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Abstract
Purpose This article examines feature-based nodule
description for the purpose of nodule classification in chest
computed tomography scanning.
Methods Three features based on (i) Gabor filter, (ii) multi-
resolution local binary pattern (LBP) texture features and (iii)
signed distance fused with LBP which generates a combina-
tional shape and texture feature are utilized to provide feature
descriptors of malignant and benign nodules and non-nodule
regions of interest. Support vector machines (SVMs) and
k-nearest neighbor (kNN) classifiers in serial and two-tier
cascade frameworks are optimized and analyzed for optimal
classification results of nodules.
Results A total of 1191 nodule and non-nodule samples
from the Lung Image Data Consortium database is used for
analysis. Classification using SVM and kNN classifiers is
examined. The classification results from the two-tier cas-
cade SVMusingGabor features showed overall better results
for identifying non-nodules, malignant and benign nodules
with average area under the receiver operating characteris-
tics (AUC-ROC) curves of 0.99 and average f1-score of 0.975
over the two tiers.
Conclusion In the results, higher overall AUCs and f1-
scores were obtained for the non-nodules cases using any
of the three features, showing the greatest distinguishability
over nodules (benign/malignant). SVM and kNN classifiers
were used for benign, malignant and non-nodule classifica-
tion, where Gabor proved to be the most effective of the
features for classification. The cascaded framework showed
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the greatest distinguishability between benign andmalignant
nodules.

Keywords Lung nodules ·Computed tomography ·Features
extraction · Gabor · LBP · Classification

Introduction

Lung cancer is the secondmost common cancer and the lead-
ing cause of cancer deaths in both men and women in the
USA, claiming hundreds of thousands of lives each year.
In 2013 (the most recent year numbers available), 111,907
men and 100,677 women were diagnosed with lung cancer;
85,658 men and 70,518 women died due to lung cancer [1].
Globally, lung cancer remains the most commonmalignancy
with an estimated 1.8 million newly diagnosed cases in 2012
and 1.6 million deaths occurring that same year [1].

There are two main types of lung cancer, non-small cell
lung cancer (NSCLC) which accounts for 80–85% of all
lung cancers and small cell lung cancer (SCLC) [2]. Most
NSCLC lung cancers are detected after wide spreading and
advanced stages (i.e., stages III-IV). The highest recorded
5-year patient survival rates, at stage IIIA NSCLC, of 14%
are observed in the USA, while the 5-year survival rate is 8%
in Europe. The 5-year survival rate for people with stage IA
NSCLC in the USA is about 49%. At this stage, the nodule is
no larger than 3 cm across and has not invaded into the lymph
nodes or distant sites [2]. Ideal detection and diagnosis of
lung cancer are at stage 0, where the cancer is no larger than
2 cmacross andhas not invadeddeeper into other lung tissues.
The survival of lung cancer is strongly dependent on diagno-
sis [3]. Pulmonary nodules incidental detection has increased
with the use of CT [4]. As such, early screening, detection
and diagnosis of lung nodules using computed tomography
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Fig. 1 Block diagram of overall 4 steps of a lung CAD system

(CT) could assist in lowering the mortality rates of this very
serious cancer.

Computer-assisted diagnosis (CAD) systems have the
potential to improve the accuracy and consistency of malig-
nancy classificationwhen used as a secondary reference (e.g.,
second opinion) to the human expert using the same source
of data; i.e., the visible information in an image [5]. The
uncertainties that may affect the performance of CAD sys-
tems are similar to those of the human expert. Human versus
machine vision may be judged fairly if objects have unique
features.

A typical lung CAD system is a four major step sys-
tem that consists of: (a) CT acquisition and enhance-
ment (e.g., scan filtering); (b) lung tissue segmentation;
(c) candidate nodule detection; and (d) nodule classifica-
tion. In our constructed front-end image analysis CAD
system for lung nodule screening, these steps in addi-
tion to an active appearance nodule modeling stage before
detection and a nodule segmentation step are also imple-
mented [2]. Figure 1 illustrates the overall CAD block
diagram.

There is a rich literature under the various steps (e.g.,
[6–12]). Object description remains a major subject of inves-
tigation by researchers in the computer vision literature as
objects of interest are described in terms of its shape and
appearance [6,11,13–16].

The focus of this paper step (d), lung nodule classifica-
tion, specifically classifies detected candidates into one of
three categories: benign, malignant or non-nodule. We refer
to the following studies as a short summary to some of the
lung classification literature. Orozco et al. [14] used 11 char-
acteristics calculated from the wavelet transform and support
vector machines (SVMs) as classifier. Results obtained for
23 malignant nodules and 22 non-nodules tested reported
an AUC of 0.805. Ginneken et al. [17] used local texture
analysis for identifying and classifying lung abnormalities
such as tuberculosis. The k-nearest neighbor (kNN) clas-
sifier was implemented in a leave-one-out cross-validation
approach. Twodatasetswere used in the experimental results.
The first a sample of 147 images with textural abnormal-
ities and 241 normal images were selected. Sensitivity of
0.86 and area under the receiver operating characteristics
(AUC-ROC) of 0.820 were reported. The second dataset

consisted of 100 with abnormalities and 100 normal; sen-
sitivity of 0.90 and AUC-ROC of 0.986 were reported.
In [16], the gray-level co-occurrence matrix was used to
extract texture attributes and margin sharpness features were
used to characterize pulmonary nodules. Classification of
274 benign/malignant nodules of size 3 ≤ n ≤ 10mm
from the Lung Image Data Consortium database (LIDC)
was conducted. The kNN, multilayer perception and ran-
dom forest classifiers were examined. The highest AUC
of 0.820 was obtained using a fusion of the texture and
margin sharpness features with the multilayer perception.
Firmino et al. [18] segmented 1109 nodules of size 3 ≤
n ≤ 30mm from the LIDC database using region growing
and watershed transform. Of these nodules, an additional
379 were randomly chosen that had likelihood of malig-
nancy. The true nodules are detected by the rule-based
classifier and the likely malignant nodules by SVM. The
classification stage results were 93.9% sensitivity with 7.21
FP.

In this article, two texture features, Gabor and multi-
resolution local binary pattern (LBP) and a shape–texture
fusion feature descriptor using signed distance transform and
LBP, are extracted. These methods are implemented inde-
pendently and in the case of the feature fusion descriptor
serially, i.e., the obtained distance transform images results
for the nodules and non-nodules data undergoes LBP tex-
ture extraction to produce the shape–texture fused feature
descriptions. Since the focus of this manuscript is early clas-
sification, i.e., within stage 0, nodules of sizes between 3 and
10mm are considered. SVM and kNN classifiers are used to
assign class label: benign, malignant or non-nodule, to these
samples of sizes between 3 and 10mm extracted from the
LIDC.

Materials and methods

The overall schema of this paper is illustrated in Fig. 2. The
medical imaging repository database, LIDC, provided the
lung nodules and non-nodules from which feature extraction
and classification is conducted upon. In this section, each of
the steps in Fig. 2 will be described in terms of the analysis
conducted and reported in this article.
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Fig. 2 Overall schematic used in this paper

Nodules selection

The LIDC [20] consists of computed tomography scans with
identified and classified nodules by four radiologists. The
identified nodules are ranked according to numerous charac-
teristics, such as calcification, size, sphericity and likelihood
of malignancy.

In this work, the focus has been on nodule sizes between
3 and 10mm. The nodule database identifies likelihood of
malignancy by rank from 1 to 5 where [20,21]:

• Malignancy 1: Highly unlikely for cancer;
• Malignancy 2: Moderately unlikely for cancer;
• Malignancy 3: Intermediate likelihood;
• Malignancy 4: Moderately suspicious for cancer;
• Malignancy 5: Highly suspicious for cancer.

A database of lung nodules was created by extracting a
region of interest (ROI) around the nodule regions. In [8,19],
it was shown that the radial distance distribution, calculated
by summing the intensity values on concentric circles of vari-
ous radii centered at the nodules centroid, has an exponential
decay pattern. The radial distance distribution provided an
empirical measure for the spatial support of the nodules off
the centroid, in the form of a bounding box region of size

41 × 41 around the centroid. Nodule regions of this size
were cropped from the original CT scans.

From the LIDC study, a total of 1191 samples, each of size
41 × 41 pixels, were separated into one of three categories;
benign, malignant or non-nodule, with data distribution: 723
benign and 223 malignant nodules between 3 and 10mm,
and 245 non-nodules. Nodules were identified as benign, if
identified asmalignancy categories 1 or 2 and confirmed by at
least two radiologists. On the other hand, malignant nodules
were identified asmalignancy 4 or 5, with the same condition
of radiologists’ confirmation (i.e., at least two confirmed).
Nodules identified asmalignancy level 3were not considered
in either set of experiments. Non-nodules which consisted of
lungparenchyma, tissue andother anatomical structureswere
also extracted using the same bounding box size.

Features extraction

Invariance and distinction are the main conditions that the
success of object description centers around. Distinctive
characterization of the desired object needs to be produced
while robustly accommodating for variations in imaging
conditions. In this section, the multi-resolution local binary
pattern, signed distance transform and Gabor wavelets are
briefly described.
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Multi-resolution local binary pattern (LBP) The LBP is a
power texture feature descriptor that is invariant to mono-
tonic changes in gray scale and is illumination resistant, as
long as the absolute gray-level value differences are not badly
affected [22]. The original operator labeled the pixels of an
image by thresholding a 3 × 3 neighborhood of each pixel,
replacing it by a binary number. The LBP operator was also
extended to a circular neighborhood of different radius sizes
to overcome the limitation of the small original 3× 3 neigh-
borhood size failing to capture large-scale structures [22].
Each instance is denoted as (P, R), where P refers to the
equally spaced pixels on a circle of radius R. The parame-
ter P controls the quantization of the angular space and R
determines the spatial resolution of the operator.

In this paper, we use the extended LBP operator within
a (P, R) neighborhood with only uniform patterns, denoted
by LBPu2

PR . The LBP operator was applied to the original
and gradient images, where the Sobel operator was used to
generate the gradient magnitude image (Fig. 3). The param-
eters (P, R) utilized for the original and gradient image LBP
extractions were (8, 1) and (16, 2), respectively, as illustrated
in Fig. 3.

Signed distance transform The distance transform is a
shape-based feature descriptor that represents each pixel of
the binary edge map image with a distance to the nearest
obstacle pixel, i.e., a binary pixel. The LBP of the signed
distance image results is obtained in the same structuring as
shown in Fig. 3, thus resulting in a combinational shape and
texture feature descriptor representation of the nodules and
non-nodules.

Gabor filter Gabor filters are widely used in the com-
puter vision literature, especially in face recognition [23]. A
two-dimensional Gabor filter is a Gaussian kernel function
modulated by a complex sinusoidal plane wave as:

G (x, y)= f 2

πγη
exp

(
− x ′2+γ 2+y′2

2σ 2

)
exp

(
j2π f x ′ + ϕ

)
,

with x ′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ , where
f is the frequency of the sinusoidal factor, the phase offset
is ϕ and γ is the spatial aspect ratio.

Fig. 3 Block diagram of generating the LBP for an example nodule

The number of frequencies is given by F at different
wavelet points with number of orientations Q. The param-
eter F is set to 5 and Q is set to 8 resulting in 40 filters
in total used to represent each nodule and non-nodule. Fig-
ure 4 depicts sample Gabor and LBP features obtained for
malignant, benign and non-nodules from the LIDC data.

The feature vectors depicted in Fig. 4 have been trun-
cated and do not show the entire length of the descriptors
used in this work. The features are not scale invariant, as
such the feature vectors are normalized to have zero mean
and unit variance. From the shown feature information, it
can be seen that the non-nodules have noticeable discrepan-
cies over the malignant and benign nodule cases, especially
in the case of the Gabor features. This is confirmed by the
low pairwise Pearson correlation coefficient, where malig-
nant versus benign is −0.02, malignant versus non-nodule is
−0.08 and benign versus non-nodule is −0.04 for the Gabor
feature depicted.

Classification

There are mainly two types of classification approaches:
parametric and nonparametric approaches. In this work,
classification was performed using the nonparametric kNN
[24] and the parametric SVM [25]. The classification prob-
lem under consideration discriminates among three mutually
exclusive classes {benign, malignant or non-nodule}. Two
frameworks are investigated to solve this problem:

(a) Proposed multi-class classifier This aims to solve the
lung classification problem as 3 simultaneous classes
identification. A conventional 3-class classifier is trained
to directly assign the probe sample to one of the target
classes, see Fig. 2.

(b) Proposed cascade classifier Unlike the conventional
multi-class implementation, the two-tier cascaded binary
classifiers framework splits the sample assignment across
two sages. The first classifier (denoted as the C1 clas-
sifier) discriminates between nodule and non-nodule
samples. If the preceding classifier labels the probe
samples as nodules, these samples will be sent to the
second-tier classifier (denoted as the C2 classifier) to
further distinguish the same as benign or malignant, see
Fig. 2.

Classifier settings Two main components are required in
designing the kNN classifier: a distance measure and the
hyperparameter k. To select a distance measure, we conduct
a comparative analysis between Euclidean and Mahalanobis
distancemeasures. The hyperparameter, k, is selected using a
cross-validation process that examines which of 1 ≤ k ≤ 35
neighbors to obtain “the best k value.”
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Fig. 4 Sample LBP (red) signed distance LBP fusion (blue) and Gabor (green) features to represent, a malignant, b benign and c non-nodules

For the parametric SVM approach, the LBP-based fea-
tures are used to train a radial basis function (RBF) kernel
SVM classifier. The nonlinearity is chosen to transform the
two types of LBP-based features into a higher-dimensional
space for better discrimination. The two hyperparameters of
the RBF-SVM, i.e., regularization parameter, and the param-
eter that configures the sensitivity to differences in feature
vectors, are chosen using a cross-validation process. On the
other hand, theGabor-based features vector is already a high-
dimensional vector (≈17,000). As such, it is unnecessary
to conduct higher-dimensional space transformation using a
kernel-based SVM. Thus, the linear SVM classifier is uti-

lized instead. In this case, only one hyperparameter needs
to be tuned, the regularization parameter, which is also esti-
mated using a cross-validation process.

Results and discussion

Results in this work is based on the LIDC database, where
1191 total samples were annotated into one of three cate-
gories; benign (B), malignant (M) or non-nodule (N ). The
data distribution is as follows: 723 benign and 223 malignant
nodules between 3mm ≤ n ≤ 10mm and 245 non-nodules.
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Fig. 5 Examples of ROC curves of the multi-class SVM and kNN classifiers for different features: a, b LBP, c, d signed distance LBP fusion and
e, f Gabor

Two sets of experiments are conducted, in the instance of
nodule categorization: the first, a multi-class classification
framework utilizes 220 nodules from each of the classes: B,

M and N ; the second framework a two-tier cascaded frame-
work used 490 nodule and non-nodule samples in the first
tier, i.e., classifier 1 (C1) classifier, and 440 nodules sam-
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Table 1 Means and std of
different performance metrics
for the proposed multi-class
SVM classifier

Metric Feature Benign Malignant Non-nodule Micro Macro

AUC-ROC LBP 0.82±0.012 0.80±0.011 0.99±0.001 0.89±0.006 0.87±0.007

SLBP 0.79±0.014 0.80±0.012 0.96±0.004 0.86±0.006 0.85±0.007

Gabor 0.85±0.012 0.85±0.011 0.99±0.001 0.92±0.005 0.90±0.007

f1-score LBP 0.64±0.022 0.57±0.024 0.91±0.007 0.71±0.013 0.71±0.014

SLBP 0.58±0.026 0.63±0.023 0.84±0.010 0.69±0.014 0.68±0.015

Gabor 0.65±0.023 0.66±0.020 0.95±0.005 0.76±0.013 0.76±0.014

Table 2 Means and std of
different performance metrics
for the proposed multi-class
kNN classifier

Metric Feature Benign Malignant Non-nodule Micro Macro

AUC-ROC LBP 0.74±0.021 0.70±0.016 0.94±0.011 0.76±0.013 0.79±0.011

SLBP 0.67±0.030 0.69±0.027 0.87±0.016 0.75±0.018 0.74±0.017

Gabor 0.81±0.016 0.80±0.018 0.99±0.002 0.90±0.008 0.87±0.011

f1-score LBP 0.45±0.058 0.40±0.051 0.72±0.016 0.56±0.022 0.52±0.027

SLBP 0.47±0.045 0.51±0.037 0.66±0.048 0.54±0.026 0.55±0.027

Gabor 0.63±0.027 0.52±0.041 0.96±0.008 0.71±0.019 0.70±0.021

Table 3 Means and std of
different performance metrics
for the proposed cascade SVM
and kNN classifiers

Metric Feature SVM kNN

C1 C2 C1 C2

AUC-ROC LBP 0.98±0.003 0.98±0.005 0.95±0.011 0.59±0.04

SLBP 0.95±0.008 0.97±0.007 0.91±0.014 0.51±0.04

Gabor 0.99±0.003 0.99±0.002 0.99±0.001 0.55±0.034

f1-score LBP 0.94±0.006 0.95±0.022 0.84±0.012 0.59±0.04

SLBP 0.88±0.012 0.93±0.029 0.78±0.018 0.47±0.080

Gabor 0.99±0.004 0.96±0.020 0.98±0.006 0.48±0.045

ples (i.e., benign and malignant) in the second tier, classifier
2 (C2). The distributions of the nodule/non-nodule samples
handle the imbalance of data samples per class. For the hyper-
parameters tuning, a validation set (20 samples per class) is
used.

In the following experiments, leave-one-out cross-
validation (LOOCV) method is adopted to evaluate the pro-
posed approaches. Also, two types of performance measures
(metrics) are computed: the area under the receiver operat-
ing characteristics (AUC-ROC) curves and the f1− score =
(2 × precision × recall/(precision + recall)).

Multi-class classifier evaluation

The first experiment is conducted to test the 3-class SVMand
kNN classifiers. To evaluate this approach, three methods are
used: (1) Calculation ofmetrics separately for each class (i.e.,
one vs. others). (2) Calculation of global metrics (‘micro’)
by counting the total true positives, false negatives and false
positives in the three classes. (3) Computation of metrics for
each class, and obtaining the unweighted mean (‘macro’).

Figure 5 illustrates examples of the ROC curves of the
SVM and kNN classifiers using the three types of features.
To ensure the generality of the model, the random sampling
process of 220 samples per class is repeated 100 times, and
LOOCV is performed each time. Then, the mean and stan-
dard deviation (std) are calculated for each metric.

Tables 1 and 2 show values of AUC-ROC and f1-score,
which confirm that discriminating non-nodule from other
samples is easier than discriminating benign from malig-
nant samples. Also, the results highlight that theGabor-based
features using SVM classifier is more informative than the
LBP-based features. kNN results using Euclidean andMaha-
lanobis distance measures showed the Euclidean to provide
overall better AUC-ROC and f1-scores for all features, as
such only the kNN Euclidean is considered in subsequent
analysis and figures are shown only using this distance mea-
sure in Fig. 5.

Cascade classification evaluation

The second experiment is conducted to test the two cascaded
binary classifiers (C1 and C2). To evaluate this approach,
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Fig. 6 Examples of ROC curves of the cascade SVM and kNN classifiers for different features: a, b LBP, c, d signed distance LBP fusion and e,
f Gabor
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the metrics are separately calculated for each class. Table 3
shows the values for AUC-ROC and f1-score for both SVM
and kNN frameworks. Figure 6 illustrates the ROC curves
of this approach using the three types of features. Similarly,
the random sampling process of 490 samples is repeated 100
times and LOOCV is performed each time. Then, the mean
and standard deviation are calculated for each metric. Fig-
ure 6 depicts sample results for the SVM and kNN cascaded
framework.

The multi-class framework should distinguish simultane-
ously between the non-nodules and the specific categoriza-
tion of nodule diagnosis (i.e., benign or malignant), causing
the likelihood of false negatives of the nodule classes to
be high. In the cascade approach, the classification of non-
nodules as well as nodules was more efficient because false
negatives in the first stage were reduced; thus, more true
nodule samples were carried-over to the second-tier classifi-
cation. Thus, increased AUC-ROC and f1-score are reported
for the nodule classes.

The features are extracted from each data sample accord-
ing to certain manually predefined algorithms (e.g., LBP and
Gabor) based on the expert knowledge. These parameter fea-
tures are commonly known as handcrafted features. Themain
limitation of the proposed approach is when another dataset
is used, these algorithms’ parameters [e.g., (P, R) of LBP
and (F, Q) of Gabor] may need to be re-tuned to gener-
ate a new set of discriminative features, especially for the
benign and malignant classes when samples similarities are
minimal. Learned features can assist in overcoming the man-
ually tuning parameters procedure. The learned features are
derived from an image database through a training procedure
for the purpose of classification, for model generality differ-
ent databases need to be considered. Thus, the classifiers’
hyperparameters (e.g., regularization parameter of SVM and
k of kNN) are estimated using the information frommultiple
databases instead of a single set which may cause biasing,
and this will be examined in the future work.

Conclusion and future work

In this paper, we investigated the effects of texture and shape
analysis using LBP, Gabor and a signed distance LBP fusion
features descriptors. SVM and kNN classifiers were used
for benign, malignant and non-nodule classification, where
Gabor-based cascaded SVM provided the highest perfor-
mance, as shown from an overall AUC-ROC of 0.99 and
f1-score of 0.975. To the best of the authors’ knowledge,
these results are the best performance obtained using the
LIDC database.

Future directions are geared toward generating a larger
malignancy nodule database from the LIDC and other clin-
ical data to expand our work. The utilized feature vectors

in this paper have hundreds (e.g., LBP) or thousands (e.g.,
Gabor) of features; however, these high-dimensional fea-
tures not only slow down the learning process, but can also
cause the classifier to over-fit the training data, as irrelevant
or redundant features may confuse the learning algorithm.
A feature selection method (e.g., PCA) can be applied as a
solution to this problem; a subset of features with the highest
impact would be considered for classification. Thus, further
experimentations with this approach in terms of training and
testing data will be conducted. We are also aiming to exam-
ine other feature descriptor approaches and classifiers, such
as deep features and convolutional neural networks [26,27],
to compare with the results obtained in this paper. The meth-
ods utilized in this paper can also be used for false-positive
reduction after candidate detection and will be tested in our
future endeavors.
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