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Abstract
Purpose Most evaluations of surgical workflow or sur-
geon skill use simple, descriptive statistics (e.g., time) across
whole procedures, thereby deemphasizing critical steps and
potentially obscuring critical inefficiencies or skill deficien-
cies. In this work, we examine off-line, temporal clustering
methods that chunk training procedures into clinically rele-
vant surgical tasks or steps during robot-assisted surgery.
Methods Features calculated from the isogony principle are
used to train four commonmachine learning algorithms from
dry-lab laparoscopic data gathered from three common train-
ing exercises. These models are used to predict the binary or
ternary skill level of a surgeon. K-fold and leave-one-user-
out cross-validation are used to assess the accuracy of the
generated models.
Results It is shown that the proposed scalar features can
be trained to create 2-class and 3-class classification mod-
els that map to fundamentals of laparoscopic surgery skill
level with median 85 and 63% accuracy in cross-validation,
respectively, for the targeted dataset. Also, it is shown that the
2-class models can discern class at 90% of best-case mean
accuracy with only 8 s of data from the start of the task.
Conclusion Novice and expert skill levels of unobserved
trials can be discerned using a state vector machine trained
with parameters based on the isogonyprinciple. The accuracy
of this classification comes within 90% of the classification
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accuracy from observing the full trial within 10s of task ini-
tiation on average.
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Introduction

Surgical technical skill directly impacts patient health out-
comes, as shown in [2]. An accurate automated surgical skill
evaluation system would consequently be an important tool
in reducing a surgical patient’s injury risk. A system able to
deliver evaluations immediately following a training module
would also prove beneficial to surgeons in training, since for-
mative feedback is a lauded goal in surgical training [12].
Knowing when one makes an error is invaluable information
that molds good behavior. It is a core educational principle
that spans disciplines [13]. Current methods introduce time
barriers to feedback, either by requiring humans to deliver
ratings or byusing scoringmodelswhich require the compila-
tion of scored trial data each time a new training technique is
developed. To accomplish timely feedback, a scoringmethod
must be developed that depends neither on human interven-
tion nor on prior probability distributions for features specific
to a particular task.

Past attempts at developing an automated skill evaluation
system have focused on diagnosing skill using task-specific
performance measurements. In [10], a method using linear
discriminant analysis and toolmotion features achieved accu-
racy in the 90% range; however, the assessment method was
tailored to four-throw suturing tasks and defining task fea-
tures (surgemes) required a surgeon’s expertise. Investigation
from [1] reports similar classification success but also used
features very specific to septoplasty, and classified by seg-
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menting and analyzing the strokingmotions of the cottle. The
investigation in [8] showed the crowd is capable of discerning
surgical skill concordant with the current gold standard (an
expert panel) and can generate a skill evaluation weeks faster
than the expert panel. However, these scores still depend
on human intervention and also introduce several hours of
lag time between task completion and score delivery to the
trainee. A method that does not require task completion to
diagnose skill and can model skill regardless of which task
the surgeon performs would be preferred.

The fundamentals of laparoscopic surgery are a high-
stakes certification exam of cognitive and technical laparo-
scopic skills [4,5,11]. It is now often required for graduation
and/or board certification among laparoscopic curricula. It
has been extensively validated and even shown to correlate
with patient outcomes [14]. However, there are some limita-
tions. The score is based on task time and penalty counts (e.g.,
dropping an item, cutting outside a boundary, loose knots).
[7] found that the weights used in computing FLS score
greatly emphasize task time, rendering the penalties virtu-
ally irrelevant. This suggests that FLS score provides little or
no practical value over task time. However, the value of FLS
scoring (or, implicitly, FLS task time) in its link to patient
outcomes remains undisputed and therefore valuable as a
measure of surgical technical skill. Our observations in oper-
ating rooms, surgical simulator sessions, and among trainees
reveal that a subject’s approximate level of technical skill is
often evident very quickly—within tens of seconds—when
watching video of their toolmotions during a procedure. This
suggests that skill evaluation can be correctly approximated
with a fraction of the time it takes to do a procedure—be
it an FLS task or a surgical procedure. This would alleviate
the need for trainees and proctors to wait until the end of a
task to receive a skill evaluation. However, it is unclear either
what motion features to identify or howmuch time is needed
before obtaining adequate confidence in such an assessment,
i.e., how many seconds are required to predict an FLS score?

Isogony principle

The isogony principle may provide some value to tool
motion-based skill evaluation. In [9], subjects were recorded
drawing shapes of various curvature with the goal of relating
curvature of the drawn shape to speed of the pen tip. A rela-
tion between these two parameters was determined using the
isogony principle as:

v(t) = γ k(t)1/3

where v(t) is the instantaneous velocity of the tip of the pen,
k(t) is the local curvature that the tip of the pencil traces,
and γ is the velocity gain factor parameter relating v(t) and
k(t). In [9], it was asserted that v(t) can be predicted from

k(t) based on a constant value of γ for a given segment of
motion.

This investigation extends the velocity gain factor rela-
tionship to 3D tool motion, using the velocity and curvature
from the 3D space. For the purpose of this study, we do not
assume constant values of γ , and instead choose to observe
the behavior of the γ parameter:

γ (t) = v(t)

k(t)1/3

For the k(t) parameter, the radius of curvature was used:

k(t) = (1+ v(t)2)3/2

a(t)

Hypotheses and objectives

Based on the property from [9], several hypotheses were
drawn. First, it was hypothesized that the variability of the γ

parameter between novice surgeons will be small. This was
drawn from the idea that novice surgeons will adhere more to
their “natural” handmotion pattern, while themore practiced
motions of experienced surgeons will vary from this natural
motion pattern.

Second, it was hypothesized that scalar parameters such
as the mean (μ) and standard deviation (σ ) of a trial’s γ for
each hand can be used as features to train machine learning
algorithms and coarsely predict the Fundamentals of Laparo-
scopic Surgery (FLS) score of unobserved trials.

Third, it was hypothesized that the full duration of the task
is not required to evaluate skill since γ (t) is easily observable
at any point in the task. Accordingly, investigation was made
into the minimum number of seconds of data from a trial
required to discern the subject’s FLS class with an accept-
able level of accuracy. This ability would provide significant
value over task time-related features, which require prob-
ability distributions based on the results of previous users,
and would not be agile to changes in training. A secondary
hypothesis is that prediction accuracy will increase as more
time is included, but gains will taper off.

Results from both task-specific and task-blind models
were generated and are reported here. Task-specific mod-
els are models trained using only samples from a specific
task and are included as a basis for comparison. Task-blind
models are models where data across all tasks were included
in training and were used to predict the skill of any task.
Both leave-trial-out cross-validation and leave-one-user-out
(sometimes referred to as leave-surgeon-out, and abbrevi-
ated here as LOUO) validation methods were used to test the
accuracy of the binary and ternary classification algorithms
developed.
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There are three key contributions offered by this paper.
First, we introduce isogony as a potentially useful feature in
surgical skill evaluation. Second, we introduce task invari-
ance as a desired attribute of skill evaluation. Third, we
introduce the notion of estimating skill normally evaluated
over the course of a full task from a partial task observation,
i.e., predicting final scores from N seconds.

Methods

Dataset

This investigation used the dataset established in the Elec-
tronic Data Generation and Evaluation (EDGE) study des-
cribed by [7]. This study gathered video, tool motion and
demographic data on 98 different surgeons performing typ-
ical FLS tasks. From this data set, 108 peg transfer, 63
suturing and 124 circle cutting tasks were used for this
study.

Each instance where data were recorded while a subject
was performing a particular FLS task will be referred to as a
“trial.” Within the dataset, each trial is comprised of a 30Hz
fixed camera-position video recording of the laparoscopic
tools interacting with the training field, numeric data docu-
menting the position, orientation and grasp force of the tool
tips corresponding to each frame in the video, an FLS score
ranking the subject’s skill level based on their performance
in each trial, and demographic information relating relevant
information about the subject such as their dominant hand
and experience level.

The FLS score alone was used to establish skill groups
within each of the three tasks. This resulted in the FLS expert
class (any trial with FLS scores above a threshold of OSATS
scores from identity-blind review by two faculty surgeons for
each task; see [6]); the FLS novices (trials from the bottom
15th percentile of FLS scores within each task); and FLS
intermediates (trials from the 15th percentile range about a
midpoint between the lowest FLS expert score and highest
FLS novice score, for each task). The video portion of the
data was not used. This choice of criteria gave us complete
trials from 67 FLS novices, 71 FLS intermediates, and 157
FLS experts.

Analysis methods and algorithms

The mean and standard deviation of the γ parameter of each
trial for the dominant (d) and non-dominant (nd) hands are
the features selected for evaluation. These are referred to
as σ(γd), μ(γd), σ (γnd) and μ(γnd). These four features
were calculated for each trial and were used along with
their FLS class to train several different machine learn-
ing algorithms to classify skill level. The accuracies these

trained algorithms obtained were used as evidence of feature
strength. The algorithms used for testingwere logistic regres-
sion (LR), support vector machine (SVM), linear discrim-
inant analysis (LDA), and quadratic discriminant analysis
(QDA).

The accuracy of each trained model was evaluated using
k-fold cross-validation (with k =10) and leave-one-user-out
validation. For the k-fold, each fold was assigned an equal
number of trials from each class. The k-fold cross-validation
was performed N =10 different times, where a new set of
k-folds was selected and evaluated for each iteration of N,
which resulted in kN different models trained and evaluated
for eachmachine learning algorithm.Note that these are folds
created using each individual trial; hence, it is partitioning in
a leave-trial-out manner.

Accuracy was also evaluated using leave-one-user-out
(LOUO) for all Q surgeons. Each surgeon has r different
trials in the database, where r may differ for each surgeon.
In this method, each surgeon takes a turn as the test set while
the other Q − 1 are used for the training set to generate the
models. The accuracy is reported by evaluating the classifica-
tion results of each of the r trials for each of the Q surgeons.
Feature strength and model accuracy were assessed sepa-
rately for both 2-class classification (discriminating between
novice and expert) and 3-class classification (discriminating
between novice, intermediate, and expert).

Models were generated in both task-specific and task-
blind manners. Task-specific models were trained using only
trials where a specific taskwas performed, and their accuracy
was tested using only trials from that specific task. Task-
blind models were trained using all trials regardless of task
and were used to create predictions of any trials regardless
of class. The accuracy of task-blind model predictions for
each specific class was also analyzed, where the model was
trained task-blind but the testing set was partitioned to ana-
lyze how well the task-blind model can predict the skill for
each specific task.

The minimum period of time required for acceptable pre-
diction accuracy was evaluated by taking successively longer
series of time from the beginning of each trial to time t and
calculating μ(tγd), σ(tγd), μ(tγnd), and σ(tγnd) based on
those different time periods. The featureμ(tγd) is the feature
μ(γd) calculated from the γ values from the start of the train-
ing exercise until time t , where n(t) represents the number
of time-steps included in the range [0, t] (data were recorded
at 30Hz, so n = 30t):

μ(tγd) = 1

n(t)

n(t)∑

i=0

vd(i)

kd(i)1/3

σ(tγd) =
√√√√ 1

n(t)

n(t)∑

i=0

( vd(i)

kd(i)1/3
− μ(tγd)

)
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(a) (b)

(c) (d)

Fig. 1 FLS score versus σ(γd ) feature calculated over the full duration of each trial (dominant hand). Each point represents the feature value for
one trial. Raw data displayed for all trials and each trial individually. a All trials, b peg transfer trials, c cutting trials, d suturing trials

The μ(tγnd) and σ(tγnd) are calculated by the same
method, but with the non-dominant handmeasurements. The
above features were generated for each integer-valued time
period second within t = (1, 30) s, where 30s was chosen
since all task times in the data set were greater than this
amount. This created 30 different groups of μ(tγd), σ(tγd),
μ(tγnd), and σ(tγnd) specific to the period of time they were
calculated from. Each of these 30 groups was then passed
through the samemachine learning algorithms and validation
process as for σ(γd), μ(γd), σ (γnd) and μ(γnd), yielding
a mean accuracy μt for each group. Trends for the value
of μt for t = (1, 30)s for each different machine learning
algorithm were then plotted and are displayed in the results
section. The minimum t required to get within 90% of the
observed settling accuracy is reported in Table 2.

In addition, these methods have been validated against
other validated methods for skill classification, such as those
in [3]. The validation methods train three different mod-
els using either tool path lengths (PL), economy of motion
(EOM) andmotion smoothness (MS) as features using SVM.

Experimental results

Two class classification: FLS expert versus FLS novice

Figure 1a–d shows the distribution of FLS scores plotted
against the σ(γd) feature of each trial for a given subject,
where the marker type and color specifies expertise. Recall
that σ(γd) and σ(γnd) are features representing the intra-
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Table 1 Median and standard deviation of the σ(γd ) and σ(γnd) over
all subjects

σ(γd ) σ (γnd )

med (SD) med (SD)

PegTx

Nov 13.91 (4.22) 11.52 (5.83)

Exp 22.86 (7.03) 20.98 (8.71)

Cutting

Nov 9.24 (5.83) 9.72 (3.88)

Exp 18.37 (5.97) 18.83 (10.61)

Suturing

Nov 9.09 (2.31) 9.45 (2.76)

Exp 14.85 (5.83) 17.66 (7.90)

All tasks

Nov 10.19 (5.14) 9.93 (4.23)

Exp 18.80 (7.04) 19.45 (9.57)

subject standard deviations (the subject’s standard deviation
for motion during a given trial). Table 1 details the median
and range of the σ(γd) and σ(γnd) features for each subject.
It is observable from here that the inter-subject medians for
novices are much lower and have much smaller inter-subject
standard deviation.

Figure 2a–c shows six example plots of the γD parameter
calculated for each time step in the first 20 s of a trial.

Figure 3 shows the statistics reporting the mean accuracy
of each model trained to classify between FLS novice and
FLS expert trials. Five different types of models were gener-
ated and tested at each round. The left four box plots represent
the model prediction accuracy based on training using a sin-
gle feature. The rightmost column used all four features to
train the model. The mean accuracy of each model trained
in each k-cross-validation and each N-iteration was recorded

Fig. 2 Example of σ(γd )

activity over the first 20 s of
each trial

(a)

(b)

(c)
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(a) (b)

Fig. 3 K-fold leave-trial-out SVM classification task-blind training and task-blind testing, comparing strength of each feature. a 2-class classifi-
cation, b 3-class classification

(a) (b)

Fig. 4 LOUO classification task-blind training and task-blind testing using μ(tγd ), σ(tγd ), μ(tγnd ), and σ(tγnd ) features combined to train each
model, comparing strength of machinery. a 2-class classification, b 3-class classification

and used to generate the box plots. Thus, the statistics dis-
played are values calculated over the kN models generated in
the cross-validations. These models were trained task-blind,
meaning all trials regardless of task typewere used to train the
model. They were also tested task-blind, meaning the results
reported here are the accuracy over all trials regardless of
task.

For all provided box plots, the 25th and 75th percentiles
are the lower and upper box boundaries while the median is
the central line. Thewhiskers extend to themost extremenon-
outlier points, and the + are considered outliers. The models
trained using single features from each hand have agreement
not far from the model trained on all features, which shows
a median agreement with desired skill class of 85%.

Figure 4a shows the box plots representing model predic-
tion accuracy using LOUO. These models are trained using
all four features and the labeled machinery type. This figure
shows a median model prediction accuracy of between 80%

and 100% depending on model type. Note that LOUO tests
the accuracy of each user individually, i.e., each user has per-
formed n trials and a prediction accuracy is assessed for each
individual user based on the percentage of those n trials that
were correctly classified. The LOUO box plot displays the
crowd tendencies of the percent accuracies of each user.

Three class classification: FLS expert, FLS
intermediate, FLS novice

Figure 3b uses the same k-fold method as Fig. 3a; how-
ever, it predicts over all three classes (novice, intermediate,
expert) rather than just between novice and expert. It shows
a median agreement with desired skill class of 62% when
trained using all features. Figure 4b uses the same LOUO
method as Fig. 4a, and it also predicts over all three classes.
It shows a median agreement of 50%.
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(a) (b)

Fig. 5 Error rate per number of seconds used to calculate μ(tγd ), σ(tγd ), μ(tγnd ), and σ(tγnd ). a 2-class classification, b 3-class classification

(a) (b)

Fig. 6 LOUO validation for a 2-class classification using SVM for task-blind training and task-blind testing, comparing strength of each feature
set. a Features calculated at end of task time, b features calculated at 30 s point in task time

Table 2 2-class classification
accuracy results per algorithm
and per task

Task-specific accuracy (μ) over all kN model
accuracies in cross-validation, mean(SD)

Task-blind mean accuracy over all kN
model accuracies in cross-validation

PegTx μ(σ) Cutting μ(σ) Suturing μ(σ) Best % accuracy
mean/median

Min time to 90%
of best accuracy

LDA 80.1 (0.13) 86.1 (0.11) 83.0 (0.2) 83.7/85.7 2 s

QDA 87.6 (0.12) 86.9 (0.11) 66.0 (0.24) 82.5/82.6 4 s

SVM 85.2 (0.12) 90.2 (0.10) 82.6 (0.20) 87.2/88.7 8 s

LR 84.6 (0.12) 90.2 (0.10) 81.5 (0.21) 86.6/86.4 7 s

Models generated for this figure were trained task-blind, results at left reports how well the model classifies
each task

Minimum time to classification

Figure 5a is generated from SVM, QDA, LR and LDA mod-
els trained using all four features and shows the overall

model error rate of as t is increased from 0 to 30s, which
increases the number of data points in a trial used to calcu-
late μ(tγd), σ(tγd), μ(tγnd), and σ(tγnd). Integer values of
t from 1 to 30 were used. Figure 5b uses similar methods,
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Table 3 3-class classification
accuracy results per algorithm

Task-specific accuracy (μ) over all kN model
accuracies in cross-validation, mean(SD)

Task-blind mean accuracy over all kN
model accuracies in cross-validation

PegTx μ(σ) Cutting μ(σ) Suturing μ(σ) Best % accuracy
mean/median

Min time to 90% of
best accuracy

LDA 57.3 (0.13) 63.0 (0.14) 66.0 (0.16) 61.6/61.7 2 s

QDA 66.6 (0.12) 59.2 (0.14) 44.3 (0.16) 58.9/58.6 4 s

SVM 62.2 (0.13) 67.0 (0.13) 65.5 (0.14) 65.1/65.5 3 s

LR 60.8 (0.12) 68.3 (0.13) 65.7 (0.15) 65.1/64.3 3 s

but is classifying between novice, intermediate and expert
surgeons.

Validation with similar methods

Figure 6a and b compares the performance for 2-class clas-
sification of the γ parameters against previously validated
aggregate task metrics as described in [3]. PLd and PLnd

are the path length variables calculated for the dominant and
non-dominant hand. The PL boxes represent the accuracy of
an SVM trained using PLd and PLnd together as features,
with accuracy measured using k-fold for N iterations. The
same applies for EOM and MS boxes. The γ box represents
the accuracy of an SVM trained usingμ(γd), σ(γd),μ(γnd),
and σ(γnd).

Conclusion

The results give support to our three initial hypotheses. The
first hypothesis is supported by Fig. 1a–d and Table 1. The
feature σ(γd) is taken to represent the intra-subject variabil-
ity in the γd parameter for a hand. A low intra-subject γd
(i.e., a small σ(γd)) may imply a given subject is nearly
following the motion law outlined in [9], where the tool
tip is assumed to maintain a constant γd . Broadening the
scope to how these skill levels behave at the group level,
from Table 1 it is observable that novice subjects have inter-
subject median and standard deviation values for σ(γd) and
σ(γnd) that are comparatively lower than experts. This sup-
ports the first hypothesis. A comparatively low inter-subject
standard deviation for the σ(γd) feature for the novices
may imply a behavioral pattern between subjects. Mean-
while, a comparatively low inter-subject median for the
σ(γd) feature for the novices may imply that, as a group,
novices stay closer to the “natural” motion law. This could
suggest that experienced surgeons mature out of this adher-
ence to the motion pattern with practice for laparoscopic
tools.

Second, the scalar parameters σ(γd), μ(γd), σ(γnd),
and μ(γnd) were able to train LDA, QDA, SVM and LR
models to predict the class of partitioned data with mean
cross-validation accuracy in the 85% region for binary clas-
sification and in the 60% region for ternary classification.
Prediction accuracy using LOUO yielded median accuracy
of up to 100% for binary classification and 50% median
accuracy for ternary classification using logistic regression.
It should be noted that there is a large variation in classifi-
cation accuracy across the different users for the LOUO box
plots. Chiefly, for a 2-class classification the 25th percentile
is as low as 33% for certain users while a 3-class classifica-
tion gets all the way to 0% for certain users. The outliers also
reach 0% for 2-class classification. Further investigation will
have to be made into this behavior. It is unclear at this point
whether this exposes a limitation in the chosen features or
whether our data still have insufficient N to capture human
variability in surgery.

Third, Fig. 5a, b and Tables 2 and 3 show that for all four
tested algorithms, the time required to get within 90% of the
best observed accuracy is less than the full task duration.Note
there is some oscillation in several of the curves in Fig. 5a. It
is not obvious what this signifies, e.g., data may be truncated
through incomplete maneuvers or γ may be only significant
at sustained speeds to rise above the noise floor. Exploring
this will require a dataset withmotion segments continuously
labeled by skill level.

In addition, this method was compared against previously
validated methods. For the EDGE dataset, Fig. 6a and b
shows that γ parameters outperform economy of motion
and motion smoothness, but fall short of path length. When
measured short of task completion (at 30 s), Fig. 6b shows
that γ parameters outperform the validation features. This is
expected, since the validation metrics are heavily influenced
by task time, a characteristic γ features are free of.

Determining the FLS class in the first seconds of a task
for this dry-lab simulation data is a significant outcome.
This implies that a trainee and proctor can potentially take
less time for FLS certification. Also, traditional human-
required tasks in FLS penalty scoring that were resource
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intensive—such as counting object drops or measuring cut
accuracies—may not always be required. The positive clas-
sification results that were done in task-blind settings also
suggest that the isogony measure may be capturing some
of the aspects of skill evident in human motion that may
be obvious to expert reviewer but difficult to articulate—
aspects that may allow them to infer skill from only a few
seconds of a video. Prior art has typically not investigated
task-blind skill classification methods. Our results of median
85% accuracy for novice-expert classification within the first
30 s of a task rival or outperform existing, often more com-
plex approaches. The fact that a task-blind model can be
generated using γ with the demonstrated accuracy suggests
that γ provides insight into some task invariant attributes of
skill level. There were several limitations in this study that
should be addressed in future work. This study used only
dry-lab laparoscopic simulation tasks, which do not neces-
sarily mimic real surgical maneuvers. This limits our results
and conclusions to only this simulated manual laparoscopy
context. The skill groups used here are defined based on
FLS score only and are thresholded based on the subjects
available in the dataset. Data defining skill based on the sur-
gical panel and crowd-sourced skill determinations will be
used in its place in the future. It was assumed that mean-
ingful motion was occurring in the data used this study, and
selecting only the first 30 s of task execution was used as
a surrogate for capturing meaningful motion. It is possi-
ble that some trials may include subjects keeping their tools
immobile while planning their maneuvers at the start of the
task, so this must be filtered out in future work. Additional
datasets could also be generated by sub-sampling random-
ized time intervals from existing tests. This would also help
investigate the question of whether the quicker diagnoses
(within 2 s) are due to the fact that expert surgeons get to
work more quickly and confidently early in the task than
novices.

We do not claim that our approach, as given, is immedi-
ately useful to surgical trainees. However, it is a necessary
step toward achieving formative feedback. Namely, if a
skill measuring feature only correlates with task time (e.g.,
FLS score is almost identical to task time [7]), it would
have little or no value for formative feedback (or even
as a summary metric itself). We show that isogony pro-
vides some accuracy in measuring skill even within the
first N seconds; this suggests that it has some utility over
task time. However, this is a necessary but not sufficient
step for formative feedback. For example, a mapping of
isogony features to easy-to-understand continuous motion
quality scores on, say, a percentage scale could be more
useful.

We conclude that predicting final FLS score from roughly
the first 10 s of a trial is potentially feasible and that isogony

provides some useful task-blind skill-classification informa-
tion above simple task-time or FLS score.
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