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Abstract
Purpose In this article, we present amethod for empty guid-
ing catheter segmentation in fluoroscopic X-ray images. The
guiding catheter, being a commonly visible landmark, its
segmentation is an important and a difficult brick for Per-
cutaneous Coronary Intervention (PCI) procedure modeling.
Methods In number of clinical situations, the catheter is
empty and appears as a low contrasted structurewith two par-
allel andpartially disconnected edges. To segment it,wework
on the level-set scale-space of image, the min tree, to extract
curve blobs. We then propose a novel structural scale-space,
a hierarchy built on these curve blobs. The deep connected
component, i.e. the cluster of curve blobs on this hierarchy,
that maximizes the likelihood to be an empty catheter is
retained as final segmentation.
Results We evaluate the performance of the algorithm on a
database of 1250 fluoroscopic images from 6 patients. As a
result, we obtain very good qualitative and quantitative seg-
mentation performance, with mean precision and recall of
80.48 and 63.04% respectively.
Conclusions We develop a novel structural scale-space to
segment a structured object, the empty catheter, in challeng-
ing situations where the information content is very sparse
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in the images. Fully-automatic empty catheter segmentation
in X-ray fluoroscopic images is an important and prelimi-
nary step in PCI procedure modeling, as it aids in tagging the
arrival and removal location of other interventional tools.
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tion · Mathematical morphology · Modeling interventional
processes · Guiding catheter

Introduction

In interventional cardiology, Percutaneous Coronary Inter-
vention (PCI) procedures are performed with real time
streaming of X-ray images, most of it being low dose X-
ray images called fluoroscopic images. Physicians expect
that the behaviour of the imaging equipment is continuously
optimized to ensure optimum image quality with minimum
dose delivery or automatized processing of some sequences
to enhance some detail of interest at a particular moment.
PCI procedure modeling can help to improve the interaction
of the clinician with the imaging equipment. This concept
refers to determining the intention of the clinician along the
procedure. For this purpose, a continuous monitoring and
labelling of the sequence is necessary. The key steps of the
PCI procedure are: vessel diagnosis, guidewire navigation,
stent positioning, stent deployment (balloon inflation), stent-
ing assessment. Getting this information directly from the
human operator is not acceptable from a workflow point of
view. So we aim at designing a family of image processing
algorithms to identify the presence of different interventional
tools in the images and link this information to high-level
knowledge describing the steps of the procedure and the user
expectations for each of them. This is a form of semantic
analysiswhich is fundamentally different from the traditional
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automatic X-ray exposure control combining user interac-
tions and measure of the statistics of the image. In the field
of operating theater monitoring and surgical process model-
ing for laproscopic and cataract surgeries, similar pioneering
work has been reported [8,9]. In our case, such semantic
information may also be used for automatic dose control.
Monitoring the interventional tools like guiding catheter, EP
catheter, guide wire tip, guide wire body, marker balls, bal-
loon, stent is necessary to obtain this information. Thus,
segmentation of these tools is a fundamental brick in such
semantic analysis. Most of these tools are highly contrasted
and relatively easy to segment. Milletari [13] showed that it’s
possible to segment EP catheters with segmentation accuracy
of 99.3%. Brost et al. [2] has also proposed efficient catheter
tracking for electrophysiology procedures. Various works
on segmentation of pigtail catheters [10] and EP catheters
[12,13] portray the importance of segmentation of interven-
tional tools and endovascular devices.

From first analysis, we observe that the segmentation of
guiding catheter is of outmost importance.A guiding catheter
is a tool that appears throughout the PCI procedure. It can
contribute to significant semantic information since it is the
first tool to appear in the field of view and is fixed at ostia for
rest of the procedure, is the conduct for all other tools/devices.
Thus, its segmentation can help in procedure modeling to
determine the events/phases of the arrival and removal loca-
tion of other devices (guide wire, marker balls). We address
here the empty catheter case i.e. when it is not filled with
contrast media or a guidewire. Such empty catheter appears
in 20–30% of the images acquired during PCI procedure and
mostly in the first steps of the procedure where the analysis
shall start. A filled catheter is highly contrasted structure and
relatively easy to segment.

Interventional systems are provided with two different
application modes, namely fluoroscopy and record mode
(also called cine or graphy). Fluoroscopy mode is used for
manoeuvring the interventional tools. In record mode, the
system is set to deliver images with a quality sufficient to
support the operator in his assessment of the vasculature.
Record images are more contrasted and less noisy than fluo-
roscopic images. In fluoroscopy, the intensity of X-ray beam
and so the dose delivered are limited as per regulation. [4]
reports observed radiation level and exposure time during
PCI procedures in the different exposuremodes. Typical dose
rate in record images is 6–10 times to that of fluoroscopic
images which explains the significant difference in noise lev-
els and contrast. In Fig. 1, a record and a fluoroscopic images
taken at few seconds of interval in the same setting illus-
trate the difference of quality between these two imaging
modes of interventional angiographic units. In order to per-
form continuous monitoring of the procedure, it’s necessary
to segment interventional tools in record as well as fluoro-
scopic images. However, the segmentation task is difficult

due to low contrast in fluoroscopic images. In this article, we
address the task of empty catheter segmentation in particu-
lar fluoroscopic images. In these images it appears as a low
contrasted structure with two parallel and partially discon-
nected edges because it is just an empty tubular pipe made
of a material with little radio-opacity. As X-ray contrast of
the object depends on both the radio-opacity of the mate-
rial and its thickness, an empty catheter is mainly detectable
on its boundaries, where the projective thickness is larger.
So overall the image signal can be characterized by a gen-
eral geometric structure coming from smooth curve of the
catheter and sparse information due to the limitations of X-
ray imaging with low dose.

We devise a bottom up approach for segmenting the empty
catheter in fluoroscopic images. We first use the level-set
scale-space, i.e., the hierarchy of all the level sets of the
gray scale image, called the component tree, to extract curve
blobs, small dark persistent regions that are potentially part
of the empty catheter. These curve blobs are disconnected in
the image space. We then propose a structural graph-based
scale-space, in the form of a hierarchy ( i.e., a tree), where
these curve blobs are connected. We analyze this hierarchy
to select the cluster of curve blobs that maximizes a score of
likelihood to be an empty catheter. If the first tree exhibits
the deep structures of the critical points, the second tree puts
forward the even deeper structures of interest, that we call
deep connected components. To evaluate our work, we use a
database of 1250 fluoroscopic images from 6 patients (retro-
spective use of collected images of patients). The centerline
of the catheter in this dataset was manually delineated by a
trained observer to define the ground truth.

The major steps of our proposed algorithm are detailed
“Methodology” section. The strategy retained for assessing
the performance of this algorithm is discussed in the “Seg-
mentation quality evaluation” section. The qualitative and
quantitative results are presented in “Results” section. The
main contributions are: (1) proposal of a new notion of a deep
connected component, appearing in a second-order scale-
space (“Methodology” section); and (2) assessment of the
proposed method on a database of 1250 fluoroscopic images
(“Results” section).

Technical challenges: scale spaces and deep
connected components

Classical techniques [5] which are mostly differential-based,
do not work in this situation due to weak contrast of empty
catheters and high noise level of fluoroscopic images. We
decided to adopt an approach derived from the theory of
scale-space. According to this theory, each structure in a
scene is visible at a certain scale. Finding the right scale
is challenging issue that has been studied by many authors,
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Fig. 1 Empty catheter appearance in record image (left) and fluoroscopic image (right), all other components of the imaging situation (patient,
geometry) are identical. Fluoroscopic images are noisier and the contrasts are weaker than in the record images

primarily using the Gaussian scale-space. Lindeberg [11]
studied the problem of linking local critical points (extrema
and saddle) over scales, leading to the so-called scale-space
primal sketch which makes explicit the relation between
structures at different scales. An important practical issue
in this approach is the ability to attach a persistence measure
to the structures, i.e., a measure of the duration of survival of
the structures during the evolution. In their seminal works,
both Koenderink [7] and Witkin [18] propose to investigate
the deep structure of an image, i.e., the structure of all levels
of resolution simultaneously.

For signal of dimension 2 or greater, two drawbacks of
the Gaussian scale-space are that, during the evolution, 1)
structures evolve (change shape), and 2) critical points can
be created. On the other hand, connected filters from math-
ematical morphology [15] can be seen as a non-linear scale
space: in such approaches, the image is transformed into an
equivalent tree-based representation (tree of upper-level sets,
of lower level sets, or both), and attributes can be computed
for each node of the tree. Selecting the nodes with a criterion
based on these attributes allows to study the evolution of the
nodes of the tree, and in particular their persistence. Obvi-
ously, during such evolution, structures cannot change, and
no novel structure can be created. A formalization of such
ideas in the context of image segmentation has been achieved
by Guigues et al. [6]. The hierarchical data organization pre-
sented in this article has the main scale-space properties
studied in [6]. Early attempt for using hierarchical data orga-
nization for guidewire localization has been made by Barbu
et al. [1]. They usemarginal space learning based hierarchical
model of curves (obtained from low-level segment detector)
to model complex free-form curves. The similarity with our
approach is that both are bottomup approacheswith low level
segment/blob detector as first step. Though [1] does not show
segmentation of empty catheter, a head-to-head comparison
would be helpful but neither the dataset nor the implementa-
tion has been made public. Reported computational time are
close to ours. A major insight that we draw from such meth-
ods is that any hierarchical data organization has the main

scale-space properties. As the algorithms for computing the
trees are graph-based ones, these ideas can be extended to
work on any graph, and not only on 2D/3D images (e.g. Xu
et al. [14,19]).

In this work, we first use the level-set scale space to iden-
tify curve blobs, which are small dark persistent regions that
are potentially part of the empty catheter.We propose a novel
structural graph-based scale-space, in the formof a hierarchy,
i.e. a tree built on the curve blobs.We analyze this second tree
with the very same techniques as the first one, and we retain
the most persistent structures in this second scale-space as
the final segmentation. If the first tree exhibits the deep struc-
tures of the critical points, the second tree puts forward the
even deeper structures of interest, thatwe call deep connected
components.

Methodology

Our bottom-up approach comprises two main parts: the first
one aims at identifying small dark regions called curve
blobs (“Curve blobs extraction” section) and the second one
focuses on grouping them in order to retrieve the whole
catheter (“Curve blob clustering: deep connected compo-
nents construction” section and “Deep connected component
selection” section). Both steps are performed by analyzing a
hierarchical structure, called a component tree [15].

Curve blobs extraction

We are interested to extract the curve blobs from the image,
using a component tree called min tree. The min tree [15]
structures the connected components of the lower-level sets
of the grayscale image based on inclusion relationship. A
grayscale image f , when thresholded in an increasing order
at every possible gray level ranging from hmin to hmax ,
yields a stack of nested (lower) level sets. Each level set can
be partitioned into connected components when the image
domain is structured as a pixel adjacency graph (we con-
sider 4-adjacency relation). In this setting, any two connected
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Fig. 2 Curve blobs extraction, from left to right: input image; lower level-sets of input image; corresponding min tree where each node is one of
the connected components of the level-sets; centerlines of the selected curve blobs overlayed on input image

components A and B at two successive thresholds are either
nested or disjoint andwe say that the connected component A
is the parent of B whenever B is nested in A. With this “par-
ent” relation, the set of all connected components is a directed
tree called the min tree of the image f .

The min tree considers only the dark connected regions
of the image and the curve blobs appear as regions at dif-
ferent levels of this tree (i.e., at different scales, refer Fig. 2
for illustration). The image f on which the min tree is com-
puted is obtained with a simple morphological dark top-hat
on the input X-ray image with a circular structuring element
whose radius is same as radius of catheter. Thus, two curve
blobs might well be obtained from two distinct threshold val-
ues. Then, the set of all curve blobs is included in a non-local
(i.e., a spatially variable) threshold of the image, that is a non-
horizontal cut of the min tree. In order to obtain curve blobs
among the connected components, we design a criterion that
selects them in this non-horizontal cut.We assign to any com-
ponent in the min tree, attributes characterizing its shape and
structural properties. For curve blobs, we design a selection
criterion based on area and elongation attributes. The area
of a component refers to the number of pixels whereas the
elongation is given by 1 − lmin/ lmax , where lmax and lmin

are the lengths of the axes of an ellipse optimally fitted to the
component.

In order to select curve blobs, a straightforward idea is to
select components whose area is in a certain range and with
elongation attribute large enough. Note that we are not inter-
ested in too small connected components which might come
from noise nor in too large ones which might correspond
to filled catheters, pacing leads, or other large anatomical
or interventional structures. To establish a proper selection
criterion, we built a set of curve blobs belonging to empty
catheter (taken in 14 images) and another set of curve blobs
selected randomly in the same image at location away from
the marked empty catheter. By investigating the distribution
of these two sets in the area-elongation space, we estab-
lished a relevant criterion: defined by independent lower limit
for area and elongation and a maximum upper limit on the

weighted sum of area and elongation. All nodes satisfying
this criterion are selected to form the set C of curve blobs.
Nested connected components could satisfy the criterion as
they may depict the same region in the image. Based on
the min tree structure, a filtering is performed to preserve
elements with largest area(taking aid of the inclusion rela-
tionship).

Curve blob clustering: deep connected components
construction

This section presents the main idea of empty catheter detec-
tion, i.e. curve blob clustering in the structural scale space.
Figure 3 intuitively portrays this idea of curve blob clustering
in the structural scale space. Some curve blobs extracted in
the previous step are regions of edges of the catheter, while
some others correspond to other anatomical and interven-
tional structures or to noise. By analyzing individually a
given curve blob, it is difficult to decide whether it is part
of a catheter because contextual information is missing. So
we consider them in a common space and define a weight
for each pair of curve blobs, called as blob pair weight. The
weight is defined to be small when the two considered curve
blobs are likely to be part of an empty catheter. In rightmost
image in Fig. 3, the selected cluster of curve blob belong-
ing to empty catheter is shown where green curve blobs are
connected with red edges which link blob pairs. We propose
to build it by combining three elementary weights, each of
them characterizing one aspect of the relation between two
curve blobs:

• Spatial weight wS : Given two curve blobs, the minimum
Euclidean distance between the extremities of blob axes
is considered. It is essential because the intent of the hier-
archy is to connect close curve blobs.

• Alignment weight wA: Empty catheter looks like par-
tially disconnected curvilinear structure. Thus, the blobs
belonging to it shall be a part of a smooth curvilinear
structure. The alignment weight is designed to measure
this property. Each blob is represented by its barycenter,
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Fig. 3 Curve blobs clustering; from left to right: extracted curve blobs (see Fig. 2); connection of curve blobs on structural scale-space; hierarchy
of deep connected components (clusters of curve blobs at different scales); selected deep connected component

and enriched by a vector representing the orientation (or
first moment) of the blob. Thus, the alignment weight of
two blobs is the minimum of the inner product of these
orientation vectors and of vectors joining barycenters.

• Profile weight wP : It estimates the dissimilarity between
the intensity profiles along a pair of blobs and the desired
intensity profile along an ideal empty catheter. The inten-
sity profile along a blob is a series of values (id | d ∈
[−N , N ]), where id is the average of the intensities of the
pixels on the segments parallel to the blob axis located
at (signed) distance d. The distance to expected intensity
profile of a blob is the sum of squared difference between
intensity profiles of the blob and of an ideal catheter. The
profile weight of a blob pair is the mean of the distances
to expected profile of the two blobs.

We transform the individual weights with sigmoidal func-
tion so that the three weights lie in the same range. The blob
pair weightwB is computed for any two blobs b1 and b2 in C
as:

wB(b1, b2) = α ∗ w∼
S (b1, b2) + β ∗ wA(b1, b2)

+(1 − α − β) ∗ w∼
P (b1, b2) (1)

where w∼
S and w∼

P denote the weights transformed with sig-
moidal function.

The hierarchy of curve blobs is defined thanks to blob
pair weight. Intuitively, a threshold on the blob pair weight
gives a partition of C into clusters of connected blobs which
are “consistent” with respect to blob pair weights. More pre-
cisely, for a given threshold value λ, we build a curve blobs
graph Gλ = (C, Eλ) where each vertex is a curve blob in C
and where two curve blobs are linked by an edge in Eλ if
their blob pair weight is below λ:

Eλ = {{b1, b2} | wB(b1, b2) ≤ λ, b1, b2 ∈ C}. (2)

Such graph induces a partitionPλ of the curve blobs into
connected components, each element being referred to as
blob clusters at scale λ. The set of all blob clusters obtained

at every possible scale is a hierarchy H of partitions on the
set of curve blobs, given by:

H =
⋃

{Pλ|λ ∈ [0, 1]}. (3)

IndeedH is a hierarchy since any two blob clusters inH
are either nested or disjoint. Hence, this hierarchy can be
managed as a tree structurewhere the parenthood relationship
is given by inclusion relationship on the set of clusters (more
precisely it is itsHasse diagram).Using the terminology from
mathematical morphology, where a similar construction has
been done for pixelswith a differentmeasure [3,16],we name
this precise component tree the quasi-flat zone hierarchy of
the blob pair weight. Any element of a partition at scale λ is
called a (quasi-flat) zone. Hence, in the context of this arti-
cle, these zones refer to clusters of the curve blobs or deep
connected components. This hierarchy is what we mention
previously as a structural scale-space in which we are look-
ing for the deep connected component corresponding to the
empty catheter in the image. Unlike the min tree, which was
directly built over the image pixels, at every threshold value,
the set of all curve blobs is partitioned, the elements of the
partitions being clusters of curve blobs.

Deep connected component selection

Anempty catheter appears to be a zone (deep connected com-
ponent) in the partition of this quasi-flat zones hierarchy at
some scale λ in the structural scale-space. In order to analyze
the zones in this space, we have a measureL which maps to
any zone Z a positive real value L (Z) that represents the
likelihood ofZ of being an empty catheter. For each zoneZ
the measure L (Z) depends on some attributes of zone Z .
These attributes depend on several geometric and (time and
space) continuity properties of Z modeling the appearance
of empty catheter in fluoroscopic images sequences. The six
zone attributes used in this study are explained below:

• Length: the length of a zone is determined by fitting a 3rd
order polynomial curve on the curve blobs of the zone,
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each curve blob being represented by the center and end-
points of blob axes. Once the fitting is done, the segment
of the curve is selected by mapping the blob points on
the fitted curve and determining the extremities of these
mappings on the curve. The length is the arc length of the
curve between these extremities.

• Fitting error: it is calculated as average of the residual
errors in the fitting above.

• Average distance to expected profile is the mean of dis-
tances to expected profile of all curve blobs of the zone.

• Proximity to expected scale of observation: an empty
catheter is expected to appear as zone at a certain
scale λ�. Therefore, we design a proximity attribute to
this expected scale. The expected scale is observed from
the image dataset.

• Proximity to image borders: this attribute is computed as
the minimum of the distances of all the curve blobs in a
zone to the border of image.

• Temporal feedback: for each frame, we compute a feed-
back image with the score of the detected catheter in its
bounding box and 0 elsewhere.We then sum the feedback
images of the past 10 frames and consider the average for
all pixels of a zone. It is taken as the temporal feedback
attribute of the zone.

However, to homogenize the range of the attributes before
combining them, we form homogenized scores as the images
of the attributes by Gaussian functions whose parameters are
determined by analyzing the ground truth (see “Segmentation
quality evaluation” section for details on ground truth). The
measure L is product of the six homogenized scores. The
resulting segmentation S is the zone in the hierarchyH that
maximizes the likelihood score:

S = argmax
Z∈H

L (Z) (4)

Segmentation quality evaluation

For evaluation, we use a database of clinical images and the
ground truth annotated by experienced human observerswith
support of a semi-automatic software.

Ground truth construction

Catheter appears as low contrasted tubular structures in X-
ray images. We decided to have the centerline of the catheter
as a reference to evaluate the performance of our segmen-
tation. An internally developed (image similarity based)
semi-automatic software for curve tracking is used by human
operators to mark, track and correct the centerline, forming
a curve which forms the ground truth for empty catheters
in fluoro images along the temporal sequence. For each

frame in a sequence, a centerline is a curve in 2D image
space, which is then sampled in a series of equidistant pixels
as Cgt = (g1, . . . , gm).

Segmentation

The automatically detected empty catheter is a cluster of
curve blobs. As described in previous section, a polyno-
mial curve is fitted to these blobs which is then sam-
pled in a series of equidistant pixels given by Cseg =
(s1, . . . , sn). Right column in Fig. 5a shows the estimated
centerline. In Cgt and Cseg , the sampling distance between
two consecutive points is one-fourth of the radius of the
catheter.

Evaluation measures

In this work, we want to evaluate our ability to locate the
empty catheter. We quantify the proximity between the two
objects: the curve marked as ground truth and the cluster of
curve blobs. This metric of proximity is then analyzed using
the precision and recall formalism. Precision is defined as
fraction of correctly detected catheter. As explained in Fig.
4a, the matched detection is denoted as true positive, empha-
sizing the fact that the segmentation algorithm has indeed
found the catheter. The unmatched detection is denoted as
false positive, because the detected catheter hypotheses are
incorrect. Similarly, recall is fraction of reference centerline
(ground truth) which is explained by detected centerline. Fig-
ure 4a shows the matched reference (true positive) which is
correctly retrieved ground truth points. Such centerline line
based evaluation methods are employed for evaluation of
road extraction algorithms in photogrammetry and remote
sensing [17].

Precisely explaining our implementation, for each image,
we quantify the proximity between: the series Cgt =
(g1, . . . , gm) of ground truth points and the series Cseg =
(s1, . . . , sn) of the points extracted from segmentation. To
this end, we consider the minimal distance from a point x
to a series of points C = (c1, . . . , c�) as, δ(x,C) =
min{d(x, ci ) | i ∈ {1, . . . , �}}, where d is Euclidean dis-
tance. Based on this measure, a point si of the segmented
catheter Cseg is considered as correctly classified (true posi-
tive) when δ(si ,Cgt ) ≤ η and a point gi of the ground truth is
considered as correctly retrieved when δ(gi ,Cseg) ≤ η . The
value of η is based on the the standard diameter of an empty
catheter in the image plane (here η = 24 pixels (4.8mm)).
Thus we compute for each image, the Precision and Recall
as the fraction of segmented points correctly classified and
the fraction of ground truth points correctly retrieved, respec-
tively.
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Fig. 4 Evaluation principle to compute precision and recall. a Matched detection (extracted centerline). bMatched reference (ground truth)

Table 1 Patient wise analysis of sources of variance of the performance

Patient Sequence Body mass index Average noise
level (*)

Catheter over spine Several sections
of catheter

Precision (%) Recall(%)

A A1 30.1 23.18 No No 82.99 69.35

B B1 29.7 20.64 No No 84.26 86.84

B B2 29.7 20.44 No Yes 8.68 13.51

C C1 35.5 19.80 No No 65.16 49.65

C C2 35.5 20.82 No No 88.66 80.31

C C3 35.5 20.43 No No 84.10 73.01

D D1 39.7 27.15 Yes Yes 8.11 5.24

E E1 22.0 26.09 No Yes 96.54 71.10

E E2 22.0 24.77 No Yes 41.88 34.61

F F1 24.4 17.34 No No 94.08 64.87

(*) Image dynamic is 256 levels Mean values 80.48 63.04

Results

Dataset We evaluate our empty catheter segmentation algo-
rithm using a dataset of 1250 fluoroscopic images. These
1250 fluoroscopic images belong to 10 sequences taken from
examinations of 6 patients. These images were acquired at
frame rate of 15 fps. Considered images of angioplasty exams
depict large variability because of patients’ body mass index
(BMI), noise levels, different anatomical backgrounds, occa-
sionally presence of pacing leads, stents, staples, sternal
wires (see Table 1).

A small set of 30 images from 4 sequences (A1, B1,
B2, C1) was used for tuning parameters in the full algo-
rithm development. Once the development was completed,
we built a large database of images with ground truth. Opti-
mizing the α and β parameters of the blob pair weight
function (refer Eq. 1) on 650 images (instead of 30) from
4 sequences (A1, B2, C1 and D1) slightly improves the
results (3.45%Recall/6.20%Precision). Our evaluationmea-
sure and the ground truth are used for this optimization
step.

Results and discussion

The segmentation of empty catheters in different image qual-
ities and different anatomical and interventional contents are
shown in the Fig. 5. In Fig. 5a, b, the input image on left is
overlayed with the selected cluster of curve blobs in the mid-
dle image. Whereas, the image on the right shows the fitted
curve for the selected cluster of blobs, this curve is considered
as an estimation of the centerline of the catheter. Figure 5b
portrays empty catheter segmentation in presence of other
elongated interventional and anatomical objects. Figure 5c
depicts the results from three different patients, illustrating
the potential of this method, where empty catheter is detected
in spite of the presence of other elongated objects like pac-
ing leads. These fluoroscopic images also have disturbing
anatomical contents like the spine. Indeed, some internal
structure of the vertebra bodies may take part of the appear-
ance of catheter because of contrast and curvilinear outlook.

We assess two versions of our automatic algorithm with
and without temporal feedback using the defined evaluation
measure. The mean precision and recall without temporal
feedback are 62.40 and 55.84% respectively. With temporal
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Fig. 5 Results of empty catheter segmentation in X-ray fluoroscopic
images. In (a,b), from left to right: input image, selected cluster of curve
blobs from hierarchy, fitted curve on the cluster (estimated centerline). a
Empty catheter segmentation on fluoroscopic images. b Empty catheter

segmentation on fluoroscopic images (in presence of other elongated
interventional and anatomical objects). c Estimated centerline of seg-
mented empty catheter from 3 different patients

feedback, this mean precision and recall improves to 80.48
and 63.04% respectively. In a detailed per sequence analysis
(Table 1), we notice that in few sequences the performance
of our algorithm is hampered because of some factors such
as the patient’s body mass index (BMI), catheter appear-
ing over the spine making it less visible, several sections of
catheter in the field of view (FOV) leading to multiple appar-
ent catheters (e.g. left and middle images in Fig. 5c). Low
precision and recall was observed in sequences B2, D1 and
E2 (in Table 1) due to multiple section of the same catheter
in the FOV and high patient body mass index. In sequence

B2, our proposed algorithm fails to identify the desired sec-
tion of catheter with the tip, among the two sections. Figure
6a depicts a frame from sequence B2, where ground truth
is marked in green and detected catheter is marked in red.
However, in sequence E1 the undesired section of catheter
(without the tip) was above the spine making it difficult to
be detected. Hence, the precision and recall for this sequence
is 96.54 and 71.10% respectively, leading to successful seg-
mentation of desired section of catheter with tip. In sequence
D1 (refer Fig. 6a), the algorithm fails due to high patient
BMI of 39.7, resulting in high noise level and very low con-
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Fig. 6 Failed segmentation cases. In each row, left image shows the input image and right image shows the ground truth in green and the falsely
detected catheter in red. See “Results” section for details. a Failed segmentation example from sequence B2. b Failed segmentation example from
sequence D1

trasted catheter. We also noticed that position and orientation
of the gantry affects the image quality and the performance
of our algorithm. In further experiments we observe that
the precision/recall rate is stable when parameters of the
edge weights are changed in a range of ±20%, which is
encouraging regarding the robustness of the approach which
is not dependent of very precise parameter setting. The aver-
age execution time per image is 0.68 s on a Intel® Core
™ i7− 4810MQ CPU. The software has good potential for
further optimization.

Conclusion

In this article, we studied the challenging problem of detect-
ing and locating the empty catheter in fluoroscopic images.
To achieve our goal, we developed a novel structural scale-
space in the form of a hierarchy of deep connected com-
ponents, one of them being selected as empty catheter. Our

experimental results are very encouraging, showing that it
is indeed possible to locate with good precision the empty
catheter in such noisy images. However, additional experi-
ments on larger dataset are required to further estimate the
quality of segmentation. These results also open the doors for
PCI proceduremodeling since empty catheter is an important
landmark in these images. Indeed, using a similar strategy
in the scale space framework, we aim to simultaneously
detect other landmarks, such as guide wire tip, marker balls,
or balloons that appear more clearly in the images. There-
fore, future work includes segmentation of these objects by
handling in a common scale-space framework. These seg-
mentations can contribute to the PCI procedure modeling.
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