation) of the flowfield of p0 and pi and their cross PSD.
Spectral coherence is computed for themagnitude of the flow
field between the center pixel and all other pixels in the STC.
The frequency component is quantized, the weighted votes
for coherence components are computed from the spectral
coherence, and locally histogrammed to produce the feature
vectors. The accumulated value at each bin is normalized
based on the maximum value at the corresponding bin. Low
frequency components contain the insertion and the intrinsic
frequency components we need for the analysis [18]. Skew-
ness of the first five components of the normalized histogram
are then used as f7.

Pixel-based classification

SVMwas chosen as the classifier due to its easy integration of
the hand-crafted features, and its use of kernels to modify the
feature space. In addition, it is formulated as a convex opti-
mization, so that a tractable computation is obtained using
the unique solution. SVM is chosen at two steps in our frame-
work, it is first used to train the initial model offline using
our training data. The initial trained model is then used in the
online training to classify the unseen dataset and update the

123



1862 Int J CARS (2017) 12:1857–1866

trainedmodel. Needle and background pixels are represented
as +1 and −1 observations in the binary classifier.

Incremental learning is considered as an online method
to update the model by adding one example to an existing
solution at a time. The key is to update the weights to keep
the Kuhn–Tucker conditions satisfied on the enlarged dataset
in addition to the previous examples [19]. In detail, given an
observation f ∈ R

m and a mapping function Φ, an SVM
discriminant function is given by:

〈ω,Φ( f )〉 + b (7)

where 〈 〉 is the inner product operator and (ω, b) are the
linear separator parameters. The weight vector ω can be
written as linear combination of the training examples (ω =∑n

i=1 αi liΦ( fi )), Eq. (7) is written as:

n∑

i=1

αi li K ( fi , f ) + b (8)

The optimal discriminant parameters are chosen in order to
maximize the margin Γ = 1

||ω|| , the distance between the
hyperplane and the closest training vectors fi . Minimizing is
usually formulated in dual quadratic form using weightings
α and offset b (Lagrange multipliers) as follows:

min
αi ,b

: ω =
∑

i

αi

⎛

⎝1

2

∑

j

li l j K ( fi , f j )α j + bli − 1

⎞

⎠,

subject to 0 ≤ αi ≤ C (9)

where f is them-dimensional feature vector for n pixels, l ∈
R
n is the label vector and b determines the offset. The radial

basis function is used as the kernel K due to its ease of ini-
tialization (requiring only one parameter) and classification

accuracy for nonlinear patterns: K ( fi , f j ) = e−Γ ‖ fi− f j‖2
.

The saddle point of Eq. (9) is given by Kuhn–Tucker con-
ditions:

gi = ∂ω

∂αi
=

⎧
⎪⎨

⎪⎩

α j = 0 ⇒ |gi | ≥ 1

0 < α j < C ⇒ |gi | = 1

α j = C ⇒ |gi | ≤ 1

(10)

During online training, the margin vector coefficients
change value at each incremental step to keep Kuhn–Tucker
conditions satisfied for all examples in the updated training
set. The optimum values for the classifier’s parametersC and
γ , the regularization term and the inverse of theRBFvariance
are obtained using cross-validation over the initial training
set and grid-search.

Online evaluation

Weanalyze the spatial distribution of the classification results
of at each iteration. Our developed self-supervising step
involves a voting procedure to automatically determine the
cluster of points belonging to the needle. Due to the fact that
the imaged tissue does not change drastically in consecutive
frames, the estimation is improved for each new frame with
addition of the new classification result. The aim of the spa-
tial distribution and online update is also to account for false
positives such as reverberation artifacts, copies of the nee-
dle with similar motion pattern as the needle. These are less
likely to be detected with longer training and are specific to a
sequence, which could be used in a self-supervisory frame-
work to enhance the localization within the sequence.

Spatial distribution analysis and online update

The spatial distribution analysis and online update are per-
formed in an iterative approach (Fig. 5). Considering the
continuity of the needle, we use a parametric representation
of a line ρ = x cos(ϕ) + y sin(ϕ), to represent the line using
parameters ρ and ϕ, where ρ is the orthogonal distance from
the origin to the line and ϕ is the angle between the line
trajectory and x-axis. ϕ is computed for all lines formed by
pixels classified as +1 to identify the lines’ angles. A needle
cluster is selected from the histogram analysis of the popu-
lated needle pixels contributing to lines with angle ϕ within
the insertion range (50◦−80◦). Outliers are further removed
by histogram analysis of the ρ values to keep the lines with
more populated ρ. Nearby +1 pixels within the Ln distance
of the needle cluster and Ln distance from the selected lines
are considered as true positives. All other +1-classified pix-
els farther from the cluster are considered as false positives
and are added to the dynamic training set for online train-
ing. During online training, a new false-positive sample fc
is first added with initial weight αc = 0. If fc is supposed
to be a support vector, however, all the weights change value
at incremental steps to keep Kuhn-Tucker condition satisfied
for all examples.

Experimental analysis and set-up

Ultrasound images were obtained using an iU22 ultrasound
machine and a handheld C5–1 (1–5 MHz) curvilinear trans-
ducer (Philips Ultrasound, Bothell, WA, USA). The acoustic
and imaging parameters were kept constant suitable for
general abdominal imaging. The imaging depth was var-
ied within 50–70 mm and the insertion depth was within
50◦−80◦.A standard 17gaugeTuohy epidural needle (Arrow
International, Reading, PA,USA)was used for insertion. The
porcine trial was conducted at Jack Bell Animal Research
Facility, Vancouver (UBC animal care #A14 − 0171). 60
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Fig. 5 Summary of the spatial
distribution analysis and online
update. I is the input image, f r
is the frame number, pi is pixel
i and f s1 / f s2 : feature vectors at
both scales. Itot is the classifier’s
output binary image that gets
updated at each iteration. p f p is
the false-positive pixel set, i.e.,
non-needle pixel misclassified
as needle. Outlier is defined
based on the histogram analysis
described in Sect. 2.5.1

sequences ofUS imageswere captured for independent inser-
tions in the biceps femoris muscle of an anesthetized pig. For
a realistic scenario, a pulsating vessel was present in the field
of view when possible.

Based on the pixel resolution, width of the 17-gauge nee-
dle (1.149 mm), and different spatial scales, the histogram of
the features was obtained for cross-validation dataset, while
varying Ln and Lg in the range of 0.2–1.2 mm. We empiri-
cally found the appropriate values of Ln ≈ 0.9mm and Lg ≈
0.5 mm for the analysis. The gold standard was defined by
the expert as a line passing through the needle axis, used
to select observations for the training set. A channel with
the same width as the needle was computed around the seg-
mented trajectory for performance evaluation of the test set.
For Hough transform analysis, 2 mm was chosen as the min-
imum connectivity of regions to form a line. Also, since each
classification result contains the data from the past Lt frames,
and considering the maximum insertion rate of 2 cm per sec-
ond, we use the maximum connectivity of 20 mm to connect
the line segments with the same angle. Care is taken to ensure
that the window size for spectral analysis includes at least
one complete cycle of the heartbeat and tremor, therefore Lt

is made equal to the ultrasound frame rate. The histogram
analysis for outlier removal was performed by obtaining the
histograms of ϕ and ρ values of the lines and keeping the
lines contributing to the most populated three bins.

To evaluate the performance, the needle trajectory calcu-
lated by the proposed method is compared against the gold
standard manually annotated by a sonographer with 30 years
of experience. The method performance was evaluated in
terms of shaft and tip detection errors. Shaft accuracy was
obtained according to the angular deviation between the nee-
dle direction calculated by the algorithm and the true needle
direction of the gold standardΔθ . Tip accuracy was obtained

by calculating the Euclidean distance between the needle
tip at the closest channel boundary at the tip depth, and the
detected trajectory Δp.

The needle is detected at each frame in the incremen-
tal training framework and the classification results are
enhanced for the subsequent frames based on the spatial
analysis. For the sake of validation, all insertions were made
in plane such that the needle tip was as visible as possi-
ble. In many cases, however, the gold standard could not be
obtained from the static image, and the expert had to analyze
the sequence to label the needle based on moving regions. To
annotate data for the offline training set, needle pixels with
significant motion pattern and matching the gold standard
are annotated as +1. This ensures that the neighboring pix-
els, within the STC of a pixel, are also a part of the needle,
which aims to increase the classification accuracy. The expert
also records their confidence level of the gold standard selec-
tion. For the initial offline training data, 30%of the sequences
were randomly selected from images with high confidence
(92% of the entire data). Over 10 permutations, the remain-
ing 70% of the sequences were grouped into cross-validation
and test sets. 10% of the data were used in cross-validation
tests to find the optimumvalues for SVMhyper-parameters C
and γ . The remaining 60% of image sequences were used in
the online evaluation. Note that several pixels were obtained
from each training image, and each image contributed to over
160 training samples to form the initial offline training dataset
of 3000 observations. To have balanced classes, background
pixels were randomly selected equal to the number of needle
pixels for each training dataset, and repeated 10 times.

The method was implemented in MATLAB on a 4 GHz
processor and 16 GB RAM. Total computation time is 1.18 s
for each frame on average: multi-scale spatial decomposition
and optical flow computation takes 0.53 s, feature selec-
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Fig. 6 Summary of the steps in the classification pipeline. Initial
sequence of frames are shown on the left side, where a white arrow
points to the (invisible) needle trajectory. Optical flow is computed and

the superposition of theirmagnitude is shown for the selected spatiotem-
poral cells. Finally, the classification result of the incremental training
is shown as an overlay on each frame

Sha�

Tip

Sha�

Sha�

Tip

Tip

Gold standard

Classifier’s 
outputFinal result

(a) (b) (c) (d)

Fig. 7 Localization results shown for three subsequent frames. a B-
mode ultrasound image, with two arrows pointing to the needle tip and
the shaft locations. b and c zoom in of the classifier’s output and the
final output of the algorithm, respectively. d Gold standard (green line),

the Hough transform estimated trajectory from the classifier’s output
(dashed line) and the algorithm’s output (white solid line) overlaid on
two corresponding sample frames

tion step takes 0.17 s for both scales, SVM evaluation takes
0.003 s, and spatial distribution analysis and online training
takes 0.01 and 0.46 s, respectively.

Results

Figure 6 shows a summary of the classification pipeline. The
flowmap is computed for frames within an STCwith respect
to the reference frame, and their flow magnitude is superim-
posed to create a coarse motion mask. The features vector is
computed for candidate pixels and sent to the SVM classi-
fier to determine the needle pixels. The classification results

are then sent to the spatial distribution analysis and online
training update to determine the needle location. As shown
in Fig. 7, the spatial distribution analysis and online learning,
removes the outliers and improves the classification results
at each frame. The needle cluster is enhanced with respect
to the final result of the previous frame and therefore both
the classifier’s output and the final result are improved in the
new frame. The localization accuracy is further enhanced in
subsequent frames when the needle cluster grows further and
estimates the true trajectory more accurately.

Table 2 describes the accuracy of the detected needle using
the mean, standard deviation (SD) and root-mean-square
(RMS) of the error. Results are evaluated for angular devia-
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Table 2 Comparison of the
needle localization results on
porcine femoris muscle in vivo

Method Success Δθ σΔθ RMS(Δθ) Δp σΔp RMS(Δp)

CASPER 100% 1.28◦ 1.09◦ 1.68◦ 0.82 mm 1.21 mm 1.47 mm

Offline CASPER 100% 1.81◦ 1.34◦ 2.25◦ 1.53 mm 1.43 mm 2.09 mm

Method of [18] 84% 2.36◦ 1.57◦ 2.84◦ 1.78 mm 1.29 mm 2.20 mm

Hough 14% 0.93◦ 0.33◦ 0.99◦ 1.42 mm 0.67 mm 1.57 mm

tion against the gold standard Δθ , and the tip offset from
the detected trajectory Δp. Results are averaged over 36
sequences of images used during each online evaluation as
well as the involved permutations.

We compared our method with respect to the state-of-
the-art needle detection method based on the tremor motion
[18] and an appearance-based detection method. As shown
in Table 2, 16% of the data required manual identification
of the initial portion of the shaft for [18], as the automatic
method (presented in [18]), failed to select it correctly. For a
fair comparison of fully automaticmethods, these are ignored
and 84% success rate was reported for [18]. Our proposed
method outperforms the previous approach with statistically
significant improvement in both angular (P < 0.0005) and
tip deviation (P < 0.002), obtained using Mann–Whitney–
Wilcoxon test. The method is also compared against an
appearance-based approach relying on visible needle fea-
tures, by applying a tuned Hough transform at the insertion
angle. The Hough transform-based method was tested on
all images and the error was reported only for cases with
angular deviation Δθ ≤ 10◦. Although the average errors of
shaft angle and tip were 0.93◦ and 1.42 mm respectively, the
method only succeeded in five cases where the needle trajec-
tory was totally visible in the static image. This shows the
challenge of needle localization based on intensity features
only.

Offline CASPER accounts for the classifier’s output (for-
mulated by Hough), just before spatial distribution analysis
and online learning update. As summarized in Table 3,
comparison of offline CASPER against [18] shows the
importance of feature selection, i.e., the spatiotemporal
neighborhood and the direction of the flow. Comparison
against CASPER shows the importance of spatial analysis
andonline learningupdate in the overall performance.Offline
CASPER versus [18] shows highly significant improvement
(P < 0.01) in terms of the angle accuracy and signifi-
cant improvement (P < 0.05) in terms of the tip accuracy.
CASPER versus offline CASPER shows highly significant
improvement in both angle and tip, confirming the role of
the online update.

Figure 8 demonstrates the performance of CASPER ver-
sus themethodof [18] for three different frames. Frameswere
purposefully selected from the sequence where only tremor
was present, i.e., for a window of time when the needle was

Table 3 P values of Mann–Whitney–Wilcoxon test on the results of
offline CASPER against CASPER and the method of [18]

CASPER Method of [18]

Angle 1.90E–03 0.0093

Tip 2.52E–03 0.0171

stationary and held by hand. Windows of previous frames
were concatenated to produce a longer time span. The local-
ization result of [18] is relatively close to that of CASPER
initially, but it deviates further as the insertion in progress-
ing. This is mostly due to the fact that CASPER analysis is
performed on each new frame relative to the previous two
frames, therefore changes during insertion are detected more
reliably compared to the method in [18].

Discussion and conclusion

Wehave proposed a needle tracking approach for ultrasound-
guided interventions based on novel spatiotemporal features
and incremental training. Differential optical flow and spa-
tiotemporal features, incorporate neighboring pixels and
could mitigate the effects of subtle tremor motion of a
handheld transducer. Micro-motion descriptors are com-
puted from the magnitude-weighed phase of the spatially
decomposed data using Gabor filters. The self-supervised
tracking framework improves the performance in the subse-
quent frames and updates the adaptive training dataset.

Note that anymethod based onmotion detection in general
requires relatively small variations from frame-to-frame for
its best performance. In this work, several steps were taken
to mitigate the potential effects of other sources of motion
in the detection. The tuned oriented filters in spatial decom-
position, the specific frequency channels in spectral features
computation, and the spatial distribution analysis in the final
step, all aim to mitigate the effects of other sources such as
intrinsic body motion.

In addition to the accuracy, online learning is especially
helpful for tracking, where new samples (i.e., detected false
positives) are adaptively added to the training, with each new
frame. Investigation of decremental learning could be inter-
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Fig. 8 Localization results shown for three frames. CASPER output (white solid line), the method of [18] (red dashed line) and gold standard
(green line) are overlaid on the B-mode image

esting, by adjusting the false positives added to the model,
iteratively.

The current clinical demand is inclined toward 2D ultra-
sound imaging with standard needle/apparatus. Our focus in
this study was specifically on curved array transducers as
they are more challenging, with fewer solutions compared to
linear array transducers which benefit from beam steering.
Unlike the previous works on detecting tremor for needle
detection, the proposedmethod relaxes the strict requirement
of a portion of visible needle near the insertion site that is
typical of curvilinear transducers, so it could possibly work
on other transducer geometries as well.
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