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Abstract
Purpose A fully automated surgical tool detection frame-
work is proposed for endoscopic video streams. State-of-
the-art surgical tool detection methods rely on supervised
one-vs-all or multi-class classification techniques, com-
pletely ignoring the co-occurrence relationship of the tools
and the associated class imbalance.
Methods In this paper, we formulate tool detection as a
multi-label classification task where tool co-occurrences are
treated as separate classes. In addition, imbalance on tool
co-occurrences is analyzed and stratification techniques are
employed to address the imbalance during convolutional neu-
ral network (CNN) training. Moreover, temporal smoothing
is introduced as an online post-processing step to enhance
runtime prediction.
Results Quantitative analysis is performed on theM2CAI16
tool detection dataset to highlight the importance of strati-
fication, temporal smoothing and the overall framework for
tool detection.
Conclusion The analysis on tool imbalance, backed by the
empirical results, indicates the need and superiority of the
proposed framework over state-of-the-art techniques.

Keywords Transfer learning · Surgical tool detection ·
CNN · Laparoscopic videos · Multi-label learning

Introduction

Fast and accurate recognition of surgical workflow plays
an important role in modern computer-assisted intervention

B Manish Sahu
sahu@zib.de

1 Zuse Institute Berlin, Berlin, Germany

(CAI). Modern operating rooms (OR) demandmonitoring of
surgical processes to reduce preventable errors, the absence
of which may result in failures up to the loss of human
lives [5]. In addition, multitudes of other OR procedures,
for example automated clinical assistance, staff assignment,
etc., can benefit from surgicalworkflow recognition [1,2,17].
Recent CAI literature [3,9,17,19] has identified that sur-
gical tool occurrences are closely related to the phases of
surgical workflow. Moreover, tool detection and tracking
on endoscopic images has the potential of controlling a
robot-mounted endoscopic camera holder, especially for solo
surgeries [11,18]. Change in illumination, specular reflection
and partial occlusion are some of the major challenges that
render surgical tool detection a challenging task. This work
mainly focuses on a fully automatic identification of surgical
tool(s) from endoscopic video streams.

State-of-the-art methods treat surgical tool detection as a
supervised multi-class or one-vs-all classification task [17].
Based on the observation that multiple tool co-occurrences
happen quite often in endoscopic video frames, we have for-
mulated the task as a generalized multi-label classification.
The co-occurrence of tools, formally termed as label-sets,
forms the output set of multi-label classification. In particu-
lar, rather than treating each tool as a stand-alone class, we’ve
considered label-sets of multiple tools, along with the intro-
duction of a no-tool (i.e., background) class. Second-order
co-occurrences of tools along with frequency of occurrences
are visualized in Fig. 1 for intuitive understanding. Inter-
esting tool co-occurrence relationship patterns emerge from
such visualization. For example, though hook is the most
often used tool in surgical intervention, in second order, it is
used only in association with grasper. Other interesting rela-
tionships involving two-tool usage can also be inferred from
Fig. 1.
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Fig. 1 Chord diagram [6] showing the second-order co-occurrences of
tools (two tools together) in M2CAI16 tool detection training dataset.
Tool usage frequency is color-coded in a discrete fashion: red (0–160),
yellow (160–1000) and green (>1000)

One key observation of this work is the imbalance associ-
atedwith the tool usage (could be understood intuitively from
Fig. 1). It has already been proven that the imbalance in data
affects the binary andmulti-class classification accuracy [4].
However, the imbalance associated with the tool usage dur-
ing a surgery has not been quantified before. In this work,
imbalance in tool usage during an endoscopic intervention
is analyzed quantitatively using the measures introduced by
Charte et al. [4]. Moreover, the effects of tool usage imbal-
ance on detection accuracy are quantitatively analyzed in a
novel experimental setup and specific sampling strategy to
address imbalance [13] in tool usage is introduced during
CNN training.

Major contributions of this work are twofold. First, surgi-
cal tool detection is performed in a generalized multi-label
setting, with quantitative analysis focusing on handling sur-
gical tool imbalance. To the best of our knowledge, this is
the first work where tool detection is formulated as a general
multi-label classification problem. Secondly, a novel transfer
learning architecture is proposed for fine tuning and domain
adaptation of AlexNet [7] toward a surgical tool identifica-
tion task. In particular, weighted uni-variate loss (as learning
objective) for joint output distribution is adopted for handling
residual tool imbalance after stratification.

Related work

Surgical tool detectionwithin endoscopic videos has received
increasing attention in recent years [3,15]. For the sake of

brevity, we have mainly considered works where endoscopic
video streams are considered as the sole input source. Tool
detection procedures from video streams often consider the
task as both tool identification and localization problem [3].
For example, Speidel et al. [14] suggested a tool identification
pipeline that consists of segmentation and 3D model-based
processing. Sahu et al. [11] proposed detection and tracking
of surgical tools over the virtual control interface on endo-
scopic stream to control a robot.

This work, however, similar to Twinanda et al. [17], con-
siders tool detection as a tool presence detection task without
explicit localization. For the rest of the paper, “tool detection”
is commonly used to refer to automatic tool identification
from endoscopic video frames. Twinanda et al. [17] proposed
deep learning-based features to be used in one-vs-all classifi-
cation framework for tool identification without localization.
Most recently, performance of different tool detection tech-
niques [10,12,16] is quantitatively evaluated in M2CAI16
tool detection challenge. In particular, Twinanda et al. [16]
used ToolNet—a network very similar to AlexNet with a
final tool detection layer. Raju et al. [10] used an ensemble
of two networks and Sahu et al. [12] consisted of amulti-label
learning approach with no stratification, followed by random
forest for classification. In this work, unlike other proposed
techniques, we have generalized the problem as multi-label
classification task, quantitatively analyzed the imbalance and
adopted strategies to overcome imbalance-related issues.

Method

In this section, we first provide an overview of multi-label
classification for tool detection task. Next, we describe met-
rics used for defining levels of imbalance in a multi-label
dataset in “Imbalance quantification” section, followed by a
description of stratification technique used to address multi-
label imbalance in “Stratification” section. In “ZIBNet”
section, ZIBNet architecture is introduced with novel design
choices that are incorporatedduring learning. Finally,wepro-
pose temporal smoothing as an online post-processing step
which suppresses false positives during prediction.

Multi-label classification

Supervised classification-based surgical tool detection have
focused on formulating the problem in a one-vs-all or multi-
class setting. Even though simple and intuitive, in this paper
we argue that these settings do not address the problem in
its general sense. In particular, due to the co-occurrence of
multiple surgical tools at different endoscopic video frames,
general multi-label classification should be used to model
tool presence instead. Multi-label classification is the gen-
eralization of binary or multi-class classification. In this
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Fig. 2 Upset [8] visualization of the third-order co-occurrence (three
tools appearing together) of the tools inM2CAI16 tool detection training
dataset. It shows possible three tool combinations (bottom right) with
orange and black color representing presence and absence of these

combinations in the training dataset respectively. The third-order co-
occurrences of the tools are shown on topwith corresponding individual
tool distribution on bottom left

scenario, no a priori limit on the number of tools present
in the output set is imposed during classification.

For example, second-order co-occurrences of surgical
tools (i.e., two tools appearing together) are reported in
Fig. 1. In one-vs-all or multi-class classification setting, the
desired chord diagram would be an empty circle, penalizing
all the interconnected entries. However, plotting the ground
truth annotation in Fig. 1 suggests the existence of inter-
connected entries (more than one tool), which would have
been penalized in the earlier settings. Similarly, third-order
tool co-occurrence with respect to instrument distribution is
visualized in Fig. 2 which shows distribution of three tools
appearing together. The presence of the co-occurrences in
Figs. 1 and 2 violates the mutually exclusive class assump-
tion of one-vs-all ormulti-class classification. Thismotivates
us to model the problem as a multi-label classification one
where co-occurrence entries are also considered valid and
not penalized during classification.

Formally, for all N annotated video frames in our train-
ing dataset F ∈ { fi } where i = 1, 2, . . . , N , a multi-label
classifier C learns to represent the total set of tool labels
T ∈ {t j } where j = 1, 2, . . . , M . For a testing video stream,
C must produce as output a set Zi ⊆ T with predicted tool
labels for the i-th video frame. Note that, this generalization
results in 2M potential combinations , which are termed as
label-sets. In a general setting, thismight result inmany prac-

tical constraints (e.g., memory for storing, representation and
performing actual classification). However due to the prac-
ticalities of endoscopic intervention, where only a limited
number of tools (maximum three for this particular dataset)
and combinations (see Figs. 1 and 2) can be present at once,
the multi-label problem remains tractable. In particular, the
seven-tool M2CAI16 tool detection dataset has resulted in
approximately twenty label-sets spanning from order zero to
three.

Imbalance quantification

Even though imbalance in binary and multi-class classifi-
cations is a well-studied problem, quantitative analysis of
imbalance in multi-label dataset is proposed in very few
occasions [4,13]. Conventional imbalance analysis meth-
ods, designed for binary/multi-class classification, assume
only the ratio of majority to minority class labels as imbal-
ancemeasure, therefore, not suitable formulti-label datasets.
There exist some traditional metrics notably label cardinal-
ity and label density which characterizemulti-label datasets.
Label cardinality is the average number of active labels per
sample, and label density denotes average of label cardinal-
ity over the total number of labels. Mathematically, these
measures can be defined as follows [4]:
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Fig. 3 Proposed CNN architecture. The input layer (blue) size and fully connected layers (orange) are adapted to tool detection task, while the
convolution layers are similar to the AlexNet [7] architecture

Cardinality(F) = 1

N

N∑

i=1

M∑

j=1

ti j (1)

Density(F) = Cardinality(F)

M
(2)

With the presence of multiple label-sets, special met-
rics are needed for analyzing imbalance in multi-label
datasets in detail. In this work, we have exploited imbal-
ance ratio per label (IRLbl), the mean imbalance ratio
(MeanIR) and the coefficient of variation of IRLbl (CVIR)
introduced in [4] to analyze the imbalance in our tool
dataset:

MeanIR = 1

M

M∑

i=1

IRLbl(ti ) (3)

CVIR = MeanIR

√∑M
i=1 (IRLbl(ti ) − MeanIR)2

M − 1
(4)

Here IR per label, IRLbl(Ti ), is calculated as the ratio
between the majority (most frequent) label and label Ti . As a
result, the majority label will always have IRLbl = 1 and
rest of the labels will have higher IRLbl > 1. MeanIR
computes the average level of imbalance of the dataset,
while CVIR measures variation of IRLbl, i.e., similarity of
level of imbalance between all labels. For a perfectly bal-
anced dataset, all IRLbl values would be 1, which results
in values of MeanIR and CVIR being 1 and 0, respec-
tively. The joint use of MeanIR and CVIR with values
greater than 1 and 0, respectively, denotes the level of imbal-
ance in a multi-label dataset. Moreover, the values of IRLbl
greater than 1 can be used for measuring individual label
imbalance.

Stratification

Stratification is the process of sampling, where the propor-
tion of disjoint groups is maintained [13]. Stratification in
the multi-label data context is a challenging task. Improper
stratification might significantly reduce the performance of
classifiers as demonstrated by Sechidis et al. [13].

The most intuitive stratification in the tool detection set-
ting would be to consider a balanced strategy. In this setting,
the occurrence frequency of the least frequent tool would be
considered as the desired sample size and the rest of the tools
would be sampled accordingly. However, co-occurrence of
tools in different frames actually results in an unbalanced
training and validation set.

A betterway of handling the problemwould be to consider
stratification on label-sets. Here, the frequency of label-sets
is considered for sampling of image frames. A stratification
threshold ψ is applied, where for more frequent label-sets,
ψ occurrences are sampled randomly, and for less frequent
(<ψ) label-sets, all samples are considered for training.

ZIBNet

Our proposed CNN architecture (Fig. 3) is composed of three
main parts:

– Input layer which accepts an input image of size 384 ×
256 pixels.

– Convolutional layerswhich are similar to AlexNet archi-
tecture.

– Fully connected layers which are specific to tool detec-
tion task with size 512, 64 and 8, respectively.

Before the learning step, the convolutional layers weights
are initialized with AlexNet convolutional weights and the
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fully connected layers are initialized with random weights.
The rectify units are applied to the output of convolutional
and fully connected layers except the last fully connected
layer which is connected to sigmoid nonlinearity. Since
our network contains pre-trained convolutional weights of
AlexNet which are generic for earlier convolution layers and
become specific to ImageNet objects for higher layers, we
assign layer-specific learning rates

LR = ciη (5)

where η is the learning rate and ci = [0.1, 0.2, 0.3, 0.4, 0.5,
1.0, 1.0, 1.0] is the learning coefficient for each layer.
The learning coefficient becomes higher with subsequent
convolutional layer, except for the fully connected layers
whose coefficients remain fixed since these layers have
been randomly initialized. The output layer contains eight
units for seven tools and an additional “no-tool” label,
which is added to the ground truth and represents that
none of the given tools are present in the image, i.e.,
background.

During the learning step, the network minimizes the
joint label distribution through a uni-variate loss function
L defined as:

L = −
T∑

t=1

w(t)
[
zt log yt + (1 − zt ) log(1 − yt )

]
(6)

where w(t) is a weighting function that normalizes loss
in terms of output zt , and yt is prediction for tool t .
Intuitively, even after label-set stratification, imbalance
on the tool label would not be omitted completely. L
is formulated as a uni-variate loss function where cross
entropy is weighted with tool occurrence frequency in
the training data, to manage the residual imbalance after
stratification.

To avoid over-fitting, we perform real-time data augmen-
tation (flipping, mirroring and cropping) during learning,
apply dropout units for “FC6” and “FC7” layers and use
a weight decay of (10−5) for every layer. Finally, the
network is trained using stochastic gradient descent (η
of (10−2)) with momentum of 0.9 using the holdout
scheme.

Temporal smoothing

Due to the stochastic nature of the classification process,
false detections would occur during the testing step. For
reducing such false detections, we have adopted a tempo-
ral smoothing (TS) approach as an online post-processing
step. It assumes that each tool transition within the endo-
scopic videos is smooth and takes previous frame detections
into account in a weighted scheme. A window of five frames
(including current and four previous frames) with normal-
ized linear weights determines the current output detection.
Mathematically, TS is defined as follows:

yts =
∑t

i=0 wi yt−i∑t
i=0 wi

(7)

where yts is the temporally smooth output for the current time
step, t = 4 and wi = [1.0, 0.8, 0.6, 0.4, 0.2] is the weight
coefficient for each time step.

Results

This section provides a quantitative analysis of the proposed
method, as well as quantitative comparison w.r.t. state-of-
the-art methods, to demonstrate its effectiveness for surgical
tool detection from endoscopic video streams.

Data preparation

All our quantitative experiments were performed on the
M2CAI Tool Detection Challenge 2016 training and testing
dataset [16]. The dataset contains 15 clinical cholecystec-
tomy surgical procedures (one video per surgical procedure),
which were performed using seven surgical tools (as shown
in Fig. 4). The dataset is divided into 10 training and 5 testing
videos. The videos were captured at 25 frames per second,
but the ground truth (GT) annotation was done at 1 frames
per second. A tool was considered to be present only if at
least half of the tool tip was visible.

To provide a fair comparison, we only considered aver-
age precision (AP) per tool and mean average precision
(mAP) for all tools [17] as the comparison metric. For all

Fig. 4 Appearances of different surgical tools from M2CAI16 tool detection dataset. The tools used during the surgical procedure (left to right)
are grasper, bipolar, hook, clipper, scissors, irrigator and specimen bag
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Table 1 Comparison of meanAP for state-of-the-art techniques on
M2CAI tool detection testing dataset

ToolNet [16] Sahu et al. [12] Raju et al. [10] Proposed

MeanAP 0.52 0.53 0.63 0.65

the experiments, M2CAI tool detection training dataset was
used for training and the results were reported on M2CAI
Tool Detection Testing dataset with stratification threshold
ψ = 300.

Comparison with state-of-the-art methods

The proposed framework (label-set based stratification and
weighted uni-variate loss for training ZIBNet followed by
TS) results in state-of-the-art performance when relying on
mAP for evaluation.We compared the results of our proposed
method with the top performing methods from M2CAI Tool
Detection Challenge, all of which [10,12,16] relied on CNN
for tool detection. All the results are taken fromM2CAI Tool
Detection Challenge website where the respective authors
used their own software for training and testing. As Table 1
shows, our proposedmethodoutperformed all othermethods.
In particular, ZIBNet significantly outperformed [16,17] in a
paired t test with p < 0.05. We attribute the superior perfor-
mance of our proposed method to our particular formulation
of the problem as a multi-label one and our novel stratifica-
tion technique.

For a detailed performance evaluation of our proposed
framework, a receiver operating characteristic (ROC) curve
for each tool is shown in Fig. 5. Apart from Irrigator and
Scissors, all the other tools performed sufficiently well. Dif-
ficulties in detecting Scissors is already known [16,17];
however, the reason behind low performance on Irrigator

Table 2 Imbalance ratio per label (IRLbl) of various tools in the training
and testing dataset

Tools Training Testing

Grasper 1.28 1.13

Bipolar 22.25 20.76

Hook 1.00 1.00

Scissors 34.37 47.17

Clipper 16.09 23.66

Irrigator 14.82 46.88

Specimen Bag 9.39 15.43

is analyzed in the remainder of this work (“Discussion and
conclusion” section).

Imbalance analysis

We have performed a detailed imbalance analysis of all the
tools present in the training and testing dataset. Rather than
reporting the exact number of occurrences for each tool, we
concentrated on the IRLblmeasure for each tool (Table 2). As
described in “Imbalance quantification” section, the value of
themost frequent tool is 1 and rest have higher values (ideally
1, higher IRLbl means higher imbalance for the associated
tool). Aswe can see in Table 2, themost frequent tool isHook
with IRLbl 1.0. It is interesting to note that Irrigator is almost
three times more frequent in training dataset compared to
Testing dataset. The effects of imbalance are further reported
through other metrics in Tables 2 and 3.

Traditionally, for one-vs-all or multi-class classification,
imbalance is reported over thewhole dataset using cardinality
and density, as shown in Eqs. (1) and (2). However, it is
evident from the Eqs. (3) and (4) that overall imbalance of
a multi-label dataset can be appreciated only by looking at

Fig. 5 Receiver operating
characteristic (ROC) curve for
presence detection of each tool
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Table 3 Values of traditional metrics (label cardinality and label den-
sity) and specific metrics (MeanIR and CVIR) over the whole training
and testing dataset

Measures Training Testing

Cardinality 1.26 1.23

Density 0.18 0.17

MeanIR 14.17 22.29

CVIR 0.83 0.85

Table 4 Quantitative comparison between different imbalance han-
dling (stratification) strategies: no sampling (Unbalanced), tool-level
sampling (tool-balanced) and label-set-based sampling (label-set) for
various tools

Tools Unbalanced Tool-balanced Label-set

Grasper 0.87 0.61 0.81

Bipolar 0.21 0.46 0.57

Hook 0.96 0.95 0.96

Scissors 0.09 0.3 0.34

Clipper 0.34 0.51 0.46

Irrigator 0.21 0.21 0.24

Specimen bag 0.81 0.64 0.71

MeanAP 0.50 0.53 0.59

MeanIR andCVIR together. Imbalance in the training dataset
resulted in MeanIR value of approximately 14 times higher
than ideal (ideally 1)with 83%variance (ideally 0%) in IRLbl
values as reported in Table 3.

Analysis of stratification techniques

We performed quantitative comparison of different sampling
approaches to highlight the importance of stratification on
the performance of ZIBNet for tool detection. Label-sets-
based stratification (“Stratification” section) is compared to
unbalanced sampling and tool-level balanced stratification
(“Stratification” section). Average precision for each tool and
overall mAP is reported in Table 4. In particular, the baseline
strategy (no stratification at all)—termed as “Unbalanced” in
Table 4, performed worst. Tool-level balanced stratification
resulted in an overall increase of 3% over “Unbalanced,”
whereas the proposed label-set stratification increased mAP
by9%, as shown inTable 4. It isworth noting thatUnbalanced
approach favored most frequent tools. Stratification, on the
other hand, adapted the network to alleviate this bias and
enhanced detection of less frequent tools.

Analysis of temporal smoothing

The last part of our design is to apply TS to decrease stand-
alone activations as described in “Temporal smoothing”
section. We have run experiments to quantitatively demon-

Table 5 Importance of temporal smoothing (TS) on overall tool detec-
tion accuracy for different tools over label-based sampling (balanced
with TS) and label-set-based sampling (label-set with TS)

Tools Balanced with TS Label-set with TS

Grasper 0.62 0.83

Bipolar 0.58 0.66

Hook 0.97 0.97

Scissors 0.47 0.51

Clipper 0.65 0.54

Irrigator 0.21 0.29

Specimen bag 0.73 0.77

MeanAP 0.61 0.65

strate the importance of TS. TS is independent of the rest of
the proposed framework and as shown inTable 5, consistently
improved the performance of both stratification techniques
by reducing false positives. In particular, the simple stratifi-
cation benefited more from TS with an overall mAp increase
of 8%, whereas 6% boost in performance was observed for
label-set stratification.

Discussion and conclusion

Detection of surgical tools in endoscopic video is an impor-
tant problem requiring a rigorous understanding of the data
as well as an effective handling approach. A successful
surgical tool detection technique can potentially improve
a multitude of CAI applications. For example, detection
of surgical workflow phases can directly benefit from tool
detection results. However, tool co-occurrences, change of
illumination, specular reflection and partial occlusion make
the detection problem significantly more difficult.

This work clearly showed that generalizing the classi-
fication problem with domain adaptation can significantly
improve classification results. Our proposed method demon-
strates that fully automatic tool detection results in an
acceptable level of agreement with the manual annotations.
By modeling tool co-occurrences as label-sets, we can better
handle the inherent structure of surgical tool presence dur-
ing interventions. Moreover, a detailed study of imbalance in
label-sets has motivated us to develop stratification methods
for CNN training.

Note that, IRLbl in Table 2 suggests that irrigator has
significantly different imbalance ratio between training and
testing dataset. Not only our results consistently lead to low-
est AP as reported in Tables 4 and 5, ToolNet results by
Twinanda et al. [16] also reported the same. This suggests
that along appearance difficulties (in case of scissors), label
imbalance significantly challenges the performance of CNN.
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An important observation of our study is the boost in per-
formance by addition of temporal smoothing as an online
post-processing method (no future information is consid-
ered). TS consistently enhances detection results for both
stratification approaches as reported in Table 5.

This study solely concentrated on tool presence identi-
fication; however, future studies of surgical workflow phase
recognition can benefit from the insights. In particular, the co-
relation of surgical phases with the tools being used therein
can be exploited further in the label-set setting. The imbal-
ance of label-sets also suggests special tool co-occurrences
which could be used as important phase-transition cues.

In conclusion, this study motivates us to rethink about
the standard assumptions regarding surgical tool presence
detection. Deviating from de facto supervised one-vs-all or
multi-class techniques (the performance of which heavily
depends on the co-occurrence frequencies) toward multi-
label settings can provide multiple benefits. Finally such
fully automatic techniques are expected to be instrumental
in advancing the computer assistance during surgical inter-
vention.
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