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Abstract

Purpose Minimally invasive surgery requires objective
methods for skill evaluation and training. This work presents
the minimally acceptable classification (MAC) criterion for
computational surgery: Given an obvious novice and an obvi-
ous expert, a surgical skill evaluation classifier must yield
100% accuracy. We propose that a rigorous motion analysis
algorithm must meet this minimal benchmark in order to jus-
tify its cost and use.

Methods We use this benchmark to investigate two con-
cepts: First, how separable is raw, multidimensional dry lab-
oratory laparoscopic motion data between obvious novices
and obvious experts? We utilized information theoretic tech-
niques to analytically address this. Second, we examined the
use of intent vectors to classify surgical skill using three FLS
tasks.

Results We found that raw motion data alone are not suf-
ficient to classify skill level; however, the intent vector
approach is successful in classifying surgical skill level for
certain tasks according to the MAC criterion. For a pattern
cutting task, this approach yields 100% accuracy in leave-
one-user-out cross-validation.

Conclusion Compared to prior art, the intent vector approach
provides a generalized method to assess laparoscopic surgi-
cal skill using basic motion segments and passes the MAC
criterion for some but not all FLS tasks.
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Introduction

The fundamentals of laparoscopic surgery (FLS) were devel-
oped to evaluate and credential laparoscopic surgeons. The
FLS scoring criteria are based primarily on task time and
number of task errors as determined by a qualified proctor.
While FLS has been shown to discriminate between expert
and novice subjects [18], these measures have the potential
to miss key information and overemphasize task time [13].
The challenges related to laparoscopic surgery motivate the
development of objective, automated, and accurate surgical
skill evaluation techniques.

Prior work on surgical skill evaluation has been wide-
spread. One approach has utilized aggregate task measures
such as task time and path length [5,6]. In [16], task level
metrics were used to estimate pairwise maneuver prefer-
ences with 80% accuracy. In [9], robotic arm vibrations
and interaction forces were used within a composite skill
rating; however, statistical analysis showed that completion
time provided the primary contribution. Another method has
been to decompose surgical tasks into specific gestures or
‘surgemes’ [15]. Using these surgemes, models for skill can
be trained using a variety of machine learning approaches.
Hidden Markov models (HMMs) have been used extensively
to model surgical skill level. An HMM model for various
surgemes was used to classify a sequence as a particular
skill level [17]. This resulted in 100% classification accu-
racy for leave-one-super-trial-out (LOSO) cross-validation
but required manually segmented surgemes and did not
report leave-one-user-out (LOUO) validation results. The
results of [19] had high classification rates for LOSO cross-
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validation, but these results fell precipitously under LOUO
validation suggesting overfitting. Another method utilizes
descriptive curve coding (DCC) in which the principal direc-
tion changes within a trajectory are encoded as a string of
integers [1]. With this approach, encoded common strings or
motifs were used to model skill level. This method results
in 98% accuracy for LOSO validation but around 90% for
LOUO. Task-specific motion models have been proposed for
procedures such as septoplasty [2]. This approach involves
stroke-based features designed to assess the consistency and
efficiency with which a surgeon removes skin from under-
lying cartilage. This approach gave a LOSO classification
accuracy of 90%, but its applicability to other procedures
is not yet clear. The ribbon area measure treats the surgical
tool wrist as a brush and measures the accumulated surface
area of the trajectory as a surrogate for dexterity [11]. This
approach resulted in an 80% binary classification accuracy.
Both the stroke-based features and ribbon area approaches
are conceptually similar to the work presented here; however,
we attempt to use these concepts in a manner more general-
izable across tasks and that results in a higher classification
accuracy. The gap in prior art has been a fully automated algo-
rithm which provides 100% classification between obvious
expert and novice surgeons using LOUO cross-validation.

Prior art has revealed a secondary problem: Data set cate-
gories are unreliably labeled relative to true skill level. These
categories are typically defined by subject demographics
such as caseload, academic rank, or experience level. Yet
even an expert surgeon can exhibit skill decay and demon-
strate a variance in skill level within a given context. True
experts or technical masters can sometimes (e.g., for a given
grasp or motion within an entire procedure) exhibit novice-
like motions. Kowalewski et al. [14] showed that expert
categories based on these demographics are unsuitable for
validation studies as they often result in recorded trials from
perceived experts that can exhibit poor technical skill. Over-
all this can confound supervised classifiers that assume a
clean ground truth for correct analysis. The current gold stan-
dard for skill assessment is blinded review of surgical videos
by panels of expert surgeons using structured survey tools
such as the objective structured assessment of technical skill
(OSATS) [7]. Birkmeyer et al. [3] showed that using simi-
lar evaluation methods technical skill can be linked directly
with patient outcomes. To this end, Kowalewski et al. [13]
defined a ground truth expert trial (a single recording by a
given individual) as one that is deemed an expert by a con-
sensus of three validated methods: demographically-derived
expertise, FLS score, and OSATS-like video review.

We herein introduce the minimally acceptable classifi-
cation (MAC) criterion for computational skill evaluation:
Given an obvious novice and an obvious expert, the clas-
sification accuracy must be 100%. Some misclassification
may be acceptable between other skill levels, e.g., experts
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versus Master or Intermediate versus expert, but not an obvi-
ous novice versus obvious expert. Here we define obvious
novices as subjects who should never be allowed to oper-
ate (always disqualified) and obvious experts as subjects
who should never be disqualified from operating. Surgery
requires this stipulation given that patently unqualified sur-
geons endanger lives. Often, such a large difference is very
evident via task time or a casual viewer watching a video [4].
Therefore, a rigorous motion analysis algorithm should meet
this minimal performance benchmark in order to justify cost
and use. While this is not a sufficient criteria, it does pro-
vide a minimal necessary criterion to use as a baseline in
this field. Our approach in this study was twofold. First, we
asked ‘how valuable is raw tool motion data alone in classi-
fying skill given the MAC criterion?” Second, we present the
‘intent vectors’ feature and classification scheme applied to
laparoscopic tool motion. We tested the hypothesis that intent
vectors successfully classify skill according to the MAC for
specific tasks.

Methods

In this section, we present the data set utilized in this study, the
separability analysis used to assess raw surgical motion data,
and the intent vectors derivation. The lack of separability in
the raw data motivates the intent vectors.

Data set

This study utilized a previously recorded data set [13] where
the electronic data generation for evaluation (EDGE) plat-
form (Simulab Corp., Seattle, WA, USA) was used to collect
task video data and tool motion data from participants includ-
ing surgical faculty, residents, and fellows. Participants in the
study performed a subset of the FLS tasks; peg transfer, pat-
tern cutting, and intracorporeal suturing. Each subject was
asked to complete, at minimum, three iterations of the peg
transfer task, two iterations of the pattern cutting task, and
two iterations of the suturing task. The subject pool consisted
of 98 total subjects from a variety of specialties includ-
ing General Surgery, Urology, and Gynecology spanning
three teaching hospitals. Two FLS-certified graders manually
recorded task errors, and task completion time was automat-
ically recorded. Task errors and completion time were then
used to compute an overall FLS score for each iteration.
From this data set, we have chosen the ground truth expert
group (determined by a combination of caseload, FLS score,
and p-OSATS score) for our ‘obvious expert’ category and
the FLS novice group (determined by the bottom 15th per-
centile of FLS scores for trials in each task) for our ‘obvious
novice’ category. Individuals with such low scores would fail
FLS and thus not be allowed to operate. The complete data
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Table 1 FLS trials by task and skill level

Skill level Peg transfer Pattern cutting Suturing
‘Obvious novice’ 29 25 13
‘Obvious expert’ 6 10

set contains 447 recorded trials across three tasks [13]. We
selected only 91 of the original recorded trials to represent the
extremes of ‘obvious experts’ and ‘obvious novices.” Each
trial was performed by a different subject (Table 1).

Each task was recorded with time synchronized video and
tool motion data. This provided time-stamped Cartesian posi-
tions (x, y, zin cm) along with tool roll and grasper jaw angle
(@, degrees) at 30 Hz. This allowed subsequent computa-
tion of motion derivatives such as velocity and acceleration.
In post-processing, surgical tool motion was segmented into
distinct motions within each task based on information from
the tool grasper at the distal end. A segment was considered
to begin when the grasper was opened (6 > 3°) and the force
within the grasper jaws fells below a threshold (Fg < 4N).
The segment was then considered complete when the jaws
were closed (9 < 3°) and the force applied within the grasper
jawsrose above a threshold (Fy > 4N) for 200ms [13]. Each
tool is segmented separately, allowing for overlapping seg-
ments between each instrument (hand). The mean number of
segments per trial and the mean segment duration are given
in Table 2.

Functionally this segmentation scheme results in segments
where a tool is moved in a trajectory toward an object,
and then the jaws are closed around the object to secure
it, thus ending the segment. Our segments focused only on
tool motion where the surgeon is reaching toward an object
(e.g., before grasping or cutting), a motion which is preva-
lent in nearly all surgical tasks. The goal of this segmentation
scheme was to be generalizable to all surgical tasks as com-
pared to task-specific surgical gestures. We expected that
some spurious false positives may occur within segmenta-
tion and assumed that these false segments occur equally
across skill groups.

Value of ‘raw motion data’ for classification

To explore the separability of dexterous skill levels given raw
motion data from EDGE, we refined and utilized information
theoretic techniques, starting with the RELIEFF algorithm

[12]. This is used in binary classification to rank features
based on their ability to separate the data effectively. For each
point, we find the K-nearest neighbors belonging to the true
class (hit) and the opposite class (miss). Using these nearest
neighbors, a mean distance to both the hit neighbors (Dp;)
and the miss neighbors (Dpjss) is computed. The weights
for a particular feature (Wr) are updated according to the
difference between mean hit distance and mean miss distance
(computed using that particular features data) (Eq. 1).

N
Wi = Z (Dhit; — Driss; )- (D

i=1

Once weights for each feature have been computed, the
features are sorted based on weight. Features with the highest
weights are considered the most relevant features for classi-
fication. RELIEFF and its variants are limited to considering
each feature separately and do not consider combinations of
features simultaneously.

An obvious extension of the RELIEFF approach for mul-
tiple features (a variant termed RELIEF-RBF) utilizes radial
basis functions (RBF) to estimate the probability density
function given within class (hit) and between class (miss)
data across any combination of n dimensions. As compared to
the standard RELIEFF approach, all data from all dimensions
contribute to the overall probability of that data point instead
of only considering nearby neighbors in a single dimension.
A training data set is utilized, and each point (indexed by i)
within the n-dimensional set is assigned a probability esti-
mate via RBFs for within class probability ( Py;;) and between
class probability (Ppiss) (Egs. 2, 3).

3 Nt e—(€llxi—x;I)?

Pinit = == ©)
it
Nmiss ,— P —. 2
1, miss — .
' Nmiss

The bandwidth variable € is used to scale the kernel radius
given a standard deviation. Given the class-specific proba-
bility estimates for each data point, we compute the relative
separability of each data point between its hit class and miss
class. This requires computing the Kullback-Leibler (KL)
divergence of each point using both probability estimates
(Eq. 4).

Pini
Wi bt = P nit - log (l—lt) . )

i, miss

Table 2 Mean segment count +

standard deviation and [mean Skill level

Peg transfer

Pattern cutting Suturing

segment duration] by task and
skill level

‘Obvious novice’

‘Obvious expert’

30.5 £4.6 [260ms]
24.8 £ 1.3 [105ms]

61.9 £ 18.1 [130ms]
27.1 £4.5 [68ms]

41.7 £ 18.3 [203 ms]
12.4 £ 3.0 [107 ms]

@ Springer



1154

Int J CARS (2017) 12:1151-1159

25 T T T T ——++ T T
% versicolor ot
+ virginica e A *
++ +
o+ +
2t IREN + o+
=+ + +
a o+ A+ +
n + %
X X X +
15 X XXX X4+ 1
X X XXX +
X XXXXKXX
XX X X X
X XX

1 L S a L L L L L L

3 3.5 4 4.5 5 5.5 6 6.5 7

S\
(a)

x versicolor,
+ virginica

0.8

0.6

Wrbf

0.4

25 0.2

(b)

Fig. 1 RELIEF-RBF for sepal width (SW) and sepal length (SL) data from the Versicolor and Virginica classes. a 2D Fisher Iris data. b RELIEF-

RBF weights

Each data point x; in d-dimensional space (d < n) is
assigned an estimate of separability W; ¢ (i.e., relevance in
terms of classification use). The mean relevance weighting
from all points in the training data set yields an aggregate
estimate of the relevance weighting for that combination of
features. This relevance weight is then compared with other
combinations to improve feature selection for large, multidi-
mensional, numerical data sets. A two-dimensional example
of the relevance weights for two classes of the Fisher Iris
data set [8] (Versicolor and Virginica) is given in Fig. 1. The
RELIEF-RBF algorithm rewards only regions with high con-
fidence of separability (high W; ), while penalizing both
regions with a prevalence of all classes and regions that are
data scarce (low W; ).

In both RELIEFF and RELIEF-RBF, all dimensions are
mean—variance pre-scaled to account for data range effects.
The weights for both methods are un-normalized and are used
to compare the relative separability across dimensions.

Using both RELIEFF and the RELIEF-RBF, we investi-
gated which states from the raw EDGE motion data had the
highest separability. The states used in this study are given in
Eq. (5) where x, y, z terms represent derivatives w.r.t. time
of the Cartesian location of the surgical tool tip. y; is sample
at each time step in the data set. The Cartesian position of
the surgical tool [x, y, z] was excluded because of its rela-
tionship to the present surgical gesture. All resulting feature
combinations were investigated.

xe =[00xyzXVZX YT |5, 3, zIIX 5, 20]. ®)

For comparison, we also applied RELIEF-RBF to the
Fisher Iris data set, a well known, separable data set. Using
the three surgical motion states with the highest RELIEF-
RBF separability, we employed arandom forest classification
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(100 trees) to examine the classification accuracy in a LOUO
cross-validation scheme.

Intent vectors

We present a novel motion statistic for surgical skill classi-
fication. The ‘intent vectors’ statistic is based on the overall
goal of a motion segment. Using the starting and ending
location of a motion segment as endpoints, we compute a
vector which represents the ultimate goal of that segment.
We assume this intent vector is the ideal line of motion for
a given segment; then we compute metrics which represent
the amount of deviation from this optimal trajectory.

For a segment of Cartesian tool position data of length
N, we have ¥ = [Dy, Dy, ..., Dy] where D; = [x, y, 7]
represents the 3D location at time ¢ = i. The intent vector is
then computed in Eq. (6).

Dy — D
A\ B (6)
Dy — Dyl

From this intent vector, the progress of each point in W
along this line can contextualize other actions relative to the
ultimate trajectory. The intent vector progress value (IVP) is
computed according to Eq. (7) using a dot product operator
and scaled by the magnitude of the intent vector (thus fixing
the starting and ending points at 0 and 1). An illustrative
example is given in Fig. 2a.

_w;-Dp-V

IVP; = 7
"7 Dy - Dy

From the intent vector framework, we also compute the
intent vector angle (IVA): the angle of motion relative to the
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Fig. 2 Intent vector measures. a Intent vector progress in 3D. b Intent vector angle in 3D

overall angle of the intent vector. IVA is computed for each
point in W by taking the difference at a given point in time
between the current tool location and the previous location
(D; — D;_1) which is then normalized to give a unit vector
in 3D space (S;). Given this instantaneous unit vector, we
compare with the overall intention, indicating the degree to
which the tool is moving in the correct direction or doubling
back (Egs. 8, 9).

S = Di—Di1_ )
"D = Dl
1 =
IVA; = cos™ " (S; - IV). )

The value of IVA is bounded between 0 < IVA < 7 since
we are not concerned with the direction that the angle differs
from the overall intent. An illustrative example is given in
Fig. 2b. The intent vector framework was implemented for
all motion segments within the EDGE data set. For each task,
the IVA and IVP measures were compiled into a 2D feature
vector with corresponding skill labels. A plot of IVA and IVP
for the suturing task can be found in Fig. 4a.

Given the high-degree of similarity in the intent vector
space, to use the intent vector data within a classification
scheme we employed a classification approach which focuses
on deviations from the region of high expert probability. We
first identified the region in 2D IVA-IVP space with the
highest density of expert surgical motion. We employed a
modified version of the RELIEF-RBF algorithm and thresh-
old the relevance weights for the expert class (Eq. 10).

P
Wiexp = Pijexp log (ﬂ) . (10
i,nov

Here Wexp = Wit from Eq. (4) where expert is the
hit class. All training data are assigned a relevance weight

relative to the expert data. A threshold on W; ey, is com-
puted using an information gain maximization similar to
the typical decision stump algorithm [10]. We identify a
threshold (7+) such that classification of the intent vector
data follows Eq. (11) and maximizes the information gain
(IG = H(Y|X) — H(Y)) for classification (Y = skilllevel)
given (X = [IVA, IVP]).

Novice, Wexp(X) < Ty,
Wexp(X) = Ty

Y = (11)

Expert,

Using the relevance weight threshold, we retain all expert
data in [IVA, IVP] space above T,, as ‘true expert data’
and train a Gaussian probability model for online classifi-
cation (Pexp(X|u, 0)). A threshold value for this Gaussian
model (7}) is found by taking the Pexp(X) at the minimum
Wi exp(X) > Ty, value.

The next step is to classify each individual time-indexed
data point within a given segment for a specific surgeon. For
surgeon (g) and segment (s), the time series data are given
as Agy = [A1, A2, ..., An] where A; = [IVA,IVP] at time
t = i. Using Pexp(X|u, o), we classify each data point as 1
or 0 to signify novice or expert, respectively (Eq. 12). Values
where y; = 1 are considered a ‘demerit’ for behaving like a
novice and are used in the overall evaluation of the motion.

15
Yi = 0.

Given a vector of time-indexed motion demerits g, s =
[¥1, y2, ..., yn], we compute a mean score for that particu-
lar segment SK, ¢ = mean(g, ). Given the 1, 0 labels, this
score has the effect of being very low for frequent expert
motions and higher if motions fall outside the ‘true expert’

Pexp(Xi) < Ty

12
Pexp()ti) = Tp- (12

@ Springer



1156

Int J CARS (2017) 12:1151-1159

Expert
+ Novice

1000 /+

500

-500

-1000
1000

7 1000 5 8

(a)

model (many novice demerits). We train a threshold based
on the average SK scores (7y) for expert and novice sur-
geons using a decision stump approach. We employ a LOUO
scheme per skill group (LOUOpG) (i.e., leave one obvious
novice and one obvious expert out per training) and test each
left-out surgeon based on all motion segments (Eq. 13).

Novice,
Cy =
Expert,

mean(SKy ) > Ty

(13)
mean(SK, ;) < T.

For each LOUOpG iteration, we recompute all relevant
measures and thresholds, i.e., Wexp, Ty, Tp, and Ty based
on the training data set alone, therefore limiting overfitting
for the validation data.

In order to compare the accuracy of our classification
approach, we utilized previously validated aggregate task
metrics as highlighted in [5]. For this comparison, we used
a feature vector comprised of tool path length, economy of
motion (Eq. 14), motion smoothness, and motion curvature
(Eq. 15, where 7 = || %, ¥, z||) (x = [PL, EOM, MS, MC]).
A linear discriminant analysis (LDA) classifier (class-based
means and covariances, equal weighting) was trained on this
feature vector to classify skill levels. We again employed
a LOUOpG cross-validation with this classifier. We also
examined classification using a combination of intent vec-
tors and aggregate metrics with combined feature vector
X = [x,mean(SK, )]. Again we utilized a standard LDA
classifier in a LOUOpG cross-validation to classify a com-
plete task.

Path Length
EOM = —— 18 (14)
Task Time

MC = (15)

R
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Fig. 3 Relevance weightings for raw motion states. a Top three RELIEFF states. b Top three RELIEF-RBF states

Results
Value of ‘raw motion data’ for classification

The relevance of the raw motion states was examined for all
states in Eq. (5). The three motion states with the highest
relevance weights according to RELIEFF were found to be
1073,2.7 x 1073,3.0 x 1073]. A plot of these three states
is given in Fig. 3a.

RELIEF-RBF gave slightly different states with high rel-
evance. The motion states with the highest relevance weights
corresponding RELIEF-RBF weight was 6.7 x 10~ for this
combination of states. A plot of these three states is shown
in Fig. 3b. The additional relevance weights for the other
motion states are not included for the sake of brevity but
were all similarly low.

All states in the motion data had separability measures that
were orders of magnitude lower than the separability of the
Fisher Iris data set, which has a maximum relevance weight of
0.63 for sepal width and sepal length (RELIEF-RBF). Using
a random forest classifier on the top RELIEF-RBF motion
states gave a classification accuracy of 70.5% and an out-of-
bag error of 0.28. Given the relatively low feature weights
for the raw motion data, the resulting classification accuracy
did not fulfill the MAC criterion, being well below 100%.

Intent vectors

A sample plot of the intent vectors space is given in Fig. 4a.
These data indicate clear differences between novices and
experts. Novices spend far more time outside the O—1 range
of the IVP, meaning they often backtrack and overshoot the
starting and ending points. Additionally, experts spend a lot
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Fig. 4 Intent vector data (a) and demerit counts (b) (obvious novice and expert) for suturing task box-plot notch indicate range of 95% confidence
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Fig. 5 Intent vector data with ‘true expert’ data and RELIEF-RBF weights (obvious novice and expert). a “True expert’ region. b RELIEF-RBF

weights

of time with low IVA values meaning they generally head in
the correct direction. However, experts also have varied IVA
values around the endpoint of segments (IVP = 1), meaning
that near the endpoint, experts make fine adjustments to their
approach.

The intent vector classification yielded a large separa-
tion among segment demerit counts (y;) between expert and
novice surgeons. A plot of these values for each class is given
in Fig. 4b. The mean segment demerit count was found to be
65.9 (std = 105.2) for novices and 22.6 (std = 27.7) for
experts. The relevance weights (Wexp) and ‘true expert’ data
in the intent vector space are shown in Fig. 5.

The intent vector framework yielded an average classifi-
cation accuracy of 97% between novices and experts using

a LOUOpG scheme for all tasks combined (Table 3). The
intent vector approach fails to pass the MAC criterion for
all tasks. However, it does achieve the MAC for the pattern
cutting task.

An example plot of expert versus novice total segment
demerits and the learned thresholds Ty (Eq. 13) from all
LOUOpG iterations is given in Fig. 6 for the intracorporeal
suturing task. Results suggest the existence of an ideal thresh-
old (obtainable using all available data) that provides clear
separation between novice and expert data in the suturing
task.

For comparison, the LDA classifier using the aggregate
task metric features () achieved the classification rates in
square brackets in Table 3. These measures failed to achieve
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Table 3 Intent vectors

[ageregate metrics] {combined Skill level Peg transfer Pattern cutting Intracorporeal suturing
g‘;a;“r“} classification aceuracy - Noyice 96.5 [100°] {100°} 100* [96] {96 100° [92.3] {92.3)
0
Expert 83.3[83.3] {86.2} 100% [90] {100%} 92.3 [87.5] {100}
Macro-accuracy 94.2 [97.1] {97.6} 100? [94] {97.2} 97.1[90] {95.2}
# Achieves MAC criterion
Fig. 6 LOUOpG classification 180
using intent vectors with o o Est. Novice
thresholds (Ty) and ideal 160 [ Est. Expert
separable threshold St. Expe
140 1 — Threshold
g 1201 ---- Ideal
e o
T 100 o Q
(] N
£ 8 G
3 sof RE=—
S S =
S 60
g
4t 3
a)
201
0 . .
Novice Expert

100% (macro-accuracy) classification for any of the tasks.
The intent vector approach performed better than aggregate
measures for both the suturing and cutting tasks, but worse in
the peg transfer task. The combined feature vector x achieved
equivalent or better macro-accuracy than the aggregate met-
rics alone for all tasks, indicating improved performance
through the incorporation of intent vectors.

Conclusion

We presented the minimally acceptable classification (MAC)
criterion for surgical skill classifiers. That is, given obvi-
ous expert and obvious novice data, a classification accuracy
of 100% must be demonstrable as a minimal criteria for
surgical skill classification. This requires stating both the
classifier performance under LOUO-level cross-validation
and enumerating its useful benefits over existing methods
like summary metrics (e.g., task time).

We investigated the separability of raw tool motion data
between obvious novices and experts with this MAC criteria
in mind. As visible in Fig. 3, our results indicate extremely
low separability—orders of magnitude lower than, say, the
Fisher Iris dataset. This was true using both the RELIEFF and
RELIEF-RBF feature selection algorithms. This suggests
that motion data alone are statistically inseparable for clas-
sification given the MAC criterion. This is reiterated by the
poor performance of the random forest classifier using raw
tool motion alone. This motivates the inclusion of additional
context (e.g., video data, tracking tissues, and tool-tissue
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interaction) to amplify the relevance of input data to the clas-
sification problem.

The intent vector feature and classifier performed surpris-
ingly well given the observed low separability of the raw
tool motion data. The overall classification rate of 97% rivals
or surpasses prior the literature especially under LOUOpG
cross-validation. We note that this approach fails to achieve
the MAC criterion for all three FLS tasks. However, our intent
vector classifier does partially succeed under the MAC cri-
terion for two special cases: the cutting task and identifying
obvious novices in the suturing task. Closer inspection in
Fig. 6 reveals that the intent vector can fully separate the
suturing task (and hence classify with 100% accuracy to
achieve the MAC criterion) given an ideal threshold. This
approach achieves equivalent or better results when com-
pared with aggregate task metrics common in prior art.
When used in the combined feature vector x, we found that
intent vectors improve classification accuracy when com-
pared with the aggregate task metrics alone. Furthermore,
for the cutting and suturing tasks, the intent vector provides
additional value beyond summary metrics like task time.
Notably, it returns classification results upon completion of
each motion segment. This permits use cases such as (1)
identifying only the worst portions of a surgical video for
streamlined targeted review or (2) providing skill feedback
in near real time at the completion of every motion. The
segmentation approach used has the additional benefits of
not requiring manual segmentation and being task agnos-
tic.
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We propose that the MAC criterion be adopted in surgical
skill research as a minimal benchmark for a surgical skill
classifier. Otherwise, the cost or complexity of sophisticated
algorithms may not be justified. Using MAC also demands
more carefully chosen ground truth skill categories to ensure
accurate establishment of the ground truth, e.g., combining
multiple criteria such as OSATS review, caseload, and proce-
dural metrics. Failure to establish such a clean ground truth
may hamper scientific progress in skill evaluation research.

This study has multiple limitations. This approach has
only been applied to manual laparoscopic data on simulated
tasks. Our conclusions may not hold for other contexts such
as live surgery or robotic systems. The high selectivity of
our ‘obvious expert’ inclusion criteria resulted in relatively
small numbers of trials for cross-validation. Future work will
include additional data collection to remedy this and applying
the intent vector framework to ternary skill level classifica-
tion. Additional analysis will investigate the concordance of
intent vector metrics with FLS scores. We intend to com-
pare our approach with the DCC and ribbon area measures
[1,11]. This method has only been applied within our ballistic
approach segmentation scheme; future work will investigate
whether intent vectors can be applied to other actions such as
needle passing. The current framework assumes the overall
intent of each segment is correct and does not account for
motion with incorrect intent. This segmentation scheme has
the potential for false positives but is assumed to affect skill
groups equally.
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