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Abstract
Purpose Since pre-processing and initial segmentation
steps in medical images directly affect the final segmentation
results of the regions of interesting, an automatic segmenta-
tion method of a parameter-adaptive pulse-coupled neural
network is proposed to integrate the above-mentioned two
segmentation steps into one. This method has a low compu-
tational complexity for different kinds ofmedical images and
has a high segmentation precision.
Methods The method comprises four steps. Firstly, an opti-
mal histogram threshold is used to determine the parameter
α for different kinds of images. Secondly, we acquire the
parameter β according to a simplified pulse-coupled neural
network (SPCNN). Thirdly, we redefine the parameter V of
the SPCNN model by sub-intensity distribution range of fir-
ing pixels. Fourthly, we add an offset A × Soff to improve
initial segmentation precision.
Results Compared with the state-of-the-art algorithms, the
new method achieves a comparable performance by the
experimental results from ultrasound images of the gallblad-
der and gallstones, magnetic resonance images of the left
ventricle, and mammogram images of the left and the right
breast, presenting the overall metric UM of 0.9845, CM of
0.8142, TM of 0.0726.
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Conclusion The algorithm has a great potential to achieve
the pre-processing and initial segmentation steps in various
medical images. This is a premise for assisting physicians to
detect and diagnose clinical cases.
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Introduction

Medical image segmentation, such as ultrasound image [1–
4], CT image [5–8], magnetic resonance image [9–11], has
been playing an increasingly important role in image pro-
cessing field. Most fashionable segmentation algorithms in
medical images invariably capture the local details of object
regions to determine the segmentation results and are applied
to assist physician’s diagnosis. Further, segmentation steps
of these algorithms are always divided into pre-processing,
initial segmentation, coarse segmentation, fine segmentation,
andpost-processing.Hereinto, pre-processing and initial seg-
mentation are indispensable regardless of the properties of
the images.

Medical image methods with a global threshold are usu-
ally used to segment the images into different objects [12,13].
There are some of image threshold methods, such as static
threshold methods including multi-scale 3D Otsu threshold-
ing [14], and dynamic threshold methods including PCNN
[15]. More applications of medical image threshold are
obtained from the literatures of Musrrat [16] and Guo [17].

PCNN has broad applications in many aspects for image
processing [18]. For examples, image segmentation [19,20],
image enhancement [21,22] and object recognition [23,24].
Hereinto, the PCNN has a great potential in image seg-
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mentation. Temporal similarity and spatial proximity of the
output pulses of PCNN always provides an image segmen-
tation property. One firing neuron corresponding to the pixel
directly impacts its adjacent neurons and the segmenta-
tion result of the whole image. However, a majority of the
prevalent PCNN algorithms require to manually or semi-
automatically set parameters, and there are only several
automatic segmentation algorithms containing Berg et al.
[25], Ma et al. [26], and Chen et al. [27].

Although the above-mentioned methods have better seg-
mentation effects than the basic PCNN model, it is still
possible to further simplify parameters setting.What ismore,
physicians still need to acquire more precise segmentation
results to analyze and diagnose relative clinical cases in
shorter time. Therefore, we develop a novel image segmenta-
tion method based on PA-PCNN. In this method, we attempt
to merge pre-processing and initial segmentation steps into
one to improve segmentation precision and decrease compu-
tational complexity, and try to search a method to achieve
partial segmentation for different kinds of medical images
with different organ sites.

Our method contributes two new ideas. Firstly, it changes
five parameters of the SPCNN model to three parameters
of the PA-PCNN model. Hereinto, parameters αf and αe

in SPCNN are combined into a parameter α, which repre-
sents the decay factor of the PA-PCNN. The parameter β is
retained because of its necessity and significance. The param-
eter VE is set to V , which represents the weighing factor
of the PA-PCNN. Secondly, we add a controlling parame-
ter, which judges whether the image is over-segmentation
or under-segmentation, and an offset Soff , which adjusts the
value of weighing factor V , to improve segmentation accu-
racy rates. This image segmentation method simplifies the
expression of all parameters and calculates them by optimal
histogram threshold S′ [28], which is appropriate for medical
image segmentation.

Materials

Experimental images, containing 80 ultrasound images of
the gallbladder and gallstones from Gansu Provincial Hos-
pital in China, 680 magnetic resonance images of the left
ventricle from Medical Image Computing and Computer
Assisted Intervention Society (MICCAI), and 322 mammo-
gram images of left and right breast from Mammographic
Image Analysis Society (MIAS) database [29], were adopted
on the research. Hereinto, magnetic resonance images have
three cases containing 240 images from the HF-I database,
260 images from the HF-NI database and 180 images from
the HYP database. The ultrasound images, the magnetic res-
onance images and the mammogram images have resolution
of 512×512 pixels, 512×512 pixels and 1024×1024 pixels,
respectively.

The SPCNN model

Basic PCNN model

It is known that the PCNN does not require any training
and only has one single layer. In contrast to other PCNN
models, Chen et al.’s SPCNNmodel [27], derived from Zhan
et al. ’s SCM model [30], has higher segmentation accuracy
and lower computational complexity. Therefore, the SPCNN
could be employed in this paper and is written as follows:

Fij[n] = Sij (1)

L ij[n] = VL
∑

kl

WijklYkl[n − 1] (2)

Uij[n] = e−α f Uij[n − 1]

+ Sij

(
1 + βVL

∑

kl

WijklYkl[n − 1]
)

(3)

Yij[n] =
{
1, if Uij[n] > Eij[n − 1]
0, else

(4)

Eij[n] = e−αe Eij[n − 1] + VEYij[n] (5)

where

Wijkl =
⎡

⎣
0.5 1 0.5
1 0 1
0.5 1 0.5

⎤

⎦ (6)

In the SPCNN model, Neuron Nij in position (i, j) has
simplified feeding input Fij[n] denoted by an input stimu-
lus Sij, and linking input L ij[n] denoted by the product of
a synaptic weight Wijkl, eight neighboring outputs, and a
weighing factor VL. These inputs in internal activity Uij[n]
are modulated by the linking strength β. Internal activity
Uij[n] also records its previous state by the decay factor e−αf .
αf and αe represent decay factors of internal activity Uij[n]
and dynamic threshold Eij[n], respectively. Moreover, there
are five adjustable parameters αf , αe, β, VE and VL, and these
parameters could be set automatically

αf = log

(
1

σ(S)

)
(7)

β =
(
Smax/S′) − 1

6VL
(8)

VE = e−αf + 1 + 6βVL (9)

VL = 1 (10)

αe = ln

(
VE

S′M[3]
)

(11)

M[3] = 1 − e−3α f

1 − e−α f
+ 6βVLe

−α f (12)
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Fig. 1 SPCNN segmentation steps: Images in the first column represent original ultrasound images of the gallbladder with stones; images in the
second and third columns represent the segmentation results of the SPCNN in the third and fourth iteration, respectively

where S′ and Smax denote Otsu thresholding and the max-
imum intensity of the image. σ(S) represents standard
deviation of the image. M [3] is the most significantly term
of internal activity Uij[n] in the third iteration. In the above
formulae, parameters β, αe and VE always generate the large
impact for the SPCNN. Obviously, the larger the value of β,
the more strongly a neuron is influenced by its eight adja-
cent outputs. The larger the values of αe or VE, the lower
segmentation accuracy rates become.

Sub-intensity ranges in the SPCNN model

In this paper, segmentation steps and sub-intensity ranges of
the SPCNN are shown by two examples of the gallbladder
and gallstones in ultrasound images (Figs. 1, 2). Figure 1
shows SPCNN segmentation steps which generates inef-
fective segmentation results at previous two iterations and
effective segmentation results at subsequent iterations. Fig-
ure 2a, b shows the sub-intensity ranges of all firing neurons
for Fig. 1a, d, respectively.

Parameter setting method of PA-PCNN

After using the SPCNN, one gray image is divided into the
object and the background at the third iteration and gen-
erates further segmentation results at subsequent iterations,
whereas we still need to set five parameters. Therefore, we

proposed an automatic parameter setting method based on
the PA-PCNN model to improve image segmentation pre-
cision and decrease computational complexity. Finally, the
new method is determined at subsequent sections for detail
and the general flowchart of our method is shown in Fig. 3.

Parameter α

The parameters αf and αe in SPCNN represent decay fac-
tors of the dynamic threshold E and the internal activity
U , respectively. σ (S) is the standard deviation of the image,
whereas the parameters αf and αe have a large decay rates.
This directly determines segmentation accuracy rates in the
iteration. Therefore, by a large number of experiments, nor-
malized optimal histogram threshold S′ could be employed
in our work as follows:

α = αe = αf = log

(
1

S′

)
(13)

It is noted that the increase of the parameter α is with the
decrease of the threshold S′. This threshold can enhance the
relationship between parameters α and β.

Parameter β

According to (8) and (10), since Smax ≈ 1 in most medical
images, we can reset the parameter β as
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(a) (b)

1st 1≥S>0.0039

2nd Null

3rd 1≥S≥0.4196

4th 0.4196>S≥0.1098

5th 0.1098>S≥ 0.0863

1st 1≥S>0.0039

2nd Null

3rd 1≥S≥0.3255

4th 0.3255>S≥0.0510

5th 0.0510>S > 0.0039

Fig. 2 Sub-intensity ranges of the SPCNN from the first iteration to the fifth iteration for Fig. 1: a Sub-intensity ranges of SPCNN for Fig. 1a; b
Sub-intensity ranges of SPCNN for Fig. 1d

Fig. 3 The flowchart of the
PA-PCNN for medical images

Binary image

Original image

PA-PCNN
Pre-processing and
initial segmentation

Calculate α, β and V Calculate A and Soff

β = 1 − S′

6S′ (14)

Parameter V

In the SPCNN model, βVL is always a factor as a whole.
What is more, according to (10), the value of the parameter
VL is equal to 1. Therefore, we can remove the parameter VL
and the expression of new linking input is given as

L ij[n] = β
∑

kl

WijklYkl[n − 1] (15)

Subsequently, we will redefine parameter VE as V and the
formula in [18] can be adopted as

{
Ushigh[1 + l] ≤ E[1 + l − 1]
Uslow[1 + l + 1] > E[1 + l] (16)

According to (16), dynamic threshold E[1+ l − 1] in the
decay step 1+ l − 1 would be larger than that of the internal
activityU [1+ l] in the decay step 1+ l, while the minimum
value of dynamic threshold E[1 + l] in the decay step 1 + l
would be less than that of internal activityU [1+ l+1] in the
decay step 1+l+1. This indicates that there is a sub-intensity
range of firing pixels in the decay step 1+ l + 1. Besides, if
one medical image generates the first segment in the second

iteration, we could determine parameter l as 0 and the firing
neurons can satisfy the firing conditions

{
Uhigh[1] ≤ E[0]
Ulow[2] > E[1] (17)

U [0] and E[0] are always set to 0 andU [1] is more than 0
under normal circumstances. This obeys the first firing con-
dition in (17). Thus, to acquire the first image segment in the
second iteration, we can redefine the firing condition

Ulow[2] > E[1] (18)

According to (3), the minimum intensity of firing pixels
in U [2] is expressed as

Ulow[2] = Slow(1 + e−α + 6β) = SlowM[2] (19)

and according to (5), E[1] = VE = V . The formula (18) is
rewritten as

SlowM[2] > V (20)

In addition, Otsu thresholding S′, which always generates
a larger value than Slow, can be substituted into (20) and the
above formula is redefined as

S′M[2] > V (21)
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Subsequently, we obtain the unique value of V in light of
the highest limiting in (21)

V = S′M[2] (22)

To further improve image segmentation precision, we
could add an offset Soff and the controlling parameter A,
and the new formula is given as

V = (S′ + ASoff)M[2] (23)

where the parameter Soff denotes a small offset. A denotes
a parameter to judge whether the testing result is over-
segmentation or under-segmentation as shown in (24)

A =
{
1 |S′ − Smean| ≤ √

S′ × Smean
−1 |S′ − Smean| >

√
S′ × Smean

(24)

According to (24), the formula with A = 1 denotes over-
segmentation of images without the offset Soff . At this time,
the value of V would be added by the offset Soff to reduce the
number of firing pixels and obtain reasonable segmentation
results. What is more, the formula with A = −1 shows an
opposite situation. Finally, the steps of the whole algorithm
are shown in Algorithm 1.

Algorithm 1:  The offset value A×Soff

Input:  The average gradient value Fx and Fy of the whole image,

Smean

Step 1 Calculate Fmean by Fx and Fy 

Step 2 Now,

if ( mean mean| ' | 'S S S S− ≤ × ) then

A=1 

else

A=-1

end 

if (Fmean ≥
1
C ) then

1

off= 'BS S

else

off
1= ' BS S
B

end 

Output: Obtain the value A×Soff

 The average grey value 

In the Algorithm 1, Fx and Fy denote the average gradient
value of the whole image in the x direction and y direction,
respectively. Fmean is expressed as

Fmean =
√
F2
x + F2

y (25)

and the parameter B is shown as

B = CFmean (26)

In (26), the parameter C is a weighing factor (here,
C = 100). In summary, the parameters of the PA-PCNN
are not independent but interact with each other by optimum
histogram threshold S′. The PA-PCNN model is shown in
Fig. 4, and its formulae are described as follows:

Uij[n] = e−αUij[n − 1]

+ Sij

(
1 + β

∑

kl

WijklYkl[n − 1]
)

(27)

Yij[n] =
{
1, if Uij[n] > Eij[n − 1]
0, else

(28)

Eij[n] = e−αEij[n − 1] + VYij[n] (29)

where

Wijkl =
⎡

⎣
0.5 1 0.5
1 0 1
0.5 1 0.5

⎤

⎦

Experiments and analysis

To compare our algorithm with the state-of-the-art algo-
rithms, five competitive methods including SPCNN [27],
NSCM [31], Otsu [28], Kittler [32], ISPCNN [15], and three
metrics including uniformity measurement (UM) [33], con-
trast measurement (CM) [34], runtime measurement (TM)
are employed on our research. Moreover, 80 ultrasound
images of the gallbladder and gallstones, 680 magnetic res-
onance images of the left ventricle, and 322 mammogram
images of left and right breast are used as experimental
images. All tests are run on MATLAB 7.11.0 with Intel(R)
Core(TM) i3 M 350 at 2.27GHz from Satellite L600 of
Toshiba.

Segmentation evaluation criteria

For the evaluation of ultrasound images, magnetic resonance
images andmammogram images, threemetrics analyzing the
segmentation precision and computational complexity of the
object and the background can be used in this paper. Here-
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Fig. 4 The PA-PCNN model

WijklY(n-1) L

E
U

Modulation Spike Generator

Y(n)F

Inputs

α and V
1+βL

α

Table 1 Final segmentation
results of our experiments

Algorithm Algorithm Gallstone Breast HF-I HF-DI HYP

The paper CM 0.4647 0.9704 0.8721 0.8889 0.8749

UM 0.9879 0.9507 0.9944 0.9962 0.9934

T 0.0677 0.2395 0.0187 0.0183 0.0192

SPCNN CM 0.4369 0.9231 0.8529 0.8829 0.8466

UM 0.9861 0.9908 0.9951 0.9965 0.9941

T 0.0781 0.2716 0.0287 0.0297 0.0293

NSCM CM 0.4172 0.9353 0.8878 0.8812 0.9249

UM 0.9855 0.9906 0.9807 0.9824 0.9716

T 0.0692 0.3841 0.0194 0.0173 0.0191

Otsu CM 0.4252 0.9212 0.8569 0.8847 0.8443

UM 0.9755 0.9889 0.9942 0.9931 0.9922

T 0.0699 0.1972 0.0197 0.0195 0.0198

Kittler CM 0.3624 0.8441 0.7535 0.7614 0.7734

UM 0.8532 0.9252 0.8991 0.9025 0.9003

T 0.1238 0.2845 0.0784 0.0723 0.0736

ISPCNN CM 0.4239 0.9421 0.8601 0.8715 0.8511

UM 0.9892 0.9821 0.9855 0.9826 0.9833

T 0.0831 0.2843 0.0317 0.0382 0.0393

Optimum value of every column is highlighted in bold

into, the metricUM denotes the uniformity of the segmented
region and is written as

UM = 1− 1

C

∑

i

⎧
⎨

⎩
∑

(x,y)∈R j

[ f (x, y) − 1

Ai

n∑

(x,y)∈R j

f (x, y)]2
⎫
⎬

⎭

(30)

where C denotes the maximum normalized intensities of the
whole image. For a segmented image, Rj and A denote the
j th region and its area, respectively. n denotes the number
of regions. i denotes the number of gray-level (i.e., i is set
to 2 in the binary image). Further, the larger the value of
UM, the better segmentation effect becomes. Subsequently,
the metric CM denotes the contrast of pixel intensities

CM = | fo − fb|
f0 + fb

(31)

where fo and fb denote the mean value of the object
and the background, respectively. The larger the value of
CM, the higher segmentation accuracy rates of the image
becomes.

Experiment analysis and discussion

In our experiments, all images are divided into five groups
including 80 ultrasound images in the first group, 240
magnetic resonance images of the HF-I database in the
second group, 260 magnetic resonance images of the HF-
NI database in the third group, 180 magnetic resonance
images of the HYP database in the third group and 322
mammogram images in the fourth group. Moreover, we
compare our method with other methods to obtain ultimate
evaluation results in Table 1 and their three-dimensional
graph is shown in Fig. 5. We also select one image in
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TM 
CM 
UM 0 

0.5 

1 

0.0726 0.0874 0.1018 0.0653 0.1265 0.0932 

0.8142 0.7884 0.8092 0.7865 0.6988 0.7898 

0.9845 0.9925 0.9822 0.9821 0.8961 0.9846 TM
CM 
UM 

Fig. 5 The three-dimensional graph of the final segmentation results:
Data in the first, second and third row denote the evaluation results of the
metricsUM,CMandTM, respectively; data in the first, second and third
columns denote the evaluation results of the our method, the SPCNN
method, the NSCM method, the Otsu method, the Kittler method and
the ISPCNN method, respectively

each group as the example to show experimental results
(Figs. 6, 7).

According to the above Table 1 and Fig. 5, compared with
other state-of-the-art algorithms, our algorithm has a good
performance for the evaluations of the metrics.

Discussion

In this paper, we present an image segmentation method
based on PA-PCNN to further simplify computations and
improve initial segmentation accuracy for various medi-
cal images. In contrast to other methods of the PCNN,
our method only set three parameters α, β, V , which are
associated with each other by the Otsu thresholding S′,
and retain main properties of the basic PCNN model. Our
method, which determines rapidly and effectively the ini-
tial segmentation result in the pre-processing step and initial
segmentation step for various medical images, obviously
reduces the runtime and improve segmentation accuracy rates
of the whole method including the coarse-fine segmentation
and the post-processing. So, the whole segmentation method
including our method is more easily to generate a good final
segmentation result, which brings a great help to diagnose
clinical cases for physicians. For example, for gallbladder
and gallstone regions segmentation, the computing program
of the whole segmentation method including PA-PCNN is

Fig. 6 The segmentation results of the ultrasound and themammogram
images: Images in the column (1) denote original images; images in the
columns (2), (3), (4), (5), (6) and (7) denote segmentation results of
our method, the SPCNNmethod, the NSCMmethod, the Otsu method,

the Kittler method and the ISPCNN method, respectively; images in
the rows a and b denote segmentation results of mammogram images;
images in the rows c and d denote segmentation results of ultrasound
images
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Fig. 7 The segmentation results of the MR images: Images in the col-
umn (1) denote original images; images in the columns (2), (3) and (4)
denote segmentation results of the our method, the SPCNNmethod, the
SCM method, the Otsu method, the Kittler method and the ISPCNN

method, respectively; images in the rows a denote segmentation results
for the HF-I dataset; images in the rows b denote segmentation results
for the HF-NI dataset; images in the rows c denote segmentation results
for the HYP dataset

copied to the chip controlled by ultrasonic diagnostic appara-
tus.When physicians use detectors to seek out lesion regions,
the monitor will show rapidly segmentation results in most
cases.

Ourmethod for medicine has threemain significances: (1)
It obtains segmentation results more rapidly and accurately
for physicians. (2) It avoids the otherness from subjective
experience and human knowledge. (3) It improves the relia-
bility and accuracy of clinical diagnosis for physicians.

By a large number of experiments employing three met-
rics, five comparative methods and 1082 medical images
containing 80 ultrasound images of the gallbladder and
gallstones, 680 magnetic resonance images of the left ventri-
cle and 322 mammogram images of left and right breast,
we demonstrate that the image segmentation method has
low computational complexity and high initial segmentation
accuracy rates, presenting the overall metric UM of 0.9845,
CM of 0.8142, TM of 0.0726.

In the future, we firstly continue to add other types of
medical images with other organ sites into our dataset.
Secondly, for several types of medical images, we will com-
bine coarse segmentation steps into modified PA-PCNN
for further adding the applicable range of the method.
Thirdly, we will use the whole segmentation method includ-
ing PA-PCNN to validate the effectiveness and robustness
of our method for gallbladder and gallstones in clinical
diagnosis.

Conclusion

This paper indicates that the proposedmethod has better test-
ing performance than other comparative methods because
all calculated parameters are automatically acquired by self-
adaptive ways. The method has a great potential to achieve
the pre-processing and initial segmentation for various medi-
cal images. Although the segmentation ways of other clinical
cases are being discussed, the newmethod is still a promising
method for medical image segmentation.
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