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Abstract

Purpose With the growing interest in advanced image-guid-
ance for surgical robot systems, rapid integration and testing
of robotic devices and medical image computing software are
becoming essential in the research and development. Max-
imizing the use of existing engineering resources built on
widely accepted platforms in different fields, such as robot
operating system (ROS) in robotics and 3D Slicer in medi-
cal image computing could simplify these tasks. We propose
a new open network bridge interface integrated in ROS to
ensure seamless cross-platform data sharing.

Methods A ROSnode named ROS-IGTL-Bridge was imple-
mented. It establishes a TCP/IP network connection between
the ROS environment and external medical image computing
software using the OpenIGTLink protocol. The node exports
ROS messages to the external software over the network and
vice versa simultaneously, allowing seamless and transparent
data sharing between the ROS-based devices and the medical
image computing platforms.
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Results Performance tests demonstrated that the bridge
could stream transforms, strings, points, and images at 30
fps in both directions successfully. The data transfer latency
was <1.2 ms for transforms, strings and points, and 25.2 ms
for color VGA images. A separate test also demonstrated that
the bridge could achieve 900 fps for transforms. Additionally,
the bridge was demonstrated in two representative systems:
a mock image-guided surgical robot setup consisting of 3D
slicer, and Lego Mindstorms with ROS as a prototyping and
educational platform for IGT research; and the smart tissue
autonomous robot surgical setup with 3D Slicer.
Conclusion The study demonstrated that the bridge enabled
cross-platform data sharing between ROS and medical image
computing software. This will allow rapid and seamless
integration of advanced image-based planning/navigation
offered by the medical image computing software such as
3D Slicer into ROS-based surgical robot systems.

Keywords ROS - OpenlGTLink - Interface - Surgical
robot - Image-guided therapy

Introduction

The use of robotic systems in image-guided therapy (IGT)
has expanded in many medical fields leading to a continuous
rise of technology in modern medicine [1]. Robot-assisted
laparoscopic surgery has become common in radical prosta-
tectomies in the USA and other developed countries [2]
and expanding its use in other procedures. Robotic catheter
systems have been used for a wide variety of endovascu-
lar procedures [3] and cardiac arrhythmia procedures [4].
Robotic radiosurgery systems have been used to treat tumors
of the lung, liver, pancreas, spine, kidney, head, and neck and
prostate [5].
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While most of todays clinical robotic systems are designed
to assist surgeons by following their commands and plans,
there has been a growing interest in autonomous assistance,
where robotic systems take over some of the surgeons rou-
tine tasks, such as cutting and suturing, to let the surgeons
focus on high-level surgical decisions [6,7]. With this grow-
ing interest in autonomous technologies, researchers and
surgeons face a vast variety of technology in the operating
room. This growing interest motivates the medical robotics
community to take advantage of a wide variety of features
incorporated in the robot operating system (ROS) [8], such as
computer vision, sensing, kinematics, simulation, and motion
planning. Robotic research systems including medical robots
Raven II [9] and the da Vinci Research Kit (dVRK) [10] and
the KUKA light weight robot (LWR) [11] have used ROS as
a software platform.

However, the ROS platform is not an ideal environment
to perform certain clinical tasks. Specifically, modern surgi-
cal planning and guidance heavily rely on medical images
to identify and localize diseased areas and critical structures.
Furthermore, such navigational information must be mapped
onto the physical space in order to achieve safe and accu-
rate treatment. While ROSs versatility allows researchers
to implement such features by themselves, many of them
have already been available in some research platforms that
are specifically developed for medical image computing and
image-guided therapy, such as 3D Slicer [12], IGSTK [13],
MITK [14] or NifTK [15], OsiriX [16], the XIP-Builder
[17], and MeVisLab [18]. Therefore, bridging a robotics
research platform such as the ROS with medical image com-
puting platforms is becoming important for the development
of advanced medical robotics systems. By bringing popular
platforms extensively developed in the two research fields
together, researchers can take advantage of rich engineering
resources from both fields.

Bridging a popular platform like ROS with medical
image computing platforms would further benefit the med-
ical robotics research. Because of the wide variety of robot
hardware supported by ROS, ranging from hobby-oriented
products to industry-grade high dexterity robots, one can
switch hardware easily, or scale-up the system from a
proof-of-concept prototype to a fully functional system for
animal and human studies, without significantly changing
the software architecture. Therefore, the bridge will make
the iteration of prototyping and testing easier and faster.

The goal of this study was to develop a new software inter-
face that bridges ROS and popular medical image computing
software, 3D Slicer, and provide a research and engineer-
ing tool that supports the development of image-guided and
robot-assisted surgery system. The two software platforms
seamlessly share data and commands through a TCP/IP
network using the open network communication protocol,
OpenlGTLink [19].
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In this paper, we describe the system architecture and
its implementation, as well as a proof-of-concept scenario.
The structure of the implemented bridge in ROS and the
conversions between ROS and OpenIGTLink messages are
explained in the “Methods” section. Subsequently, the results
of network communication performance tests are presented
in the “Experiments” section followed by the “Use Cases”
section that provides an outlook on the capabilities of the
network bridge. The experimental results and use cases are
discussed in Discussion section.

Methods
ROS-IGTL-Bridge node

The core component of our software interface is a ROS node
named ROS-IGTL-Bridge. The ROS-IGTL-Bridge works as
one of nodes in a ROS-based system and establishes a TCP/IP
socket connection with 3D Slicer or other external medical
image computing software equipped with a socket interface.
It can be configured to run either as a TCP/IP server or client.
ROS provides a graph architecture consisting of multiple
nodes that are connected by the peer-to-peer network and
process data together. Nodes can publish a ROS message to
agiven topic, and other nodes can receive the message by sub-
scribing to the topic. The ROS-IGTL-Bridge node translates
a ROS message to an OpenlGTLink message and sends it
to external software through the TCP/IP connection. It also
receives an OpenlGTLink message, translates it to a ROS
message, and publishes it in the ROS network (Fig. 1).

The interface supports data types commonly used in the
context of image-guided and robot-assisted therapy. Sup-
ported data types are listed in the next section.

The ROS-IGTL-Bridge node process consists of two inde-
pendent POSIX threads allowing simultaneous data sending
and receiving (Fig. 2). Methods for message serialization

' ROS environment ,

Image ' :

Import : '

: '

Image _ _ '

Processing | [OpenIlGTLink / ROS :
Surgical messages messages Motign :

Planning Planning .
Surgical : Computer .

Navigation . Vision '

Fig. 1 ROS-IGTL-Bridge works as a message interface between med-
ical image computing software that supports image import, image
processing, surgical planning and surgical navigation (left), and the
ROS environment that offers kinematic calculations, sensing, simula-
tion, motion planning, and computer vision (right)
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ROS_IGTL_BRIDGE

Thread Send

ROS topics OUT
Subscribers

Callbacks

Message Conversion
ROS == OpenlGTLink

Thread Receive

Evaluate header information
Message Conversion
OpenlGTLink == ROS
Publisher

ROS topics _IN

Fig. 2 Data processing by the bridge consisting of two indepen-
dent POSIX threads. The thread “Receive” (left) handles incoming
OpenlGTLink messages by evaluating the header information and
execute message conversion to subsequently publish the data to the
corresponding ROS topic. Simultaneously, the thread “Send” sends out-
going messages after previously triggered callbacks on subscribed ROS
topics (right)

and deserialization for the OpenlGTLink communication
were implemented per message types as callback functions
and called by the two threads. Incoming messages received
through the OpenlGTLink connection are evaluated by the
header information of the message and published to their
corresponding ROS topic in the ROS network.

The created topics in the ROS network are marked with
_OUT for outgoing data and _IN for incoming data. The
ROS-IGTL-Bridge node can easily be configured by using
launch files and setting the parameter server IP, port and
client/server flag. Furthermore, an autonomous testing node
ROS-IGTL-Test can be used to evaluate the functionality
by sending dummy data and visualizing received data on
subscribed ROS topics. During the test routine, a random
transform, a point, a pointcloud containing 20 points, a string,
and a sample vtkPolyData model are sent.

Message types supported in ROS-IGTL-Bridge

The ROS-IGTL-Bridge supports various types of data that
are frequently used in IGT applications. Those supported
types include string, transform, image, poly data, and point.
The following paragraphs detail the supported OpenlGTLink
messages along with corresponding topics in ROS. To deter-
mine the conversion method from an OpenlGTLink message
to a corresponding ROS message, the ROS-IGTL-Bridge
uses the header section of an OpenIGTLink message, which
provides meta-data including type name, device name, time
stamp, body size, and pack status (Fig. 3).

String

The exchange of string messages between the device and
external image computing software allows sending and
receiving commands or status updates. Thus, the graphical
user interfaces of the external software can be extended to dis-

OpenlGTLink Message

Header Body
string Data type name igtlStringMessage
string Device name igtlTransformMessage
unsigned int Time stamp igtllmageMessage
int Body size igtlPolyDataMessage
int Packstatus igtlPointMessage

Fig. 3 Basic structure of an OpenlGTLink message consists of generic
header information including data type, name, time stamp, size and pack
status, and a data type specific body section

OpenlGTLink ROS_IGTL Bridge
Message Body ros_igtl bridge::igtlstring
igtlMessageBase string name

std::string m_DeviceName

igtlStringMessage
string m_String

string data

Incoming Msg: published on topic IGTL_STRING_IN
Outgoing Msg: subscribed to topic IGTL_STRING_OUT

Fig. 4 Corresponding data fields in string messages for OpenlGTLink
and ROS-IGTL-Bridge

play information like acknowledgments about received data,
or to give instructions for controlling used devices (Fig. 4).

Transform

The transform messages can contain a linear transform rep-
resenting the positions and orientations of devices, objects
of interests, etc, measured by sensors connected to ROS, or
generated on the external image computing software. The
messages can be used to monitor the positions and orienta-
tions of tools, devices, and objects, or providing planning data
to the devices. The OpenlGTLink igtlTransformMessage is
represented by a 4 x 4 matrix and converted to the ROS mes-
sage type geometry_msgs/Transform containing a vector for
translation and a quaternion for orientation (Fig. 5).

Image

Figure 6 shows the attributes of the corresponding image
messages. An image consists of sizing and spacing param-
eters for each dimension in 3D space. The data are stored
in an 8-bit array with the size of image dimensions. It is
possible to send a 2D video stream from ROS using the
IGTL_VIDEO_OUT topic which supports the common ROS
message type sensor_msgs/Image. Thus, camera data can
directly be forwarded to the bridge and no additional message
conversion is required.
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OpenlGTLink ROS_IGTL Bridge
Message Body ros_igtl bridge::igtltransform
igtiMessageBase string name

std::string m_DeviceName

igtlTransformMessage
Matrix4x4 matrix

geometry msgs/Transform
Vector3 translation
Quaternion rotation

Incoming Msg: published on topic IGTL_ TRANSFORM_IN
Outgoing Msg: subscribed to topic IGTL_TRANSFORM_OUT

Fig. 5 Corresponding data fields in transform messages for
OpenlGTLink and ROS-IGTL-Bridge. ROS standard data type geom-
etry_msgs/Transform contains translation as a 3-element vector and
rotation as a quaternion

OpenIGTLink ROS_IGTL Bridge

Message Body
igtiMessageBase
std::string m_DeviceName

ros_igtl bridge::igtlimage
string name

int32 x_steps
int32 y steps
int32 z_steps
float32 x_spacing
float32 y_spacing
float32 z_spacing
uint8[] data

igtllmageMessage

int dimensions[3]

float spacing[3]
unsigned char* m_Image

Incoming Msg: published on topic IGTL_IMAGE_IN
Outgoing Msg: subscribed to topic IGTL_IMAGE_OUT

Fig. 6 Corresponding data fields in image messages for OpenIGTLink
and ROS-IGTL-Bridge. The messages contain meta-information of the
volume including the size and spacings as well as the pixel data

Poly data

The poly data message allows the transfer of 3D models
composed of points and additional surface information. Poly-
gons, triangle strips, lines, or vertices represent the structure
of the mesh. Due to the lack of an explicit equivalent to
the vtkPolyData message in ROS, methods for converting
vtkPolyData to the ros_igtl_bridge::igtlpolydata message are
provided.

Point

The point message consists of 3D point data allowing to send
and obtain target points as a robot’s movement destination,
the manipulator’s position or landmark coordinates for regis-
tration purposes or moreover sensor data in the form of point
clouds and point lists (Figs. 7, 8). Additionally, the bridge is
able to send point clouds in the form of geometry_msgs/Point
published on the IGTL_POINTCLOUD_OUT topic.
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OpenlGTLink ROS _IGTL Bridge

Message Body
igtiMessageBase
std::string m_DeviceName

ros_igtl bridge::igtlpolydata
string name

igtlPolyDataMessage
PolyDataPointArray m_Points

geometry msgs/Point32[]
points, polygons

PolyDataCellArray
m_Vertices, m_Lines,
m_Polygons, m_TraingleStrips

geometry _msgs/vector[]
strips, lines, verts

Incoming Msg: published on topic IGTL_POLYDATA_IN
Outgoing Msg: subscribed to topic IGTL_POLYDATA OUT

Fig. 7 Corresponding data fields in poly data messages for
OpenlGTLink and ROS-IGTL-Bridge. The considered attributes
include name, points, polygons, strips, lines and vertices

OpenlGTLink ROS _IGTL Bridge
Message Body ros_igtl bridge::igtlpoint
igtiMessageBase string name

std::string m_DeviceName

igtlPointMessage
igtlFloat32 m_Position[3]

geometry msgs/Point
float64 x
float64 y
float64 z

Incoming Msg: published on topic IGTL_POINT_IN
Outgoing Msg: subscribed to topic IGTL_POINT _OUT

Fig. 8 Corresponding data fields in point messages for OpenlGTLink
and ROS-IGTL-Bridge. geometry_msgs/Point contains the x-, y-, and
z-coordinates of the point

System configuration and message scheme

The use of different message types depends on the system
configuration and the required message scheme to operate
the IGT setup. Figure 10 shows two representative system
configurations as example applications for using the ROS-
IGTL-Bridge.

The first example IGT setup consists of robot and track-
ing systems both of which are operated by ROS using already
existing ROS nodes. The tracking system is used to track the
end-effector of the robot. An external imaging device, for
instance optical coherence tomography (OCT), ultrasound,
or MRI, is connected to a medical image computing plat-
form like 3D Slicer that provides methods for processing and
visualization of such medical data (Fig. 10a). By bridging the
ROS message environment and the medical image computing
platform the function sets can efficiently complement each
other. Commands and status updates are exchanged using the
string message conversion of the bridge, so the user inter-
face of the surgical planning tool can be used to operate the
system. The transformation message allows for getting con-
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Example Communication

Planning Software ROS
IGTL STRING IN]|

[igtlStringMessage ,,init robot*  m=p-

igtIStringMessage <= |GTL STRING_OUT ,status ok*

[igtlPointMessage ,,P* e IGTL POINT IN |
igtlStringMessage <= [GTL _STRING OUT,,P received*
[igtIStringMessage ,,move* - IGTL_STRING IN|
igtlStringMessage <e= [GTL STRING OUT,,P reached*

[igtlStringMessage ,,acquire data** msp- IGTL STRING IN|
igtllmageMessage <= |GTL _IMAGE_OUT ,,image data“
igtlTransformMessage  <@= [GTL_TRANSFORM_OUT,,T*
[igtlStringMessage ,,shut down* == IGTL STRING IN]
igtlStringMessage <= |[GTL STRING OUT ,ack”

Fig. 9 Possible communication protocol between a surgical planning
software and a ROS operated robot using the ROS_IGTL_Bridge as
network interface. The robot is initialized, commanded to move to a
point and acquire image data with additional transform information.
Finally, the robot is shutdown

tinuously refreshed tracking data or to command a certain
position in six degrees of freedom. Robot model data could
be transferred as poly data model to be visualized in 3D
Slicer. Raw point cloud or image data of the tracking device
can be forwarded to the image processing platform in order
to localize robot position or perform path planning Fig. 9.
The second example represents a robot-guided imaging
device possibly an ultrasound probe attached to the robots
end-effector (Fig. 10b). The robot as well as the imaging
device are controlled by downloadable standard ROS nodes
allowing simple integration in the desired setup. To access or
publish data in the resulting ROS message environment, the
communication with an external surgical planning platform
like 3D Slicer is established using the ROS-IGTL-Bridge
node. Therefore, robot control as well as image device com-
mands and responses can be transferred as string messages
via the network bridge. Additionally, a positioning command

ROS
ROS_IGTL Bridge

3D Slicer
—> OpenlGTLinkIF Module

Path planning
Image processing
User interface

Visualization
interface

(a)

Fig. 10 Example setups showing the capabilities of ROS-IGTL-
Bridge. a Robot and tracking system are connected to ROS and
controlled by 3D Slicer through the ROS-IGTL-Bridge. The imaging
device is connected directly to 3D Slicer using the OpenlGTLink inter-

Robot Tracking

interface

as point or transformation message can be sent to the ROS
environment. Acquired image data are forwarded to the plan-
ning software controlling the robot as image or point cloud
messages, and thus, the image processing and visualization
methods can be used to compare intraoperative with pre-
operative data. Figure 9 shows a possible communication
protocol between the ROS environment and a surgical plan-
ning platform while performing image acquisition after being
commanded to a specific point location.

Experiments

We evaluated the performance of network communication
between ROS and 3D Slicer using a mock image-guided
surgical robot system. In addition, we demonstrated the
feasibility of the software in two representative use-case
scenarios: educational/rapid-prototype image-guided surgi-
cal navigation system based on Lego Mindstorms, and
autonomous suturing robot.

Experimental setup

The mock image-guided surgical robot system consists of
two computers: a Linux-based computer (Precision M3800,
Quad-Core Intel Core i7-4712HQ 2.3 GHz, 16 GB 1600
MHz DDR3 memory, Ubuntu Linux 14.04LTS, Dell Inc.,
Round Rock, TX, USA) that mimics a robot controller, and
a Mac-based workstation (Mac Pro, Dual 6-Core Intel Xeon
2.66 GHz and 40 GB 1333 MHz DDR3 memory, Mac OS
X 10.10, Apple Inc., Cupertino, CA, USA) that mimics a
workstation for surgical planning and navigation interface.
The two computers are connected to a 8-port gigabit Ether-
net switch (SG100D-08, Cisco Systems Inc., San Jose, CA,

ROS
ROS_IGTL_Bridge

3D Slicer
K—> OpenlGTLinkIF Module

Path planning
Image processing
User interface
Visualization

Robot
interface

Imaging
interface

Imaging
(Ultrasound)

(b)
face. b The robot and imaging device (ultrasound) are connected to

the robot operated by ROS and controlled by 3D Slicer through the
ROS-IGTL-Bridge
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USA) via Cat 5e cables. ROS Indigo was installed on the
Linux-based computer with the ROS-IGTL-Bridge node. On
the Mac workstation, 3D Slicer 4.6 was installed for visual-
izing data transferred from the ROS.

In order to evaluate the latency, the sender embedded the
time of data generation in the message header based on the
internal clock of the sender. Once the message is received
by the receiver, the receiver extracts the time of data genera-
tion, and compare it with the internal clock of the receiver to
calculate the time spent for data transfer between the two sim-
ulators. For accurate determination of the latency, the internal
clocks of the two computers were synchronized using PTPd
[20]. PTPd synchronizes the internal clock to the master clock
through the network using the Precision Time Protocol (PTP)
defined in the IEEE 1588-2008 standard. Unlike the widely
used network time protocol (NTP) [21], PTP is designed
for more accurate clock synchronization between computers
connected to the local area network (LAN).

Evaluation of data transfer performance

Using this setup, we evaluated the performance of data trans-
fer for transforms, strings, points, and images. These data
types are often used for real-time data sharing, such as tool
tracking, video streaming, and status monitoring, and thus, it
is crucial to ensure the data delivery with appropriate frame
rate and latency.

We deployed two custom software simulators, namely
ROS test node and IGTL test server, on the Linux computer
and Mac workstation, respectively. ROS test node is a ROS
node that communicates with the ROS-IGTL-Bridge through
the ROS network, whereas IGT test server is a TCP/IP server
that communicates with the ROS-IGTL-Bridge over the LAN
using the OpenlGTLink protocol. IGTL test server simulates
the behavior of 3D Slicer or any other surgical planning and
navigation software. Both simulators work as either a sender
or a receiver; when the sender role is assigned to one sim-
ulator, the receiver role is assigned to the other. The sender
generates a random message with given type and message
size and sends it to the receiver via the ROS-IGTL-Bridge
node. Two sets of tests were performed:

Qualitative evaluation of data transfer latency. We mea-
sured the data transfer latency while streaming the
messages from the sender to the receiver at 30 frames
per second (fps). Each transform message contains one
linear transform that represents position and orientation.
The size of each string message was fixed at 100 bytes,
which is sufficient for commands for devices. For the
point messages, multiple data sizes were used ranging
from 1 point per message to 10,000 points per mes-
sage, considering different use-case scenarios including
tool tracking, landmark tracing and point cloud transmis-
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sion. For image messages, we consider 2D color image
(RGB) in five image formats: VGA (640 x 480 pixels),
SVGA (800 x 600 pixels), XGA (1024 x 768 pixels), HD
(1280 x 720 pixels), and Full HD (1920 x 1080 pixels).
Demonstration of High Frame Rate Data Transfer. Addi-
tionally, we tested high frame rate data transfer up to 1000
fps using the transform data type considering applications
where sensory data (e.g., tracking sensors, encoders) are
transferred between two computers over the local area
network.

In both tests, the data were transferred from ROS test node
to IGTL test server, and vice versa.

Demonstration of polygon data sharing

Additionally, transfer of poly data was demonstrated using
the setup. For this qualitative evaluation, a simulator pro-
gram called the ROS-IGTL-Test node was used as a ROS
node, whereas 3D Slicer was used as external software that
generated a 3D poly data model based on MRI data. The
ROS-IGTL-Test node comes with the ROS-IGTL-Bridge
software for testing purposes with a 3D model of the human
head. After setting up the connection parameters in the
file test.launch, the ROS-IGTL-Bridge and the integrated
OpenlGTLinkIF module in 3D Slicer established a connec-
tion and subsequently, exchanged the poly data message.

Results

The mean and standard deviation latency for 1000 frames
are shown in Table 1. There were cases where some of the

Table 1 Means and standard deviations (SD) of message transfer
latency for transform, point, string, and image messages based on mea-
surements in 1000 message transfers

Message type From ROS test From IGTL test
node to IGTL server to ROS test
test server (ms) node (ms)

Transform 1.1+0.5 1.1£04

String (100 bytes) 1.1£0.5 1.2+04

Point (1 point) 1.2£0.5 1.2+04

Point (10 points) 1.2£0.5 1.4+£0.5

Point (100 points) 172+ 12.6 3.8+54

Point (1000 points) 24.8+£12.3 20.9 £26.7

Image (VGA) 252443 23.6 £3.5

Image (SVGA) 33.6 £4.6* 33.6 £3.7%

Image (XGA) 58.8 + 10.6* 58.5 + 6.0%

Image (HD) 76.3 £ 10.5% 67.2+6.12

Image (Full HD) NA? 144.5 £ 12.22

2 Some of the messages were not delivered to the recipient
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Fig. 11 Exchanged vtkPolyData model generated from sample data
visualized in the vtkRenderWindow on the ROS side (/eff) and in com-
parison in the 3D Slicer scene (right)

messages were not delivered because the data transfer latency
is larger than the interval of message transfers. During the
measurement, the clock offset between the two computers
was maintained at 0.00 £ 0.28 ms (mean + SD).

For the demonstration of high frame rate data transfer,
the transform messages were transferred from the ROS test
node to the IGTL test server at 1000 fps successfully. When
the messages were transferred in the other direction, the data
transfer was successful up to 900 fps.

In the additional demonstration of poly data transfer, the
poly data model consisting of more than 600,000 points and
230,000 faces was successfully transferred from ROS to 3D
Slicer and vice versa. The transferred poly data were suc-
cessfully visualized in both environments (Fig. 11).

Use cases
Rapid prototyping/educational platform for IGT

A proof-of-concept image-guided manipulator system was
prototyped using 3D Slicer, ROS, and Lego Mindstorms
EV3. Lego Mindstorms has been used for IGT-related
projects in the context of education [22] as well as hard-
ware/software testing platform [23]. The goal of this project
was twofold: (1) create a brainstorming tool for medical
robotics with a scalable software system that facilitates
the seamless conversion from prototypes into research- and
commercial-grade systems; and (2) create an educational tool
for students, engineers, and scientists to learn image guidance
and medical robotics.

The system mimics a surgical robot that actuates its end-
effector to follow a trajectory in the physical space defined on
a 3D medical image (e.g., CT, MRI) on surgical navigation
software. The process can be monitored through 3D graph-
ics. The system consists of an active 3-degree-of-freedom
(DoF) parallel-link manipulator, control brick, ROS master
computer, and navigation computers that ran the ROS mas-
ter server and navigation software, 3D Slicer. The control
computer module (Lego EV3 Programmable Brick) commu-

mae -6 toas

Fig. 12 Matching defined and physical landmarks on the 2D sample
data using point registration algorithm in 3D Slicer

g -
.. :

/'. Planned traJectory

Fig. 13 A robotic arm built with Lego Mindstorms is following a tra-
jectory on the 2D phantom (a) that was previously planned in 3D Slicer
(b) after a successful image-to-patient registration

nicates with the navigation software via a ROS master server
over the wireless network. We performed a mock procedure
using an MR image of the brain, and a 2D phantom created
from the image. The manipulator was registered to the phan-
tom by recording the coordinates of predefined landmarks
by physically touching them with its end-effector, and match
them with the corresponding points on the image (Fig. 12).

Afterward, the drawing process on the 2D phantom was
executed (Fig. 13a) using previously defined trajectory points
transferred to the control brick from 3D Slicer (Fig. 13b).
This mock procedure demonstrated that this Lego-based sys-
tem can be used to build a robotic system with research- or
commercial-grade architecture and mimic a realistic clinical
workflow, making it an ideal tool for rapid prototyping and
education.

Autonomous suturing with KUKA LWR

The goal was to test the feasibility of the ROS-IGTL-Bridge
for planning and guiding autonomous surgical robots. Using
the developed ROS-IGTL-Bridge, we started to improve
the software system for the smart tissue autonomous robot
(STAR), which uses the KUKA LWR robot. STAR consists
of a robotic suturing tool based on a commercially available
laparoscopic Endo360° (EndoEvolution, Raynham) tool,
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Fig. 14 Picture of porcine bowel staged for anastomosis (/eft), current
STAR suture plan (middle), and suture plan using 3D Slicer enabling
3D adjustments (right)

custom control implemented using ROS for graphical user
interface (GUI) and camera integration, and open robot con-
trol software (OROCOS) for real-time control [11,24].
While we demonstrated superior consistency and burst pres-
sure using STAR, 42.2% of all sutures required manual
operator adjustments, leading to longer procedure times com-
pared to manual and teleoperated robotic surgery [7]. Most
missed suture placements requiring operator adjustments
were caused by noisy point cloud data from the plenoptic
camera, in particular along the depth axis, that was not appar-
ent on the two-dimensional suture plans provided by ROS.
By upgrading STAR with the ROS-IGTL-Bridge, we were
able to transfer 3D point clouds from STAR to Slicer for point
cloud visualization (Fig. 14). This could lead to improve the
workflow for 3D planning of suture locations, greater auton-
omy and shorter procedure times.

Discussion

In this work, a ROS-IGTL-Bridge node was implemented to
extend ROS by a generic open network interface based on
the OpenlGTLink protocol. This interface enabled seamless
sharing of data frequently used in IGT applications, including
strings, transforms, points, poly data, and images, between
the ROS-based system and external medical image comput-
ing platforms. Conversion methods for the matching message
types were generated to ensure compatibility. While the
OpenlGTLink protocol provides two distinct message types
for transmitting linear transforms, namely TRANSFORM
and TDATA, we chose to use TRANSFORM in the current
implementation because of its simplicity and generalness. A
TRANSFORM message represents an affine transformation
matrix, which can be easily converted to a ROSs geom-
etry_msgs/Transform message, and can be used for many
purposes, from tool tracking to coordinate transformations.
TDATA could be supported in the future, as it provides con-
venient features for tool tracking, such as transmission of
multi-channel tracking. The created messages and conver-
sions can be easily adapted or new message types can be
additionally included to fulfill task-specific needs.
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The performance of the data transfer using the ROS-IGTL-
Bridge was sufficient for many real-time IGT applications.
Our test demonstrated that the data transfer latency of incom-
ing and outgoing messages at 30 fps was <1.2 ms for string,
points and transform messages and 25.2 ms for images
(VGA). Additionally, a high frame rate data transfer up to 900
fps was achieved for the transform message. Furthermore,
large poly data models with more than 600 thousand points
and 230,000 faces were successfully exchanged. Transfer of
images larger than the XGA format could not achieve full
30 fps. We are currently working on the extension of the
OpenlGTLink protocol to provide video compression for bet-
ter streaming performance.

The mock IGT system using 3D Slicer and Lego Mind-
storm demonstrated that the ROS-IGTL-Bridge allowed
building a prototype system and validate its functionality
in a mock IGT procedure in a limited time. We were able
to build this demo setup during the 22nd NA-MIC Winter
Project Week 2016, a week-long hackathon event focused on
open-source medical image computing software infrastruc-
tures [25]. The ROS-IGTL-Bridge was also demonstrated
in an upscale IGT setup consisting of the industry-grade
high dexterity robots with autonomous controlling system.
The ROS-IGTL-Bridge’s ability to transfer point cloud data
enabled incorporating advanced visualization and 3D plan-
ning of suture location offered by 3D Slicer into the system.

The study demonstrated that the ROS-IGTL-Bridge ena-
bled cross-platform data sharing between ROS and image-
guidance software with sufficient data transfer performance.
The bridge benefits IGT setups by combining the spe-
cific methods such as robot control, motion planning and
sensing within ROS with the image processing and visual-
ization function set of surgical planning tools like 3D Slicer.
This will allow rapid and seamless integration of advanced
image-based planning/navigation offered by image-guidance
software such as 3D Slicer into ROS-based surgical robot
systems. By bridging two different software platforms,
the researcher can benefit from state-of-the-art engineering
resources developed in the different research fields, including
robotics and medical image computing to develop advanced
image-guided surgical robot systems.

The idea of using OpenlGTLink to bridge two research
platforms has been demonstrated in several studies. In partic-
ular, OpenlGTLink has been extensively used to bridge data
grabbing software and visualization/user interaction soft-
ware for medical image computing research. Papademetris,
Tokuda et al. used OpenlGTLink to bridge a commercial
navigation system with external research platforms including
3D Slicer [19] and Biolmage Suite [26]. The Image-Guided
Surgery Toolkit (IGSTK) [13], an open software platform
that provides connectivity with tracking and imaging devices,
supported OpenlGTLink to export tracking and imaging data
to other platforms such as 3D Slicer and MITK [27,28]. More
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recently, Lasso et al. used OpenlGTLink to bridge their data
grabbing software, PLUS, with external visualization soft-
ware to stream tracking and ultrasound image data [29].
Clarkson et al. developed a messaging library, NiftyLink,
based on OpenlGTLink to integrate data grabbing software
and end-user application for visualization/user interaction
[15]. Other open-source packages, such as CustusX [30],
IBIS [31] and MeVisLab [18], have adapted to OpenlGTLink
as well, to take advantage of existing software infrastructures
available in the community.

OpenlGTLink has also been used to bridge platforms
beyond the medical image computing field. A medical
robotics platform, the CISST library, offers an OpenlGTLink
bridge to integrate image visualization software into med-
ical robotics applications [32]. OpenlGTLink is also used
with ROS-based robotic system for laparoscopic interven-
tions [33]. The ROS-IGTL-Bridge is a generalization of those
prior works aiming to extend the successful model found in
the medical image computing field and has the potential to
facilitate the sharing of engineering resource between the
medical robotics and medical image computing.

The source code, instruction, and test program of the ROS-
IGTL-Bridge is available as open-source software at GitHub
[34]. The code can be compiled and installed with Catkin, a
CMake-based build system.
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