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Abstract

Purpose Develop a multi-fiber tractography method that
produces fast and robust results based on input data from a
wide range of diffusion MRI protocols, including high angu-
lar resolution diffusion imaging, multi-shell imaging, and
clinical diffusion spectrum imaging (DSI)

Methods 1Inaunified deconvolution framework for different
types of diffusion MRI protocols, we represent fiber orien-
tation distribution functions as higher-order tensors, which
permits use of a novel positive definiteness constraint (H-
psd) that makes estimation from noisy input more robust. The
resulting directions are used for deterministic fiber tracking
with branching.

Results We quantify accuracy on simulated data, as well as
condition numbers and computation times on clinical data.
We qualitatively investigate the benefits when processing
suboptimal data, and show direct comparisons to several
state-of-the-art techniques.

Conclusion The proposed method works faster than state-
of-the-art approaches, achieves higher angular resolution on
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simulated data with known ground truth, and plausible results
on clinical data. In addition to working with the same data
as previous methods for multi-tissue deconvolution, it also
supports DSI data.

Keywords Diffusion imaging - Fiber tracking - Constrained
spherical deconvolution - Higher-order tensors - SHORE

Introduction

Tractography algorithms reconstruct the trajectories of major
fiber bundles based on data from diffusion MRI (dMRI), and
are now firmly established in neurosurgical planning [5] and
studies of brain white matter [32]. It has long been known
that tractography based on diffusion tensor imaging [3,16]
is unable to deal with the large number of voxels in which
multiple fiber populations cross or fan out. Constrained
spherical deconvolution [26] is a widely used alternative that
successfully reconstructs fiber crossings from high angular
resolution diffusion imaging (HARDI) data.

For each voxel, spherical deconvolution computes a fiber
orientation distribution function (fODF). While local fODF
maxima are often taken as indicators of main fiber direc-
tions [26], previous work from ourselves and other groups
[11,22,24,33] suggests that mathematically representing
fODFs as higher-order tensors and performing a low-rank
approximation reproduces fiber directions with increased
accuracy, especially when fibers cross at small angles.

Our present work significantly extends this higher-order
tensor based approach by applying a constraint that was first
introduced in our recent conference publication [2]. We name
this constraint H-psd, since it requires positive semidefinite-
ness (psd) of a matrix H that is related to the Hankel form of
the higher-order tensor. It can be imposed on fODFs to make
their estimation more robust, especially when only relatively
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little or noisy dMRI data are available. Its benefit is analogous
to the addition of a nonnegativity constraint [26] to the origi-
nal spherical deconvolution approach [28], which has greatly
increased its practical utility. However, our H-psd constraint
is stronger than nonnegativity, and its exact mathematical
motivation and implementation are substantially different.
This is the first part of our technical contribution.

Spherical deconvolution has recently been extended to
work with multi-shell data, i.e., dMRI data which have been
acquired at multiple levels of diffusion weighting [10]. In
regions of partial voluming between white and gray matter or
corticospinal fluid, this makes it possible to isolate the part of
the dMRI signal corresponding to white matter, which makes
tractography in those regions more robust. As a second con-
tribution, we present a unified framework that allows us to
apply this idea also to diffusion spectrum imaging (DSI). The
traditional algorithms used to perform tractography based on
DSI data [4,30] are different from those commonly used on
HARDI and multi-shell data, and our experimental results
provide a direct comparison.

Methods

Our proposed method supports single tissue, as well as
multi-tissue deconvolution. “A unified deconvolution frame-
work” Section describes our unified framework that permits
multi-tissue deconvolution even in cases where measure-
ments include multiple levels of diffusion weighting, but
are not organized on shells. Our H-psd constraint, which
makes deconvolution numerically more robust, is explained
in “Constrained higher-order tensor fODFs” Section, with
mathematical details given in an appendix. Finally, “Deter-
ministic tractography with branching” Section describes the
fiber tracking algorithm used in our experiments.

A unified deconvolution framework

Single tissue deconvolution is based on the assumptions that,
up to rotations that account for differences in orientation,
all fibers within a voxel give rise to the same dMRI sig-
nal, and that signals from differently oriented fibers add up
linearly. Under these conditions, in voxels that contain only
white matter, the measured dMRI signal can be expressed as a
convolution integral on the sphere. In particular, a fiber orien-
tation distribution function (fODF) that captures the fraction
of fibers in each direction is convolved with a kernel that
reflects the common dMRI response from a single, coherently
oriented fiber compartment [28]. fODFs are antipodally sym-
metric and do not indicate the direction of signal transmission
along the bundle; in accordance with the literature, we use
the terms “direction” and “orientation” interchangeably.
Multi-tissue deconvolution involves multiple tissue
response functions [7, 10]. It has mostly been used to separate
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out signal contributions from gray matter (GM) and corti-
cospinal fluid (CSF), which have been modeled as isotropic,
and therefore only add respective volume fraction param-
eters, rather than additional fODFs. These tissue types are
distinguished based on differences in how their dMRI signal
is attenuated at different levels of diffusion weighting, which
are commonly quantified as b values. Previous approaches
[7,10] employ separate response functions for each tissue
and each distinct b value. This is well-suited for multi-shell
data, in which the full space of orientations is sampled for
each of a small number of different b values.

When using Diffusion Spectrum Imaging [31], or some
recently proposed dMRI protocols that distribute samples
freely in g-space [13,18], many different b values are avail-
able, but with few or even only a single orientation each. In
this case, modeling independent spherical functions for each
b value results in an unreasonably large number of model
parameters. An immediate consequence is that the previously
proposed method for response function estimation [10] can-
not be used on such data.

Therefore, our unified framework for multi-tissue decon-
volution instead builds on a continuous model of functions
F(q = gu) in g-space, using the SHORE basis functions
[15]

) 2 — 1)1 1/2 , o\ 1/2
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with the associated Laguerre polynomials L¢, the real spher-
ical harmonics Yl’”, and a radial scaling factor ¢ = 700. We
use maximum radial and angular orders four, which leads to
a fixed number of 6 parameters to describe a cylindrically
symmetric white matter response function, while per-shell
modeling as in [10], even when reducing the angular order
to four, would still require 1 43 x B parameters, where B is
the number of unique nonzero b values, e.g., B = 16 in the
DSI data used in our experiments.

Let K(q) = Y, Kin $10(q) be the white matter single
fiber response, with m = 0 due to cylindrical symmetry. The
signal from an fODF f is then modeled by a convolution on
the sphere, S(q) &~ K g2 f [6]. Fora given K and signal vec-
tor S; = S(q;), finding the spherical harmonics coefficients
S viadeconvolution becomes a linear least squares problem:

argmin ¢ | Mf — S| )

with convolution matrix

1
Miyim) = Z w Kin G1nm(q;)- (3)
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Tournier et al. [26] constrain the optimization in Eq. (2)
by requiring f to be nonnegative and define the ¢ in Eq. (3)
from the truncated spherical harmonics transform of the unit
delta function. Our method improves numerical stability by
making these two choices differently, as will be explained in
“Constrained higher-order tensor fODFs” Section.

Multi-tissue support is added by concatenating individual
tissue matrices

fcsk
M = [Mcsg, Mom, MwMml, f = fom |- @
Sfwm

Since CSF and GM are isotropic, Mcsp and Mgy are
single-column matrices. Given single-shell data, multiple tis-
sues cannot be estimated. In this case, we simply replace the
SHORE with the spherical harmonics basis, which leads to
omission of the radial parameter n from Eq. (3).

Tissue response functions are estimated in close analogy to
aprevious method for multi-tissue deconvolution [10]: Initial
masks for WM, GM, and CSF are created from an intensity-
based tissue segmentation of a coregistered 77 image [34],
thresholded at 95% for each tissue type. These masks are
refined based on Fractional Anisotropy (FA) from a diffu-
sion tensor fit, by restricting them to FA > 0.7 for core white
matter, and FA < 0.2 for GM and CSF. SHORE coefficients
of the three response functions are obtained by fitting and
averaging within the respective masks. Due to the stringent
FA threshold, the core white matter mask is thought to con-
tain voxels with a single dominant fiber in each. They were
aligned by rotating the principal eigenvector of the diffusion
tensor to the z axis, which was achieved by rotating the B
matrix before the SHORE fit.

Constrained higher-order tensor fODFs

In a previous work [24], we proposed to describe fODFs f
by fully symmetric fourth-order tensors:

3

fvy=Tw) = Z Tiju vivjvgv, Vv eES? Q)
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Such fODF tensors T are obtained by deconvolution in the
Spherical Harmonics basis, as in Eq. (2), and subsequently
changing to the monomial basis, which can be done using a
nonsingular linear transformation [17]. In the higher-order
tensor framework, it is natural to represent a single fiber
contribution with volume fraction A in unit direction u as
a rank-one tensor Au ® u ® u ® u, which can be achieved by
setting the o7 in Eq. (3) to the spherical harmonics coefficients
of a unit rank-1 tensor. In the resulting representation, k prin-
cipal fiber directions for deterministic tractography should be
extracted from an fODF by performing a symmetric rank-k

approximation, rather than using the k dominant peaks of the
fODF function [11,24].

A key technical contribution of our current work is to for-
mulate a constraint which we call H-psd. It is the suitable
higher-order tensor counterpart of the nonnegativity con-
straint on f that is commonly imposed in Eq. (2) [26]. It
can be enforced in an exact, simple, and efficient manner
using standard optimization packages, and it is theoretically
well-founded in the sense that it can be shown to be equiv-
alent to the condition that a valid fODF should represent a
mixture of nonnegative fiber compartments. It is more rig-
orous than nonnegativity in the sense that any H-psd fODF
is nonnegative, but the reverse may not be true: Intuitively,
some nonnegative fODFs are so sharp that they cannot possi-
bly arise from a nonnegative mixture of fiber compartments,
which have a minimum width in the higher-order tensor
framework.

Since the exact mathematical derivation of the H-psd con-
straint will only be relevant to part of the intended audience
of our work, we present it in an appendix. The main result,
which also explains the name H-psd, is the fact that the matrix
H in Eq. (18), which is composed of the coefficients of T,
has to be positive semidefinite (psd).

In practice, this constraint can be imposed on Eq. (2) using
the quadratic cone program (QCP)

argmin %(f, Pf)+ (q, f) subjectto (Gf)psd (6)

with £, M and S asin Eq. 2), P = MTM,q = —MTS,
and a matrix G that first maps f from spherical harmonics to
the monomial basis, and then to its H matrix from Eq. (18),
Gf = Hy. In multi-tissue deconvolution, additional non-
negativity constraints are enforced for fgm and fcsr.

The QCP is solved using the routine CONEQP in the pub-
licly available software package CVXOPT, which requires
the above-mentioned vectors and matrices as its only input.
Details on its implementation are given in [29], and are
beyond the scope of our paper.

Deterministic tractography with branching

Similar to previous work [8,24,27,30], deterministic multi-
fiber tractography has been implemented with Euler integra-
tion. In each of the local fiber directions at a given seed point,
a streamline is extended bi-directionally with an integration
stepsize that was set to 0.5 mm in our experiments. In each
integration step, a local fODF is interpolated trilinearly, and a
set of fiber directions is extracted from it. In case of multiple
options, the fiber direction that leads to lowest tract curvature
is selected.

Streamline integration stops when no fiber is found within
a given turning angle (exact values specified below), after a
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maximum number of integration steps (400), or when the
white matter volume fraction was below 0.5. This volume
fraction is estimated by the multi-tissue deconvolution itself
or, in case of single-shell data, using a coregistered 77 tissue
segmentation.

In order to capture the effect of fiber dispersion, we imple-
ment branching. In particular, when multiple directions are
permissible, the tract branches out, i.e., a new streamline is
seeded in the direction leading to the second lowest curva-
ture. In order to avoid excessive branching, streamlines that
result from branching are not allowed to branch again, and
the original ones can only branch again after some number
of integration steps (4 mm).

In our framework, main fiber directions are extracted using
low-rank approximation, which requires deciding on a suit-
able number k of local fiber compartments. As discussed
more formally in the appendix, k amounts to the numeri-
cal rank of the fODF tensor, which coincides with the rank
of the same matrix H that underlies the H-psd constraint.
Therefore, we estimate k as the number of eigenvalues of
H above some threshold 6. Since we are not aware of any
regions where more than three fiber tracts cross, we impose a
maximum of £ < 3. We found that the exact values of § that
lead to plausible results depended on the acquisition scheme
and regularization. We set it by visually inspecting the spa-
tial maps of the number of fiber compartments resulting from
different choices, and report values for the individual exper-
iments below. Rank-one terms with scaling factor A; < 0.15
were discarded.

For comparison, we also created results using methods
that take local fODF maxima as estimates of main fiber direc-
tions. In this case, we first roughly localize local maxima on a
discretization of the sphere (321 unique directions), and sub-
sequently refine their exact positions using gradient ascent.
Peaks with magnitude below 0.1 were discarded.

Results

We report results of our method on two clinical dMRI
datasets, and on data that we synthesized from one of them,
as described in “Simulation Experiment” Section. Motion
correction was performed in a preprocess using the tools
available in FSL [1].

The first dataset, clin-2-sh, is a two-shell dataset from a
healthy volunteer, measured on a 3T Skyra (Siemens, Ger-
many) with 96 x 96 x 50 voxels of 2mm isotropic size,
TE/TR = 89/9100 ms. Three images were taken at b = 0,
30 DWIs at b = 700, and 64 at b = 2000 (all b values in
s/mm?). Some experiments only use the data from the inner
or outer shell (clin-700 and clin-2000, respectively). We note
that traditional single-shell deconvolution does not make use
of the b = 0 images.

@ Springer

The second dataset, clin-dsi, was kindly provided by
Katrin Sakreida and Georg Neuloh (RWTH Aachen Uni-
versity Hospital). It was acquired on a 3T Prisma (Siemens,
Germany) with 136 x 136 x 84 voxels of 1.5 mm isotropic
size, TE/TR = 69/11600ms. One b = 0 image and
128 DWIs with b values up to b = 3000 were taken on a
Cartesian grid.

Simulation experiment

In order to quantify the accuracy of our method, we generate
dMRI data for which volume fractions and orientations of
crossing fiber compartments are known. Crossings are sim-
ulated based on resampling the clinical data clin-2-sh. This
process avoids potentially oversimplifying assumptions in
mathematical models of water diffusion and noise.

Data were generated based on the same voxels used to
estimate response functions for the three tissue types, as
explained in “A unified deconvolution framework™ Section.
The respective white matter voxels are thought to contain a
single fiber compartment, whose orientation was estimated
via the diffusion tensor model.

For each simulated fiber crossing, we averaged the signals
from two randomly chosen single fiber voxels, after apply-
ing a random rotation to them, and one voxel from either
the gray matter or CSF mask. The respective volume frac-
tions were selected randomly, and normalized to sum to one.
In the presence of noise, we cannot expect any algorithm to
reconstruct the orientation of fibers with a very small vol-
ume fraction. Therefore, we discarded samples in which the
weaker fiber contributed less than 20% to the white matter, or
in which both fibers combined accounted for less than 50%
of the voxel.

We used different deconvolution approaches to recon-
struct the fiber directions and volume fractions from the
resulting data, and compared the results to the known
values, which were recorded during the simulation. Fig-
ure | plots the average angular error in the reconstructed
fiber directions (top) and the average absolute errors in
their estimated volume fractions (bottom), each as a func-
tion of the ground truth crossing angle between the two
fibers.

The scaling parameters A; of the low-rank approxima-
tion were directly taken as estimates of the correspond-
ing fiber volume fraction, as motivated in “Constrained
higher-order tensor fODFs” Section. When extracting fiber
directions from ODF peaks (in “SH-4 delta nonneg” and
“SH-8 delta nonneg”), volume fraction estimates were
obtained by dividing the magnitude of the corresponding
peak by the peak magnitude observed when applying con-
strained deconvolution of the same order to the single fiber
response.
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Fig. 1 Average errors of fiber directions and individual fiber volume
fractions reconstructed from two-fiber crossings that have been simu-
lated from clinical two-shell data. The proposed method is SHORE-4
rank-1 H-psd, the current state-of-the-art is SH-8 delta nonneg. Results
from several hybrid methods are shown to assess the impact of individ-
ual factors

The main comparison is between our proposed method
(“SHORE-4 rank-1 H-psd”) and the previous state-of-the-art
[10] (“SH-8 delta nonneg”). We note that, for angles smaller
than approximately 55°, the latter method no longer reliably
resolved the crossing, with two significant fODF peaks being
detected in less than 50% of the cases. We continue to show
fiber direction errors based on the remaining few cases as
isolated markers.

In order to investigate the effects of individual factors that
make up the difference between our method and the previous
state-of-the-art, we also performed experiments with several
hybrid methods, including one that combines lower order
with peak finding (“SH-4 delta nonneg”), ones that use tradi-
tional per-shell signal modeling instead of the SHORE basis
(“SH” variants of “SHORE”), or replace our H-psd with a
traditional nonnegativity constraint in 300 discrete directions
[26].

Single-shell deconvolution

Similar to Tournier et al. [26], who demonstrate that their
nonnegativity constraint allows them to produce plausible
results even with relatively low b value and few gradient
directions, we test our H-psd constraint by applying it to clin-
700 (30 DWIs at b = 700). Figure 2 visualizes the resulting
fODFs and a deterministic streamline tractography in the
brainstem region.

Unlike the standard diffusion tensor model, which is
shown for comparison, combining spherical deconvolution
with low-rank approximation allows us to reconstruct pontine
crossing tracts even with this limited » value and number of
gradient directions (maximum turning angle 40°; 6 = 0.35
for unconstrained, 6 = 0.1 for H-psd). Negative values of
the fODFs are shown in white in Fig. 2b. They are removed,
and fODFs in adjacent voxels become more similar, when
enforcing the H-psd constraint.

For comparison, Subfigure (e) shows results based on clin-
2000 (64 DWIs at b = 2000; & = 0.1), which is commonly
considered a more suitable input for spherical deconvolution
[26]. Subfigures (d) and (f) provide a direct comparison with
classical constrained spherical deconvolution (CSD).

Table 1 compares the times for whole-brain deconvolu-
tion, measured on a workstation with a six-core CPU at
3.4 GHz, and using the same optimization package (CVXOPT)
for all methods. Our method takes only about half as long as
CSD, mostly due to our use of a lower model order. In Fig. 2,
this is reflected in the increased smoothness of our fODFs.
Despite this, applying low-rank approximation allows us to
obtain very similar tractography results.

In addition to the reduced computational effort for whole-
brain deconvolution, tractography is also less costly when
using order-4 low-rank approximation, compared to order-
8 peak finding: In our implementation, one integration step
with the former took 16 ms on average, while one step with
the latter took around 125 ms.

While the H-psd constraint improves the results of fourth-
order tensor-based deconvolution, Fig. 2b shows that we
achieve useful results even without it, even on the clin-700
data. This is in contrast to standard order-8 deconvolution,
whose results without enforcing nonnegativity were domi-
nated by noise so severely, even in the clin-2000 data, that
it did not make sense to present them. This is explained by
inspecting the condition number of the matrix P that defines
the respective quadratic optimization, listed in Table 2. Esti-
mating order-8 fODFs from clin-700 is an underdetermined
problem, represented symbolically in Table 2 by an infinite
condition number. As we saw in Fig. 1, order-4 variants of
standard deconvolution do not provide a useful angular res-
olution. We still include them in the final row of Table 2 to
illustrate that the improved conditioning of our method is
only partially explained by the reduced model order. Using
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(f) Classical CSD fODFs, 64 DWIs, b = 2000

Fig. 2 Unlike diffusion tensors (a), fODFs allow us to resolve the
pontine crossing tracts. In ¢, our H-psd constraint reduces the impact
of noise and removes negative fODF lobes, shown in white in the left
part of (b). Even though it is possible to reconstruct fiber crossings even
from few gradient directions at low b values, cleaner results are obtained
when HARDI data are available, as shown in (e) and (f). We achieve
similar tractography as classical CSD, at a reduced computational cost

arank-1 representation of single fibers, as it was introduced
in “Constrained higher-order tensor fODFs” Section, also
improves conditioning considerably.

@ Springer

In theory, our H-psd constraint forces fODFs to be non-
negative everywhere, while standard CSD [26] only enforces
nonnegativity in 300 discrete directions. We quantified to
which extent our numerical implementations of both con-
straints satisfy nonnegativity in practice. This was done by
evaluating ODFs along a dense set of 1281 unique direc-
tions, and taking the minimum of all results. Computed
over the whole-brain estimates in clin-700, a minimum of
—1.38 x 1077 indicated a negligible numerical inaccuracy
in enforcing the H-psd constraint. Even though we used the
capabilities of CVXOPT to enforce nonnegativity in 300 direc-
tions as hard constraints, as opposed to implementing soft
constraints as proposed in [26], the minimum ODF value
observed for classical CSD was much more substantial,
—0.164.

Multi-shell deconvolution

Using all data from clin-2-sh, we compared results from state-
of-the-art multi-shell multi-tissue deconvolution [10], which
involves order-8 fODFs based on the truncated delta peak and
a nonnegativity constraint, to our proposed method, which
uses a fourth-order tensor representation of fODFs with our
H-psd constraint.

We found the tissue volume fraction maps from both meth-
ods, shown in Fig. 3, to be quite similar. Averaged over a brain
mask, the mean absolute difference was 0.005 in CSF, 0.026
in gray matter, and 0.025 in white matter. As in Fig. 2, our
fODFs are less sharp compared to the ones from the existing
approach [10]. The bottom row of Fig. 3 shows that low-rank
approximation allows us to resolve two and three fiber cross-
ings despite the smoothness of our fODFs. Averaged over
the white matter, the angular deviation, weighted by volume
fractions, was 8.24° when comparing fiber directions from
order-8 fODF peaks to the results of fourth-order low-rank
approximation.

Similar to previous work on crossing fiber tractography
[14,24], we compared the ability of different fiber tracking
algorithms to reliably reconstruct transcallosal fibers from
seeds in the corpus callosum near the mid-sagittal plane. The
left column of Fig. 4 shows results from our own implementa-
tion of deterministic tractography with branching (maximum
turning angle 45°, 6 = 0.02). It finds many lateral projec-
tions when using fiber estimates from fourth-order low-rank
approximation (top), but only very few based on the peaks
in traditional order-8 fODFs (bottom).

For comparison, we reprocessed the same data with the
software package MRTRIX3 [27], which includes a refer-
ence implementation of the original multi-shell multi-tissue
deconvolution approach [10]. In order to make the results of
tracking methods with and without branching more compara-
ble, we varied the number of tracts per seed voxel to achieve
a similar final number of displayed fibers (around 4 400) in
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Table 1 Computation times for clin-700 clin-2000 clin-2-sh clin-dsi

deconvolution of whole-brain

datg using dlffere.nt approaches, Proposed method 1m49s 1m26s 2m10s 4m45s

all implemented in the same

optimization framework Order-8 CSD [26] 3m08s 3m19s N/A N/A
MSMT deconvolution [10] N/A N/A 4m10s N/A

This does not include tractography, whose computational cost is also reduced by using low-rank approximation

Table 2 The condition numbers
of the matrices defining the

quadratic optimization problem
in our method are much lower
than in competing ones

clin-700 ¢lin-2000 clin-2-sh clin-dsi
Proposed method 189 7.86 458 536
Order-8 CSD [26] o0 3.22 x 100 N/A N/A
MSMT deconvolution [10] N/A N/A 1.02 x 107 N/A
Order-4 CSD/MSMT 1.18 x 10* 478 1.47 x 10° N/A

all cases. We used the recommended default step sizes with
MRTRIX, which depend on the algorithm.

Since the deterministic tracking in MRTRIX does not
implement branching, it finds even fewer lateral projections
(bottom right). However, it includes a probabilistic tractog-
raphy approach [25] that is based on sampling the fODFs
rather than finding their maxima, and extracts lateral fibers
similar to the ones found by our deterministic technique (top
row), albeit with the increased wiggling that is characteristic
of probabilistic tracking.

Clinical DSI

After applying our variant of multi-tissue deconvolution to
clinical DSI data (clin-dsi), we evaluated the extent to which
the resulting fODFs allow us to reconstruct the corticospinal
tract from seeds in the internal capsule. A similar task was
recently used by others to evaluate crossing fiber tractography
[5]. The results are shown in the top row of Fig. 5, and are
compared to results from standard DSI reconstruction [30],
as implemented in the open-source software package DIPY
[9].

In contrast to the fiber ODFs (fODFs) from our method,
traditional DSI reconstruction results in diffusion ODFs
(dODFs) that reflect the fraction of diffusion that happens
in each direction, as opposed to the fraction of fiber bundles.
As can be seen in the center row of Fig. 5, dODFs are gener-
ally less sharp then fODFs. Canalez-Rodriguez et al. [4] have
used deconvolution to compute sharper ODFs from DSI data.
The results from their method, again using the publicly avail-
able implementation from DIPY, is shown in the right-hand
column of Fig. 5. We note that in contrast to our method
and related ones [10], their deconvolution approach avoids
assumptions on the response of single fiber compartments,
and therefore does not produce fODFs.

All tractography results in Fig. 5 have been obtained with
the algorithm from “Deterministic tractography with branch-

ing” Section (maximum turning angle 50°). It is using fiber
estimates from low-rank approximation (¢ = 0.02) in case
of our fODFs, and local maxima in case of dODFs, as is
customary in standard DSI tractography [30]. Correspond-
ing directions are visualized in the final row of Fig. 5. In all
cases, streamlines that cross the mid-sagittal plane have been
removed in a postprocess.

Discussion

Our proposed method differs from the previous state-of-the-
art in several aspects, which we will discuss separately.

Unified deconvolution framework

The main benefit of our unified deconvolution framework is
the fact that it allows us to perform multi-tissue deconvolu-
tion also on dMRI data that include multiple b values, but is
not organized on shells. The comparison in Fig. 5 confirms
that this extension of multi-tissue deconvolution produces
plausible results on clinical DSI data, and compares favor-
ably to standard DSI processing in its ability to reconstruct
also the lateral projections of the cortico-spinal tract from
seeds in the internal capsule.

In Fig. 5, a previously proposed method for DSI deconvo-
lution led to an implausibly low number of secondary fiber
directions in a known fiber crossing region, and decreased
our ability to reconstruct branching fibers. This might indi-
cate that the characteristics of the cl/in-dsi data, which include
fewer measurements and lower maximum b value than the
data used by Canalez-Rodriguez et al. [4], might be less suit-
able for that approach. Due to the long computational times of
its DIPY implementation, we only tried it with default param-
eters.

The simulation results in Fig. 1 indicate that, in case the
input data are organized on shells, it makes very little dif-
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Fig. 3 On two-shell clinical
data, very similar tissue volume
fraction maps are obtained using
a state-of-the-art approach (left
column) and ours (right
column). Our fODFs (fourth
row) are smoother, which
accounts for the improved speed
and conditioning of our method.
The final row (right column)
shows that low-rank
approximation allows us to
reliably resolve crossing fibers
directions despite the
smoothness of our fODFs
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Deterministic tracking with low-rank
approximation (order 4)

Deterministic tracking with peak finding
and branching (order 8)

Fig. 4 Our deterministic tractography based on low-rank approxima-
tion successfully reconstructs transcallosal fibers from seeds near the
mid-sagittal plane. Using previously available tools, we only managed
to reconstruct them with probabilistic tracking. As shown on the bot-

ference whether we model the response functions per-shell,
as in [7,10], or with our unified framework. Despite the fact
that the angular part of the SHORE basis in Eq. (1) consists
of spherical harmonics, i.e., the same basis that is other-
wise used for per-shell modeling, this result is not trivial:

Deterministic tracking with peak finding,
reference implementation (order 8)

tom row, deterministic tracking based on peak finding reconstructs much
fewer of them, both with our own implementation (/eff) and a publicly
available one (right)

Our approach reduces the number of parameters needed to
represent the response function by assuming that radial and
angular parts factorize, which is not enforced by the more
flexible per-shell modeling. The fact that both methods pro-
duced almost identical results suggests that this assumption
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Fig. 5 Our method can also be applied to clinical DSI data, and recon-
structs more lateral projections than standard DSI tools when tracking
the corticospinal tract from seeds in the internal capsule. The reason

is not violated to an extent that it would impair the deconvo-
lution.

H-psd constraint

A theoretical benefit of our H-psd constraint is the fact that
it is easy to enforce exactly, while nonnegativity is either
approximated by enforcing it on a discrete set of points on the
sphere [26], or requires a costly Riemannian gradient descent
[6]. It was confirmed visually and quantitatively in Sect. 3.2
that enforcing H-psd removes nonnegative fODF lobes, and
makes the fODFs and resulting tractography more regular.

Even though this constraint is beneficial, Fig. 1 suggests
that it results in an increased accuracy mostly at small cross-
ing angles. Clearly, constraining deconvolution based on
fourth-order tensors is not as crucial as enforcing nonneg-
ativity in order-8 CSD. This can be understood from the
greatly reduced condition numbers, which were presented in
Table 2, and which are made possible not only by the reduc-
tion in model order, but also by representing single fibers as
rank-one tensors rather than truncated delta peaks.

@ Springer

Standard DSI

DSI With Deconvolution

for this becomes apparent when comparing fODFs from our method
to dODFs from DSI (middle row), and the directions resulting from
low-rank approximation or peak finding, respectively (last row)

A direction that we would like to follow in our future
work is the use of our H-psd constraint to prevent overfitting
of misspecified deconvolution models, e.g., ones that assume
aresponse function that has been derived from healthy tissue,
and may not match the true response in regions that suffer
from demyelination [23].

Model order and low-rank approximation

An obvious factor that contributes to the improved condi-
tioning and speed of our method is the fact that we use a
lower order representation of fODFs, i.e., order-4 with just
15 degrees of freedom, compared to the more common order-
8 models with 45 degrees of freedom. It is well-known that
lower orders lead to better numerical behavior, while higher
orders are commonly selected to increase angular resolution,
defined as the minimum angle at which two crossing fiber
populations can still be reliably distinguished [26].

Atthis point, the use of low-rank approximations to extract
fiber directions from fODFs is the key ingredient of our
method. It can be seen from Fig. 1 that low-rank approxima-
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tion of a fourth-order fODF leads to an even higher angular
resolution than extracting peaks of an order-8 fODF, and that
reducing the order in a peak finding approach would lead
to unacceptably poor resolution. Even though we demon-
strated this benefit of low-rank approximations before [24],
we previously compared to filtered spherical deconvolution
[28], while our current work shows that the advantage is
maintained compared to state-of-the-art constrained decon-
volution [26].

It was shown in Fig. 1 that fiber volume fraction estimates
from low-rank approximation are more accurate than ones
based on ODF peak magnitudes. The reason for this is the
same as for the increased angular resolution: Unlike simple
maximum finding, low-rank approximation amounts to an
optimization that correctly accounts for the interference of
ODF peaks from mixing fibers [24]. We note that, in any case,
volume fraction estimates derived from deconvolution will be
affected by potential mismatches between the deconvolution
kernel and the actual tissue characteristics [19].

As shown in [24], it is possible to generalize the tensor-
based approach to orders higher than four. According to
Eq. (26) in the appendix, the corresponding H-psd constraints
are stricter than requiring nonnegativity of the fODF, but no
longer ensure that the fODFs will be a mixture of nonnegative
fiber contributions. Preliminary experiments, whose results
are not shown, indicate that the additional benefits of tak-
ing the tensor-based approach to higher orders appear to be
marginal, while the increase in computational effort is sig-
nificant. Future work might investigate this in more detail.

Multi-fiber tractography

Several approaches to multi-fiber tractography are based on
the idea that estimating multiple fiber directions in each voxel
independently is not reliable enough, and should be reg-
ularized by using information from spatial neighborhoods.
Examples include unscented Kalman filters [5, 14] or global
optimization frameworks [20]. Other authors have argued
that a larger number of plausible tracts can be reconstructed
by moving from deterministic to probabilistic tractography
[27].

Our results have been achieved by improving the per-
voxel estimates used within a deterministic streamline-based
tractography algorithm whose benefits include its simplic-
ity and speed. In Fig. 4, the improved angular resolution
of our technique allowed us to reconstruct deterministic
tracts that otherwise would have required probabilistic track-
ing. A comprehensive comparison of deterministic branching
and probabilistic tracking as strategies for capturing the full
extent of dispersing bundles will require a separate study.
Similarly, it is an obvious question for future work to which
extent results can be further improved by integrating our

refined per-voxel estimates into more complex tractography
algorithms.

Of course, many of the well-known limitations that are
shared by all dMRI-based fiber tractography approaches also
apply to our proposed method, and results should be inter-
preted with due care [12]. This includes the possibility of
false positives and false negatives, i.e., missing or spurious
fibers. While theoretically justified constraints such as our
H-psd can contribute to reducing them, and to generating
tractography that is more helpful for neurosurgery and sci-
entific investigation, it is unclear whether this fundamental
issue can be fully resolved, given the gap in spatial scales
between individual axons and MR image resolution.

Conclusion

We have introduced a multi-fiber tractography method that
is based on a unified deconvolution framework for HARDI,
multi-shell, and diffusion spectrum imaging data, and makes
use of fourth-order tensor-based deconvolution with a novel
and theoretically justified H-psd constraint. Results indicate
that our method is faster and numerically more robust than
previous alternatives, achieves higher angular resolution on
simulated data, and compares favorably to existing tech-
niques in qualitative comparisons on clinical data. Despite
the promising results, more extensive validation should be
performed before our method is used in clinical practice.
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Appendix:
constraint

Mathematical derivation of H-psd

This appendix presents the formal definition of our H-psd
constraint (Definition 4), based on a matrix representation
H of higher-order tensor fODFs (Definition 3). According
to Corollary 1, H is positive semidefinite if and only if the
corresponding fODF can be decomposed into a nonnegative
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weighted sum of rank-1 terms, which correspond to single
fiber compartments in our framework. This provides the the-
oretical justification of our H-psd constraint, whose practical
effectiveness is demonstrated in the main part of the paper.
We represent fODFs as forms or symmetric tensors p of
even degree d = 4 in n = 3 dimensions. In tensor notation:

PX)=pX.....X)= > Py XXy, XERL
M iefl,...n)

(N

We will call the set of these forms F}, 4. Symmetry allows
us to use a different, nonredundant indexing scheme

d )
px) = (l) pix' ®)

iel(n,d)

with multi-indices i € I(n,d) = {i € No"| Y ix = d}.

multinomial coefficients (”ll) = % and monomial terms

x! = ]_[Z:1 (xg)*.
Our constraint stems from the relations of three subsets of
F,q:

Prg ={p€Fua:px) =0 VxecR"}

“positive semidefinite” ©))
Tnd =P € Fua:pX = th(x>2}

“sums of squares” ‘ (10)
Ond =P €Fua:p® =) (a, x>d}

“sums of d-th powersk” (11

Here, the h;(x) denote forms of degree d/2, a; denote the
individual vectors that define the rank-1 terms of a nonneg-
ative decomposition.

As shown in [21], these three subsets obey

Qn,d C En,d C Pn,d~ (12)

These sets cannot be vector spaces, since if p # 0 is pos-
itive, —p is not. So the concept of vector spaces has to be
weakened:

Definition 1 A convex cone is a subset C of F), 4 that obeys:

-p,gqeC = p+qgeC
-peC,A>0 = ipeC

Py.d, Xn.q and Q 4 are closed convex cones.

@ Springer

The definition of our constraint and its properties depend
on the choice of a scalar product for forms.

Definition 2 A scalar product on F, 4 can be defined as
[p.gl=)_ N pia (13)
pP.q1= : ; Pidi-

1

For O, 4, this scalar product has a particularly simple
form:

Lemmal For p = Y (ax,")! € Qua and q € Fyq we
have

lg. )= _ql@). (14)
k

Proof By the multinomial theorem:

" d
(a, x)d - (Z a; xi> = Z <f)ai X! (15)
i=1 d

i1+ Fin=

And so
lg. 1 =lq, ) (a, ) 1= [q. (a, )]
k k
=y (f)q Sa) =) q@).
ki k

m}

Also note that [+, -] corresponds to the usual scalar product
for tensors and [p, p] is the square of the Frobenius norm
IpllF.

In order to derive a matrix representation, we want to
reduce a form of even degree d = 2s to d’ = 2. For this,
we need

L(x, 1) =2xi ti (16)

with a vector of variables ¢ indexed by i € I (n, s). For fixed
t, this is a F}, ¢ form in x. For fixed x, this is a linear form in
f.

Definition 3 For p € F), 2, the Hankel form is the quadratic
form

Hy(t) = [p, L*(,01 =) _ pijtity € Frasa-  (17)
ij
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We can put this into matrix form as H,(t) = tTH pt. For
p € F3 4, the matrix is

Pxxxx Pxxxy Pxxxz Pxxyy Pxxyz Pxxzz
Pxxxy Pxxyy Pxxyz Pxyyy Pxyyz Pxyzz
Pxxxz Pxxyz Pxxzz Pxyyz Pxyzz Pxzzz ) (18)
Pxxyy Pxyyy Pxyyz Pyyyy Pyyyz Pyyzz
Pxxyz Pxyyz Pxyzz Pyyyz Pyyzz Pyzzz
Pxxzz Pxyzz Pxzzz Pyyzz Pyzzz Pzzzz

Definition 4 A form p with positive semidefinite H,, will be
called H-psd.

Hn,dz{pEFn,d:Hp(t)ZOVt} (19)

The method we propose enforces the H-psd constraint on
fODFs during deconvolution.

In the rest of this section, we will discuss some properties
of the set H, 4 that are relevant to our method. The main tool
will be duality:

Definition S The dual cone of a convex cone C is the set
C*={p€Fna:lp.ql=0, YqeC}. (20)
If C is a closed convex cone, then (see Reznick [21])
c*™ =C. 2D

Theorem 1 P, 4 and Q, 4 are dual to each other:

Qn,d* = Ind> Pn,d* = Qn,d (22)

Proof

pEQuat & 0<Ilg,pl=1[) (a, ) pl
k

=Y p@), Vg€ Qua
k

<= 0<p(a, VaeR"

< pe Py

The second equation is a consequence of Q, 4** = Qp.q4-
[m}

In the special case of (n, d) = (3, 4), the H-psd constraint
is equivalent to decomposability into rank-1 terms. This can
be shown with the following two theorems:

Theorem 2 (Hilbert)
Pn,d = En,d (23)

ifand only ifn =2 ord =2 or (n,d) = (3, 4).

Theorem 3
En,d* = Ip.d (24)

Proof Observe that r — L(x, t) is a bijection between vec-
tors 1 € R 91 and forms in F, 5. So:

PE T = 0<Ip.ql=I[p. Y Il Vg€ Zua
k

— 0<[p,h*] YheF,,
= 0<[p,L(,0)*1=Hy@) VreRIm

O

A direct consequence for (n, d) = (3, 4) is:

Corollary 1 p € F34 is a sum of fourth powers iff it is
H-psd, since

034=P34" = 234" = H3 4. (25)
For higher degrees, the relation is weaker:
Q3,n Q H3,n C P3,n (26)

Another property of the H matrix is that it can be used to
estimate the number of fibers in an fODFE.

Definition 6 The rank of p € Q4 is the smallest integer
rank(p) = r for which ay, ..., a, € R" can be found with

r

p=) (a ). (27)

k=1

For the cases in Hilbert’s Theorem 2, the ranks of p and
H), are equal as shown in theorem 4.6 in [21]. In general,
rank(p) > rank (H)).
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