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Abstract
Purpose 4D ultrasound imaging of the fetal heart relies on
reconstructions fromB-mode images. In the presence of fetal
motion, current approaches suffer from artifacts, which are
unrecoverable for single sweeps.
Methods We propose to use many sweeps and exploit the
resulting redundancy to automatically recover from motion
by reconstructing a 4D image which is consistent in phase,
space, and time. An interactive visualization framework to
view animated ultrasound slices from 4D reconstructions on
arbitrary planes was developed using a magnetically tracked
mock probe.
Results Wefirst quantified the performance of 10 4D recon-
struction formulations on simulated data. Reconstructions of
14 in vivo sequences by a baseline, the current state-of-the-
art, and the proposed approachwere thenvisually rankedwith
respect to temporal quality on orthogonal views. Rankings
from 5 observers showed that the proposed 4D reconstruc-
tion approach significantly improves temporal image quality
in comparison with the baseline. The 4D reconstructions of
the baseline and the proposed methods were then inspected
interactively for accessibility to clinically important views
and rated for their clinical usefulness by an ultrasound spe-
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cialist in obstetrics and gynecology. The reconstructions by
the proposed method were rated as ‘very useful’ in 71% and
were statistically significantly more useful than the baseline
reconstructions.
Conclusions Multi-sweep fetal heart ultrasound acquisi-
tions in combinationwith consistent 4D image reconstruction
improves quality aswell as clinical usefulness of the resulting
4D images in the presence of fetal motion.

Keywords Ultrasound · Fetal heart · Reconstruction

Introduction

Fast acquisition rates and non-invasiveness of ultrasound
(US) imaging makes it an ideal modality for screening the
fetal heart to detect congenital heartmalformation. Tradition-
ally, the functioning of fetal heart is inspected in real-time
during B-mode imaging. Guidelines recommend examina-
tion of the four-chamber and outflow tract views [1]. Yet,
prenatal detection rates vary widely, mainly due to differ-
ences in examiner experience, maternal obesity, transducer
frequency, gestational age, amniotic fluid volume, and fetal
position [1]. 4D US imaging simplifies the assessment of
outflow tract, allows for a more detailed examination, and
contributes to the diagnostic evaluation in case of complex
heart defects [1,4].

Spatio-temporal image correlation (STIC) [13] is a well-
known 4D US reconstruction approach for fetal heart.
Similarly to earlier works [10], STIC builds on very slow,
single sweep US acquisitions; e.g., 1500 frames of roughly
25◦ elevational field of view in 10s. Then, autocorrelation
is used to estimate the fetal heart rate (HR) and the frames
are sorted based on their resulting phases. With this, all heart
phases (i.e., within ≈0.5 s) exist within a probe sweep of
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merely≈1◦, and interpolation on a fixed grid after sorting can
yield successful reconstructions—but only in the absence of
any external motion. Fetal organ screening has to take place
between 18 and 22weeks of gestation, a time when move-
ments are already an important sign of fetalwell-being. These
movements and the different and changing position of the
fetus’ body and extremities may turn fetal heart examination
into a difficult task. This exacerbated bypatient breathing cre-
ates significant artifacts [16,18] with no straightforward way
of compensating motion, since each sweep angle is acquired
only once. To the best of our knowledge, there has been
no reports on correcting fetal motion for STIC fetal heart
reconstructions. Accordingly, mothers are asked to hold their
breath and operators wait for a period of calmer fetal activity,
which often requires several trials, and potentially yielding
no successful 4D reconstructions. It is also quite operator
dependent; for instance, acquisitions by non-STIC experts
show more motion artifacts (42%) than those by experts
(16%) [16].

With the advance of 2D-matrix arrays and ultrafast imag-
ing [2,15], it may be possible to collect volumes at suffi-
ciently high frame rates to reconstruct the fetal heart, e.g.,
within one beat. However, the image quality of individual
ultrafast frames are often low, and such technology still has
a long way to come to obstetrics applications in particular
regarding fetal safety concerns.

We propose a method for spatio-temporal fetal heart
reconstruction using image sequences from rapid sweeps
of common mechanically swept probes. These yield sev-
eral volumes where fetal motion can potentially be resolved.
Nonetheless, sophisticated reconstruction techniques are
required, since the swept probes are slow compared to the
fetal heart rate; i.e., the entire heart at a phase cannot be
captured in a single sweep (e.g., 5–12 sweeps/s, 2.5 beats/s
results in only 2–4.8 sweeps per heartbeat). With other
imaging modalities, a general approach to such a 4D recon-
struction problem from continuously acquired individual 2D
images is to reorder the slices based on their consistency
within a reconstruction [10,13,17]. External gating is used
to avoid motion and as trigger signal to extract the exact
phase. For instance, adult cardiac 4D MR reconstruction is
supported by ECG and respiratory signals [11]. However,
these signals cannot be reliably extracted for fetus [12] and
HR estimation directly from the US images avoids chang-
ing clinical practice. For fetal cardiac MRI, such self-gating
has been based on optimizing the time-entropy image met-
ric and assumes a piecewise-constant heart rate [5]. Yet this
approach cannot compensate for any non-cardiac motion.

For respiratory motion, 4D US reconstruction has been
studied based on extracting a gating signal per slice position
by dimensionality reduction and then matching these signals
across slices [17]. This relies on gathering motion statis-
tics per slice and hence might not be robust to non-periodic

motion, e.g., drift. In order to improve reconstructions, image
registration has also been used, although this is often compu-
tationally very expensive. For example, correction of fetal 3D
MRIsusing slice-to-volume rigid registrationof local patches
required 40min on multiple GPUs in [6]. Correction of adult
3D cardiac MRIs, after gating based on ECG and breathing
belt signals, took 3h on a 16 workstation cluster in [11].

We performed a preliminary test to compensate for fetal
motion by rigidly registering the frames based on the regions
away from the heart (to minimize distortions from heart-
beats) using normalized cross-correlation. This, however, did
not yield satisfactory motion compensation. Therefore, we
herein resort to an approach of selecting suitable image slices
from repeated acquisitions. We focus on the consistency of a
4D reconstruction and the detection of outliers due tomotion.
A large range of selection criteria was first quantitatively
evaluated on simulated US sequences including motion. For
the in vivo data, in order to boost the statistical power, 3 of
these methods were identified and applied: a baseline, the
state-of-the-art, and our proposed method. Temporal visual
quality of the reconstructions was ranked by 4 technical US
experts in addition to an US specialist in obstetrics and gyne-
cology. In contrast to our earlier study in [14], herein we
additionally (i) investigate the effects of US-specific filtering
on reconstructions and of a L1-norm phase constraint, which
is seen to yield better results; (ii) have increased our in vivo
fetal heart dataset by 40%; (iii) developed an interactive inter-
face to view animated planes from 4D reconstructions; and
(iv) have included additional user studies and evaluations on
temporal consistency and clinical usefulness.

Material

Simulated data

To support method development based on some ground-
truth data, B-mode images were simulated from a numerical
phantom (see Fig. 1a) based on [9]. This method uses
GPU ray tracing to simulate US beam propagation and
interactions with given anatomical surface representations
to accurately simulate typical US attenuation, reflection,
refraction, and shadowing effects present in US images.
Simulating the probe positions based on a 3D probe geom-
etry and the mechanical sweeping action, 3658 frames
at an image frequency of fi = 279 frames/s (fps) were
generated. The numerical phantom consisted of an ellip-
soidal object representing a fetal heart with semi-axes
of a = [9.9 11.5 12.3]mm. The size of this ellipsoid was
changed sinusoidally by a±20% to simulate heartbeat. Reg-
ular HR was set to 143.08 beats/min (bpm), leading to 117
frames/beat. Irregular HR was modeled by increasing then
decreasing the HR by 5% over 1500 frames (5.4 s) between

123



Int J CARS (2017) 12:1307–1317 1309

Fig. 1 Illustration of a the in silico phantom geometry with a transducer plane, b a simulated US image and c the simulated combined motion
over time

Table 1 Acquisition details of in vivo data listing gestation age (GA)
in weeks, acquisition frequency (acqF) in sweeps/s, sweep angle (swA),
number of frames per sweep (K ), total number of sweeps (S), total num-
ber of frames (B = K S), and total acquisition time (acqT). Extracted

heart rate fh using autocorrelation (‘Methods’ section) and deduced
beats per sequence (b/sq) and sweeps per beat (sw/b). Percentage of
inliers during outlier removal (‘Methods’ section)

No GA acqF swA K S B acqT fh Inlier

w sw/s o s bpm b/sq sw/b %

#1 25 9 25 31 128 3968 14.2 148.8 35 3.6 100

#2 25 9 25 31 115 3565 12.8 153.9 33 3.5 100

#3 20 7 45 55 128 7040 18.3 153.8 47 2.7 78

#4 25 7 25 26 56 1456 8.0 145.1 19 2.9 93

#5 25 9 25 26 107 2782 11.9 147.7 29 3.7 95

#6 20 12 25 31 128 3968 10.7 158.7 28 4.5 100

#7 20 12 25 31 128 3968 10.7 147.4 26 4.9 100

#8 20 6 45 55 98 5390 16.3 167.0 45 2.2 100

#9 20 5 65 79 77 6083 15.4 122.4 31 2.5 99

#10 20 5 65 79 57 4503 11.4 128.6 24 2.3 100

#11 20 5 65 79 128 10,112 25.6 127.6 54 2.4 65

#12 25 8 60 43 58 2494 7.3 155.8 19 3.1 100

#13 25 8 60 43 68 2924 8.5 157.6 22 3.0 100

#14 20 8 60 43 128 5504 16.0 143.6 38 3.3 100

Min 20 5 25 26 56 1456 7.3 122.4 19 2.2 65

Mean 21 8 44 47 100 4554 13.4 147.0 32 3.2 95

Max 25 12 65 79 128 10,112 25.6 167.0 54 4.9 100

139.5 and 146.5bpm. Fetal motion was simulated by apply-
ing a [4 8 3]mm translation and a [4 3 8]◦ rotation linearly
during frames [701, 1100] and reverting these during frames
[1701, 2200], as shown in Fig. 1c. Simulations included 3
scenarios: (Sim1) irregular HR, no global motion; (Sim2)
regular HR, with global motion; and (Sim3) irregular HR,
with global motion.

In vivo data

Fourteen US sequences from 8 fetus at 20–25weeks of ges-
tation with mean ± SD heart semi-axes of [13.4 9.8 11.5] ±
[3.2 1.8 2.3]mm were acquired. B-mode images were con-
tinuously acquired at fi ∈ [182, 395] fps (i.e., 75–194
frames/beat) during 56–128 motorized forward–backward

sweeps, each covering 25◦–44◦ and consisting of 26–44
frames (i.e., 19–54 beats/sequence), see Table 1.

Methods

Figure 2 illustrates the problem of reconstructing P 3D
images of heartbeat phases from a sequence of B B-mode
images (also called frames) continuously acquired at K dis-
crete angles in S sweeps. The frame from sweep s and angle k
is denoted as Iks . Our reconstruction is based on first estimat-
ing the dominant HR from the sequence of midframes of the
sweeps I�K/2�

s , and then selecting frames for 4D reconstruc-
tion according to phase, spatial, and temporal consistency
criteria. In contrast to the baseline method [13], the devised
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Fig. 2 Problem overview: Reconstruct P 3D volumes of different heartbeat phases from a sequence of B images from S sweeps at K discrete
angles

reconstructionmethods allow selected frames to deviate from
the estimated dominant HR if this improves spatial (or tem-
poral) consistency.

Mean heart rate (HR) estimation

We tested two approaches (A1, A2) for automatically esti-
matingHR fh (Hz).ApproachA1 is based on the autocorrela-
tion of the intensity profile of a pixel x over time (I�K/2�

s (x)).
From the mean autocorrelation of all pixels, the power spec-
trum is then extracted via Fourier transform, where the peak
estimates the dominant HR. For approachA2, the image sim-
ilarity J(i, j) between every midframe I�K/2�

i and I�K/2�
j is

computed using various image similarity metrics (herein, the
correlation coefficient (CC), negativemean square difference
(MSD), mutual information (MI), and US-specific measures
SK1, SK2, CD1, CD2 from [3]). The power spectra of each
row of matrix J, computed via Fourier transform, are then
averaged to incorporate the information from the compar-
isons of all frames, to increase signal-to-noise ratio, and to
provide thedominant heart rate evenwithmotion.After band-
pass filtering the resultingmean spectra between an expected
fetal HR of [100, 200] bpm, the maximum yields the domi-
nant HR fh .

4D reconstruction

Based on the estimated HR fh , we estimate the phase value
qb ∈ [0.5, P+0.5] associatedwith frame Ib (acquired at time
t = b/ fi ) from the fractional part of the heartbeats (t fh), i.e.,
qb = (P − 1)(t fh − �t fh�) + 0.5. The frame from sweep s
and angle k is denoted as Iks with associated estimated phase
qks . For reconstructing P 3D phase images, P × K sweep
indices (called š p,k) need to be determined.

Next we describe the baseline (M0) and the devised
reconstruction methods (M1–M6), which employ increasing
levels of sophistication. Baseline method M0 selects frames
whose estimated phases qks are closest to the desired phases
p [10,13]. Greedy methods M1-M3 first determine for each
desired phase p a reference B-mode image Imšp,m and then
sequentially minimize the inconsistency to spatially neigh-
boring frames, i.e.,

š p,k+1 = argmin
s∈Sp,k+1

d
(

Ikšp,k , Ik+1
s

)

for k = {m,m + 1, ..., K − 1,m − 1,m − 2, ..., 1} (1)

where d is an image dissimilarity measure (d−CC, dMSD,
d−MI, d−SK1, d−SK2, d−CD1, d−CD2) and Sp,k = {s ∈ S :
|qks − p| < 0.5} is the set of sweep indices of frames at angle
k belonging to phase p. In M1, Imšp,m is the first frame at posi-

tion m=1, which belongs to phase p; i.e., š p,1 = minSp,1.
M2 is similar to M1, apart from using the midframe as ref-
erence (m = �K/2�). In M3, the most typical midframe is
used as the reference, i.e., themidframewhich has the highest
correlation with all other midframes within the phase range
Sp,�K/2�:

š p,k = argmin
s∈Sp,k

∑
r∈Sp,k

d−CC

(
Iks , Ikr

)
for k=�K/2�. (2)

In M4–M6, different cost functions are globally mini-
mized using dynamic programming for determining the best
P × K frame selection indices š p,k . M4 balances the spatial
inconsistency cost cSk (s, r) = d(Iks , Ik+1

r ) with the absolute
or squared phase difference cost [cPp,k(s)]n = |qks − p|n , for
n ∈ {1, 2}:

č fh = min
s,r∈S

P∑
p=1

(
K∑

k=1

[
cPp,k(s)

]n + α

K−1∑
k=1

cSk (s, r)

)
(3)

where desired phase p depends on the estimated HR fh and
weight α is automatically determined from the relationship
between the typical phase difference values and spatial incon-
sistency costs. In detail,α = ∑

k |cPk /cSk |/K with cPk denoting
the mean of cPp,k for the R = 10 closest observations to

the desired phase p and cSk being the mean of cSk for the R
most similar spatial neighbors. M5 is similar to M4, while
also allowing variations in the estimated HR fh through an
additional grid-search over 1/ f ∈ [1/ fh ± 0.05] s to min-
imize the combined cost č fh . M6 extends Eq. (3) with an
additional temporal consistency term cTp,k(t, s) = d(Ikt , Iks )

where Ikt and Iks are temporal neighbors in the sense that they
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Table 2 Overview of methods
M0 to M6

Name fh Cost Optimization type Reference image Imš

M0 Fixed cP Global n/a

M1 Fixed cS Sequential m = 1, cP < 0.5, min(s)

M2 Fixed cS Sequential m = �K/2�, cP < 0.5, min(s)

M3 Fixed cS Sequential m = �K/2�, cP < 0.5, min(
∑

d−CC )

M4 Fixed cP, cS Global n/a

M5 Opt. cP, cS Global n/a

M6 Fixed cP, cS, cT cT sequential n/a

Optimization included phase difference cP, spatial inconsistency cost cS, and temporal inconsistency cost cT

will belong to neigboring phases in the reconstruction, i.e.,
t ∈ Š(p−1)modP ,k and s ∈ Šp,k :

č fh = min
s,r∈S

P∑
p=1

(
K∑

k=1

[
cPp,k(s)

]n + α

K−1∑
k=1

cSk (s, r)

+β

K∑
k=1

cTp,k(t, s)

)
(4)

where weight β is also automatically determined by using
β = ∑

k |cPk /cTk |/K where cTk denotes themeanof cTp,k for the
Rmost similar temporal neighbors. Equation (4) is optimized
iteratively, after initializing it by a phase reconstructed via
Eq. (3). An overview of methods M0 to M6 is provided in
Table 2.

Outlier removal (OR)

Having observed that motion leads to low CC values when
comparing images (see Fig. 4), we also tested all meth-
ods after removing low correlating sweeps—indicating those
acquired while the fetus was at a different location. We use
theCCmatrix J of themidframes, pick themidframewith the
lowest mean correlation to all others, and discard the associ-
ated sweep. This is repeated until the lowestmean correlation
is>0.5 or only 50%of sweeps are left. These thresholdswere
set empirically based on the observed pattern of overall mean
correlation values.

Image filtering (IF)

We also tested an US-specific filtering method to reduce the
impact of US speckles before the calculation of image simi-
larity methods. Assuming speckle as a multiplicative noise,
different filtering algorithms were compared in [7], where a
moving window using local statistics was reported to work
well regarding several metrics for vessel imaging. We use
this filter [8] with an empirically set filter size of 3.

Visualizing 4D reconstructions

Clinical examinations are performed on standardized views
and planes, which are not always easy to image during
acquisitions. These also proved difficult to find in 4D recon-
structions using standard graphical interfaces for image
viewing and rotation. Therefore, we developed a visualiza-
tion interface in which 4D reconstructions are loaded and
animated views from these are shown interactively on a plane
controlled by a magnetically tracked mock transducer. This
allows the physician to easily and intuitively manipulate the
viewing plane to find clinically relevant orientations.

Experiments and results

Estimating the heart rate

Gold-standard dominant HR for the in vivo data was esti-
mated by counting the number of heartbeats observed from
the heart wall between the first and the last visible beat on
M-mode images from the midframes, see Fig. 3b. 10–27
heartbeats, covering 30–87% of the sequence, could be iden-
tified for 4 in vivo cases. Hence, quantification differences
are likely to introduce small errors when compared to the
whole sequence.

Figure 4 illustrates the stages of our HR estimation pro-
cess. The correlation matrices of midframes are seen in
Fig. 4a, where variations from heartbeat and other motion
can observed as colored bands. The spectra from the autocor-
relation method A1 (Fig. 4c) provided better defined peaks
compared to deriving those with A2 from the CC matrices J
(Fig. 4b).

Table 3 lists the errors in automatic HR estimation for the
3 simulations and 4 in vivo sequences. Errors were below
0.8% for autocorrelation (A1), and below 4.7% for the image
similarity metrics (A2) except MSD for in vivo sequence #2
(16.9%). Among similarity metrics for A2, CC performed
consistently well. Hence, we used A1 for estimating HR for
all 4D reconstructions.
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Fig. 3 (Top) First midframe and M-mode image of midframes from column marked by yellow � and (bottom) Intensity: intensity values at pixel
location marked by yellow 	, and HR: sinusoidal illustration of estimated dominant HR for a Sim3 and b #1

Fig. 4 Illustration of heart rate (HR) estimation for (top to bottom)
Sim3 and in vivo #2, #3, #11. a Correlation coefficient matrix J between
midframes. Heartbeats introduce repetitive patterns with relatively high

correlation, while large motion causes decorrelation. b, c Power spectra
from b J and c autocorrelation method, with ground truth marked by
red × for Sim3 and #2

4D reconstruction of simulated data

We reconstructed P =8 phases. The performance for the sim-
ulations was quantified by combined motion errors. For this,

phase errors were converted to motion errors by assigning
each unit of phase difference to a position error equivalent
to mean motion of heart between two consecutive phases
(4.5 mm/P). To find a method which can cope with all 3
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Table 3 Gold-standard (GS)
heart rate (in bpm) and
difference (GS-estimation) for
estimation methods using (A1)
autocorrelation or (A2) image
similarities

Method Sequence

Sim1 Sim2 Sim3 #1 #2 #6 #7
GS 143.08 143.08 143.08 148.06 154.29 159.34 147.86

A1 0.00 0.00 0.00 −0.75 0.34 0.60 0.46

A2 CC 0.00 0.00 4.62 −0.75 −2.03 0.60 0.46

A2 MSD 0.00 0.00 0.00 −0.75 16.92 0.60 0.46

A2 SK1 0.00 −4.62 −4.62 −0.75 −2.03 0.60 0.46

A2 MI, SK2, CD1, CD2 0.00 0.00 0.00 −0.75 −2.03 0.60 0.46

Table 4 (Top) Table with mean absolute errors (in mm) for all 3 simulations (Sim123)

Sq. L2-norm L1-norm
IF OR -d M0 M1 M2 M3 M4 M5 M6 M4 M5 M6
× × CC 0.95 0.44 0.53 0.52 3.11 0.35 0.62 3.19 0.45
× × CD2 1.74 0.69 0.38 0.44 0.96 3.25 0.81 1.37 3.46 0.24
× × MI 1.19 0.83 1.09 3.33 4.47 2.71 2.13 4.26 0.48
× � CC 0.43 0.42 0.54 0.29 1.33 0.26 0.30 1.34 0.37
× � CD2 0.32 0.41 0.37 0.45 0.31 1.23 0.29 0.32 1.25 0.25
× � MI 0.38 0.48 0.56 0.34 1.42 0.35 0.32 1.42 0.54
� × CC 0.96 0.62 0.65 0.43 1.95 0.33 0.61 2.74 0.46
� × CD2 1.74 0.68 0.47 0.52 0.98 3.27 0.79 1.37 3.46 0.23
� × MI 0.69 0.56 0.62 3.29 4.59 1.32 1.46 4.13 0.46
� � CC 0.45 0.58 0.61 0.29 1.34 0.23 0.30 1.24 0.32

� � CD2 0.33 0.42 0.46 0.51 0.32 1.24 0.29 0.33 1.26 0.23
� � MI 0.41 0.53 0.59 0.30 1.43 0.32 0.31 1.37 0.47

Errors within 10% of the lowest error (0.23mm) are marked in bold. The accuracy of the baseline, state-of-the-art, and proposed method is 1.74,
0.37, and 0.23mm, respectively (highlighted by boxes). (bottom) Visualization of results for all simulations and their mean

simulation scenarios, methods were compared on the basis
of the mean error over all 3 simulations.

Table 4 lists the mean absolute error for all simulation
(Sim123) when applying methods M0–M6 using one of 3
image dissimilarity measures d on filtered (IF�) or not fil-
tered (IF×) images, including outlier removal (OR�) or not
(OR×), and measuring phase differences via the squared
L2 or L1 norm ([cP]n) in methods M4-M6. The highest
accuracy of 0.23 was achieved by three methods, namely
M6-L1 based on CD2-IF� with or without OR, and by M6-
L2 based on CC-IF� and OR�. Any M6-L1-CD2 method
achieved results within 10% of the minimum. The results
with and without filtering (IF) were highly correlated with
r ∈ [0.92, 0.99].Withoutmotion (Sim1), the errors were low

and OR had no impact as no outliers were detected. For sim-
ulations with motion (Sim2, Sim3), additional optimization
of the heart rate (M5)was counter-productive, while OR gen-
erally helped. Image similarity MI was the worst at detecting
inconsistent frames due to motion.

The mean runtime of M0, M2, or M6 with OR was 12,
191, or 285s, respectively, when reconstructing Sim3 on a
singleCPUusing non-optimizedMATLAB� code. PriorOR
reduced the image data by 31% and the runtime of M2 (M6)
by 58 (59)%. Image filtering IF increased the runtime by
28s. Figure 5 illustrates the frame selection.WithoutOR (left
plots),M6 avoids by itself the frames with additional motion,
while M0 (M2) includes many (a few) of these. The lines
connecting the selected frames per phase are more straight
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Fig. 5 Illustration of selected frames (dots connected by a line per phase) overlaid on motion trace for simulation Sim3, CD2 and (left) without
and (right) with outlier removal (OR) and image filtering (IF) showing (top to bottom) M0, M2, and M6 results

Fig. 6 Sample orthogonal slices and (bottom-right) M-mode image across 8 phases from reconstructions of Sim3 phase 3 for a ground truth, b
baseline, c state-of-the-art, and d proposed method

and less crossing forM6, supporting its higher reconstruction
accuracy.

Due to the consistent performance of M6–L1, the lower
runtime for OR� and the slightly better performance of IF�,
we selected M6–L1–CD2–IF�–OR� as the best method
of this study, which we call from now onwards proposed
method. In all further tests, the proposed method is com-
pared to the baseline (M0–OR×) and the state-of-the-art
method [14] (M2–CD2–IF×–OR�).

Figure 6 shows example reconstructions for Sim3. Arti-
facts can be observed for the baseline method across the
combined frames. Reconstructions by the state-of-the-art and
proposed method are very similar to the ground truth.

4D reconstruction of in vivo data

Temporal image quality The temporal quality of the 4D
reconstructions by the baseline, the state-of-the-art, and the
proposed method was blindly ranked by 5 observers (1
US specialist, 4 technical experts). Observers were shown
movies of orthogonal heart slices from the 4D reconstruc-

tions, as shown in Fig. 7a–c, and asked to rank these (1:
‘best’, 2: ‘second best’, 3: ‘worst’) with respect to tempo-
ral image quality. The mean (standard deviation (SD)) of the
ranks for these 3methods pooled for the 5 observerswas 2.83,
1.69, 1.42 (0.42, 0.69, 0.56), respectively. Figure 8a shows
the distribution of the 5 mean ranks from the observers, with
the result from the clinician following the overall pattern.
Observers agreed completely on the ranking for case #8 and
otherwise for 7 caseswhere the baselinemethod ranked third.
The median rank of baseline method was statistically signif-
icantly different than the other two methods at the <0.0001
level by Wilcoxon signed rank test. Figure 7 shows sample
reconstructions for #8,wheremisalignment artifacts aremost
reduced by the proposed method.

Clinical usefulness The 4D reconstructions of the baseline
and the proposed method were then inspected for their clin-
ical usefulness by the US specialist, who inspected the 4D
volume interactively using the developed visualization inter-
face, see Fig. 9. Clinically relevant planes, such as the four-
chamber and outflow tract views, were found and the clinical
usefulness of reconstructions on these planes was rated on
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Fig. 7 Example of in vivo reconstruction where all observers agreed on rank (#8) for a, d baseline, b, e state-of-the-art and c, f proposed method
for a–c phase 2 showing also (bottom-right) M-mode image across 8 phases and d–f difference phase 3–phase 2

Fig. 8 a Boxplots showing distribution of temporal image qual-
ity mean rank per observer for baseline (M0), state-of-the-art (M2)
and proposed method (M6) with green star for US specialist only.

b Probability distribution of clinical usefulness score from 1: ’very use-
ful’ to 5: ’not useful at all’

Fig. 9 Illustration of interactive tool for real-time extraction of planes from 4D volumes. (left) Position of electromagnetic tracker device, mock
probe and plane. (right) Extracted plane a near four-chamber view from #1 and b for aortic arch view from #11
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a Likert scale as 1: ‘very useful,’ 2: ‘somewhat useful,’ 3:
‘neutral,’ 4: ‘not very useful,’ or 5: ‘not useful at all.’ The
mean score was 2.6 and 1.4 for the baseline and the proposed
method, respectively. The reconstructions with the proposed
method were very useful in 71%, somewhat useful in 21%
and neutral in 7%, while the reconstructions by the baseline
methodwere not useful at all in 21%, see Fig. 8b. Themedian
scores of the two methods were statistically significantly dif-
ferent at the <0.012 level (Wilcoxon signed rank test).

Discussion and conclusion

We developed a fast reconstruction method, which improved
quality as well as clinical usefulness of 4D fetal heart US
images noticeable in comparison with neglecting the pres-
ence of fetal motion. Based on evaluations on simulated
data, the most successful method optimized phase, spatial
and temporal consistency in combination with a US-specific
similarity measure (CD2) and a less restrictive cost for phase
consistency (L1-norm).Note that this combined optimization
allows for deviations from a regular heart rate. Its perfor-
mance was confirmed by observer studies on in vivo data
when comparing it to the baseline and the state-of-the-art
method from the initial study [14].

The developed framework is suitable for continuous, long
acquisitions. Dissimilarity calculation of neighboring slices
(97% of runtime) is easily parallelizable. A real-time imple-
mentation can also use the outlier removal criterion for
providing real-time feedback on acquisition quality. The
out-of-plane image resolution can be improved by denser
sampling (slower speed) of the sweep. Given the relatively
low number of rejected outliers in this study, reconstruction
of more phases should also be possible, if needed.

Our interactive visualization interface was received very
positively by the physician. 4DUS reconstruction is hoped to
aid the diagnosis of fetal heart malfunctions, also facilitating
the navigation to clinically relevant planes through post-
reconstruction interaction. Reconstructed volumes can also
be used in image-based US simulations for medical training.
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