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Abstract
Purpose Effectiveness of image-guided radiation therapy
with precise dose delivery depends highly on accurate tar-
get localization, which may involve motion during treatment
due to, e.g., breathing and drift. Therefore, it is important
to track the motion and adjust the radiation delivery accord-
ingly. Tracking generally requires reliable target appearance
and image features, whereas in ultrasound imaging acoustic
shadowing and other artifacts may degrade the visibility of
a target, leading to substantial tracking errors. To minimize
such errors, we propose amethod based on so-called support-
ers, a computer vision tracking technique. This allows us to
leverage information from surrounding motion for improv-
ing robustness of motion tracking on 2D ultrasound image
sequences of the liver.
Methods Image features, potentially useful for predicting
the target positions, are individually tracked, and a supporter
model capturing the coupling of motion between these fea-
tures and the target is learned on-line. This model is then
applied to predict the target position, when the target cannot
be otherwise tracked reliably.
Results The proposed method was evaluated using the
Challenge on Liver Ultrasound Tracking (CLUST)-2015
dataset. Leave-one-out cross-validation was performed on
the training set of 24 2D image sequences of each 1–
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5min. The method was then applied on the test set (24
2D sequences), where the results were evaluated by the
challenge organizers, yielding 1.04mm mean and 2.26mm
95%ile tracking error for all targets. We also devised a sim-
ulation framework to emulate acoustic shadowing artifacts
from the ribs, which showed effective tracking despite the
shadows.
Conclusions Results support the feasibility and demon-
strate the advantages of using supporters. The proposed
method improves its baseline tracker, which uses optic flow
and elliptic vesselmodels, and yields the state-of-the-art real-
time tracking solution for the CLUST challenge.

Keywords Tracking liver in ultrasound · Respiratory
motion compensation · Image-guided radiation therapy ·
Supporters

Introduction

Ultrasound (US) imaging is a low-cost, real-time, and non-
ionizing method, which makes it an appealing choice for
image-guided computer-assisted interventions in radiation
therapy. Treatments of liver tumors using high-intensity
focused ultrasound, intensity-modulated radiation therapy,
or proton therapy enable precise dose delivery to the desired
location. However, the target region during the treatment is
affected by internal body motion, such as breathing, which
is a major drawback in effectiveness of these treatments. Not
taking the respiratory motion into account would cause devi-
ations of the delivered dose distribution from the intended
one and increase radiation exposure of healthy tissue while
lowering dose to the target volume, which would reduce effi-
ciency and aggregate complications [1].
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One of the strategies to reduce breathing-induced organ
motion during radiation treatment is deep inspiration breath
holdmethod [2],where a patient performs a supervisedbreath
hold during therapy, which requires active support and the
ability of the patient to maintain such a breath hold. Another
possible approach to compensate for breathing motion that
does not require patient compliance is to track the position
of the target region during therapy and dynamically adjust
the radiation accordingly.

To use motion tracking algorithms for radiation therapy
interventions, real time, accurate, and robust localization of
the target region for the entire procedure is required. US
imaging being non-ionizing and real time makes it an ideal
choice for this aim [3]. There are numerous studies focus-
ing on tracking of liver motion in US image sequences using
different approaches, such as image registration [4], block
matching [5], and optic flow [6]. However, these methods are
generally affected by limitations of US imaging such as low
signal-to-noise ratio (SNR) and large appearance changes
of the tracked landmarks caused by, e.g., acoustic shadow-
ing due to poor transducer–skin contact or highly reflecting
anatomical structures like the ribs.

In this work, we propose to use supporters, a computer
vision technique [7], to improve optic flow-based tracking.
This relies on tracking additional image features, potentially
beneficial for predicting the target position. To that end, a
supporter model is built based on motion coupling observed
on some frames between these tracked features (supporters)
and the target. Using this model, the tracking can then be
made robust to changes in target appearance, where a con-
sensus voting of several supporter estimations can be used to
infer target location.

Considering motion tracking in medical images, support-
ers were used earlier for determining two orthogonal MR
acquisition planes through the heart valve [7]. Instead of
the valve itself, which may leave the image, four annotated
points (supporters) on a plane perpendicular to the valvewere
tracked to define the acquisition planes. A supporter model
based on squared Euclidean distances was used to down-
grade distant supporters. In [8], supporters were used for
tracking abnormalities in video capsule endoscopy. First, the
supporters were matched between successive frames by con-
sidering a triangular constraint, where the triangle shape is
maintained while allowing weak deformations. Then, affine
transformations calculated from the supporter triplet help
determine abnormal positions, where the precise position
is estimated from the features of the target itself. In [9],
cells were tracked in spatiotemporal optical images from
densely packed multilayer tissues. The tight spatial topology
of neighboring cells was exploited as contextual informa-
tion by applying spatiotemporal graph labeling. In [10], 600
supporters were detected in fluoroscopy images by using
Kanade–Lucas–Tomasi feature tracker for automatic motion

compensation. An autoregression model and motion clus-
tering was employed for learning the relationship between
supporter and target motion. Supporters were also used in
many other typical computer vision applications, e.g., in [11–
15]. Supporters have not been studied for motion tracking
in US images. We hereby show that this method is particu-
larly beneficial in cases where the target cannot be observed
directly, such as due to occlusions from shadowing artifacts.

Note that particular challenges of US tracking are poor
image quality and the relatively small number of land-
marks suitable for tracking. Nevertheless, relative locations
of liver landmarks stay stable during radiation therapy of liver
tumors, whichmotivates the use of supporters in thiswork for
2D US tracking of the liver. We hereby devise an approach
for effective supporter model creation from few supporters
and evaluate this on a standard public dataset.

Methods

Motion tracking is the process of estimating the trajectory
of an object over time by predicting its position in every
frame of an image sequence. For image-guided computer-
assisted applications, targets in moving organs such as the
liver, prostate, and the heart are commonly tracked. Track-
ing an object position can be challenging, e.g., due to the
appearance change over time, low SNR, or occlusions. In US
images, tracked target can temporarily disappear by going out
of the field of view or by being covered by a shadow due to
poor transducer–skin contact or highly reflecting anatomi-
cal structures such as the ribs. To improve robustness of a
conventional tracking algorithm for such cases, we propose
combining it with a supporter model, which takes advantage
of correlated surrounding motion.

Tracking with a supporter model

Grabner et al. [7] proposed amethod for tracking the invisible
using a set of local image features, called supporters, by
exploiting the visual context and relative spatial relations
to improve target tracking. Good supporters were defined
as the image features whose motion is correlated with that
of the target and, thus, might be useful for predicting the
position of the target. For example, a wristwatch on a hand
holding a target object is a good supporter for the position
of that target (even when the target is not directly visible or
trackable), since their motions are strongly correlated. Below
we first summarize the supporter model [7] for the sake of
completeness and then describe our methods for its adaption
in this work.

Overview of supporter modeling Tracking with support-
ers has two main modes: learning the model and applying
the model. The model captures the statistical relationship
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between the target and supporter positions and therefore pro-
vides a measure of how strongly the motion between each
supporter and the target is coupled. This measure can then be
used for adjusting the contribution of each supporter in the
overall supporter prediction.

The overall goal is to learn and apply a probability density
function (pdf) model, P(x|I), for predicting the position of
target object, x = (x, y), in image I via the help of S tracked
supporter positions {xs |s = 1, 2, . . . , S}. For this aim, the
relationship between supporter positions {xs} and the target
position x is learned, providing conditional pdf P(x|xs) for
supporter s. Each supporter s then votes for potential target
positions x via pdf P(x|xs). These votes are combined by
accounting for the reliability of the supporter position esti-
mates xs from I with probability P(xs |I), resulting in pdf
using law of total probability

P(x|I) ∝
S∑

s=1

P(x|xs)P(xs |I). (1)

The final target position is then determined by finding the
position that has the highest likelihood in the voting space.

Learning a supportermodelLet I0, I1, . . . , IF−1 be an image
sequence consisting of F image frames, {x0s |s = 1, 2, ..., S}
be the set of S supporter positions of the first frame I0, and x0

be the target position of I0. The goal of the model is to esti-
mate for frame I f the most likely target position x f from the
observed supporter positions {x f

s }. Assuming a translational
relationship, this is based on learning per supporter s the con-
ditional pdf of the relative target position us = x − xs for a
given xs . For on-line learning during tracking, the exponen-
tial forgetting principle between the so far learned pdf model
P f −1(·) and the current pdf p(·) is used:

P f (us |xs) = α P f −1(us |xs) + (1 − α) p(u f
s |x f

s ), (2)

P f (xs |I) = α P f −1(xs |I) + (1 − α) p(x f
s |I f ), (3)

where forgetting factor α ∈ [0, 1]weights the contribution of
past and current pdfs. P f (us |xs) is the model learned from
frames 1 to f and provides the pdf of supporter position xs
voting for relative target position us . p(u

f
s |x f

s ) is the cor-
responding pdf derived only from the tracked positions in
the current frame f . P f (xs |I) is the reliability model of the
supporter position estimation learned from frames 1 to f .
p(x f

s |I f ) defines the reliability of supporter position x f
s . We

will explain how P f (·) and p(·) are defined in practice in
“Robust motion tracking by estimating the target position
using supporters” section.

Applying the supporter model Given image I f and tracked
supporter positions {x f

s }, the learned supporter models
P f (us |xs) and P f (xs |I) are evaluated for xs = x f

s and
I = I f . From this the target position, x f is estimated by

using Eqs. (2) and (3) in Eq. (1), where the pdfs for the rel-
ative target positions are brought into the target space via
P f (x = us + x f

s |x f
s ) = P f (us |x f

s ), i.e.,

x f = argmax
x

P(x|I f ) with

P(x|I f ) =
S∑

s=1

P f (x|x f
s )P f (x f

s |I f ). (4)

Robust motion tracking by estimating the target
position using supporters

Tracking with supporters requires another tracking method
to compute supporter locations and their reliability. Support-
ers can then assist and correct such a baseline method to
achieve improved tracking results. We first summarize our
method for a generic object tracker (see also Algorithm1)
and then instantiate it with a particular tracking method later
below.

Input data Our method uses a given initial target position
x0, a fixed set of initial supporter positions {x0s }, and ref-
erence patches around the target, B0, and each supporter,
{B0

s }, where positions and reference patches are manually
annotated in the first image frame I0. Note that the refer-
ence patches are manually chosen to contain distinct image
appearance compared to their surrounding. For the current
frame f > 0, we obtain target and supporter position estima-
tions from the conventional object tracker, which are denoted
as x f

t and {x f
s }, respectively.

Tracking reliability Assuming that the feature appearance
changes only linearly during tracking, we use the correlation
coefficient measure between image patches for estimating
the tracking reliability. For this, we extract patches B f and
B f
s , of the same size as B0 and B0

s , centered around the

tracked positions x f
t and x f

s , respectively. Then, we calcu-
late the correlation coefficient between the corresponding
patches, i.e., ρ f = CC(B0,B f ) and ρ

f
s = CC(B0

s ,B
f
s ).

We employ reliability measure ρ f to decide whether to rely
on the current target position for tracking and updating the
model. Specifically, if ρ f ≥ θCC , which is a learned thresh-
old, we assume to have reliable object tracking and use this
position, i.e., x f = x f

t . Furthermore, for another threshold
θupdate > θCC , if ρ f ≥ θupdate, then the supporter model is
updated as described next.

Supporter model learning The supporter model P f (us |x f
s )

fromEq. (2) is approximated with a 2DGaussian distribution
by

P f (us |x f
s ) ∝ 1

2π
√

|C f
s |

exp

(
−1

2
(us−µ

f
s )(C f

s )−1(us−µ
f
s )ᵀ

)
,

(5)
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Algorithm 1 Robust Motion Tracking

1: for each frame f do
2: if f = 0 then
3: annotate x0, {x0s }, B0 and {B0

s }
4: else
5: get x f

t and x f
s from object tracker

6: extract B f and {B f
s }

7: compute ρ f between B0 and B f

8: if ρ f ≥ θCC then
9: use object tracker: x f = x f

t
10: if ρ f ≥ θupdate then
11: update supporter model: (6-7)

12: end if
13: else
14: compute target probability P(x f

t )

15: if P(x f
t ) ≥ θP then

16: use object tracker: x f = x f
t

17: else
18: use supporter model x f

p : (9)
19: end if
20: end if
21: end if
22: end for

where µ
f
s and C f

s denote the on-line learned mean and
covariance matrix, respectively, of the relative target posi-
tions u f

s across frames, i.e.,

µ
f
s = α µ

f −1
s + (1 − α) u f

s , (6)

C f
s = α C f−1

s + (1 − α) Cs, (7)

where the covariance matrixCs captures the variance contri-
bution of the current relative target position u f

s = [u f
s , v

f
s ]

with respect to the current mean µ
f
s = [μ f

s,u, μ
f
s,v]:

Cs =
⎡

⎢⎣

(
u f
s − μ

f
s,u

)2
0

0
(
v
f
s − μ

f
s,v

)2

⎤

⎥⎦ . (8)

An illustration of such a distribution is shown in Fig. 1a.

Supporter model application We use the supporter model
to predict the target position x f if the tracked target
position x f

t is not reliable (i.e., ρ f < θCC ). The most

likely relative target location per supporter s is mean
µ

f
s = argmaxu P f (u|x f

s ), with corresponding probability

P f (µ
f
s |x f

s ) = 1/(2π
√

|C f
s |). Instead of predicting the tar-

get from the peak of the resulting Gaussian mixture model
(GMM) distribution (see Fig. 1b for a 1D illustration), we use
a weighted average of the mean values from all mixture com-
ponents [16] and incorporate the reliability of the supporter
position predictions, i.e., P f (x f

s |I f ) = ρ
f
s . The prediction

from all supporters is then

x f
p =

∑
s(µ

f
s + x f

s )P f (µ
f
s |x f

s )P f (x f
s |I f )

∑
s P

f (µ
f
s |x f

s )P f (x f
s |I f )

=
∑

s(µ
f
s + x f

s )ρ
f
s /

√
|C f

s |
∑

s ρ
f
s /

√
|C f

s |
. (9)

Finally, if the applied supporter model and the main
object tracker agree on the target position estimation, i.e.,

Fig. 1 a Illustration of a supporter voting for a target position (arrow)
with a probability distribution (image intensities) defined by mean µ

and covarianceCs . b Illustration of a 1D Gaussian mixture model (red)

from two individual distributions (green and blue), with mean values
indicated by vertical lines
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Fig. 2 Example of tracker and supporter predictions. Target position frommain object tracker x f
t (green), individual supporter predictionsµ f

s +x f
s

(blue), and weighted mean using Gaussian mixture model x f
p (red) overlaid on a US image and b log-transformed probability density

P(x f
t ) = ∑

s P
f (x f

t − x f
s |xs)ρ f

s ≥ θP , then the estimation

from the main tracker is used: x f = x f
t . Otherwise, we use

the supporter prediction x f = x f
p .

An example for target position estimation using the sup-
porter model is shown in Fig. 2.

Experiments and results

We evaluated our method using the 2D liver US image
sequences provided by the Challenge on Liver Ultrasound
Tracking (CLUST)-2015 [17]. Amain advantage of support-
ers is the robustness to feature appearance in tracking, for
instance, when a target is occluded by acoustic shadowing.
Since such disappearing target locations are not (and cannot
reliably be) annotated in the given dataset, we devised a sim-
ulation framework to emulate acoustic shadowing artifacts
from the ribs on the images and evaluated this scenario. As
the baseline object tracker, we employed [6] such that motion
tracking with and without using the supporter model can be
compared.

CLUST-2015 dataset

The CLUST-2015 dataset includes 2D liver US image
sequences and consists of two subsets, namely training and
test set. The sequences in the dataset have a duration between
60 and 330s. The training set has 24 image sequences with
manual annotations in 10%of all frames. The annotations are
mostly for vessel cross sections in the liver, which are reliable
landmarks for liver motion. The test set contains 24 image
sequences with no public annotations apart from the refer-
ence positions x0, and the submitted results are evaluated by
the challenge organizers. For the evaluation, the Euclidean

distance between each manual annotation and the corre-
sponding tracked point is computed, where summary error
statistics including mean, standard deviation, and 95%ile
errors are reported to the participant. In this work, we are
particularly interested in reducing 95%ile errors to minimize
large errors for a robust tracking performance throughout all
sequences.

For parameter optimization and sensitivity analysis, we
used the training set. Our method has four parameters to
optimize, which are forgetting factor α, correlation coeffi-
cient threshold θCC , supportermodel update threshold θupdate
and target probability threshold θP . We optimized these
parameters for minimizing 95%ile error with leave-one-
out cross-validation using grid search. Optimal parameters
range from [α, θCC , θupdate, θP ] = [0.90, 0.3, 0.3, 0.5] to
[0.95, 0.3, 0.4, 0.7] and hence are relatively insensitive to
the left-out case. The mean parameters were found to be
[α, θCC , θupdate, θP ] = [0.9479, 0.3000, 0.3021, 0.6625].
Figure3 shows the mean, 95%ile, and maximum tracking
error distributions from the 24 sequences of the baseline
method (abbreviated as TMG for Tracking by Makhinya and
Goksel) and our proposed tracker (denoted as RMTwS for
Robust Motion Tracking with Supporters). Table1a com-
pares overall performance for the mean, standard deviation,
95%ile, and maximum error after pooling all training results
into one distribution. Note that our proposed method yields
a 16% improvement for the 95%ile error.

We then applied our method on the test set using the opti-
mal parameters found above. Test set results were evaluated
by the challenge organizers. Figure4 compares tracking error
distributions of the baseline tracker, TMG, and our proposed
tracker, RMTwS, for the 24 test sequences, and Table1b lists
the overall performance after pooling all results. RMTwS
yields 1.04mm mean and 2.26mm 95%ile error, improv-
ing the baseline method by 4.6 and 6.6%, respectively. The
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Fig. 3 Tracking error distributions (in mm) for baseline (TMG) and proposed method (RMTwS) for 24 training sequences. aMean tracking error.
b 95%ile tracking error. c Maximum tracking error

Table 1 Comparison of mean, standard deviation, 95%ile and maximum of tracking errors (in mm) of baseline (TMG) and proposed (RMTwS)
method after pooling all results from a training and b test set

Method Overall performance for training and test set

(a) Training set (b) Test set

Mean σ 95%ile Max Mean σ 95%ile Max

TMG 1.17 0.89 2.61 21.78 1.09 1.75 2.42 25.55

RMTwS 1.12 0.81 2.19 21.78 1.04 1.48 2.26 21.41
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Fig. 4 Tracking error distribution (in mm) for baseline (TMG) and proposed method (RMTwS) for 24 test sequences. a Mean tracking error. b
95%ile tracking error. c Maximum tracking error

95%ile error of the individual test landmarks was improved
by more than 5% for seven landmarks and by >30% for five
landmarks. The remaining landmarks have accuracies within
2%.

We also evaluated the time needed to run our proposed
method. Learning and applying the supporter model take
between 20 and 60ms per frame in the given sequences on
an Intel Core i7–4770K CPU @ 3.5GHz.

Evaluating tracking under shadowing

Since the target points which disappear in the acoustic
shadow are not annotated in the CLUST-2015 dataset, we
conducted a simulation, where we emulated acoustic shad-
owing artifacts from a simulated rib on the images and

evaluated this scenario. For this purpose, wemanually placed
a structure of size 12.4mm× 7.2mm, representing a rib cross
section in accordance with [18], close to the skin.

We augmented each frame in a US image sequence from
the training data with new ultrasound bone shadows by mul-
tiplying the input US images with a signal intensity map.
For each pixel of an ultrasound image, this map stores the
accumulated intensity of the ultrasound signal induced by
reflection at the bone surface and energy loss (attenuation)
within the bone structures. It is between [0, 1], with 1 for
the original signal intensity and 0 for a complete signal loss.
The signal intensitymap is generated in amultistage process.
In the first step, we create a map of attenuation coefficients
Z of bone cross sections, given by intersection of the bone
tissue with the transducer plane. To create a bone segment j ,

123



Int J CARS (2017) 12:941–950 947

Fig. 5 Shadow simulation example with a signal intensity map, b original image, c shadowed image

we simply rasterize a circle with radius r j at position p j

in Z. Inside each circle, we store attenuation coefficients
Z(x, y) = β j corresponding to bone segment j , and Z(x, y)
is zero otherwise. Typical values of β for bone are used from
literature [19].

In the next step, we use ray marching to traverse Z
and create a (pre-scan-converted) signal intensity map A,
in a simplified and task-specific variation of more com-
plex ultrasound simulation method [19]. In particular, we
traverse the columns (scanlines) of Z from top to bottom (y-
direction). During this, we record a reflected signal intensity
at the bone surface and energy loss thereafter and accumu-
late the attenuation coefficients in Z. At each step of the ray
marching process, the current pixel A(x, y) is computed as
A(x, y) = A(x, y − 1) exp(−Z(x, y)).

The resulting signal intensity map is finally filtered with
a Gaussian function to emulate the blurring due to convolu-
tion with the ultrasound point spread function (PSF). Since
the input images are from a convex probe, the map is scan-
converted from a radial domain into a Cartesian frame, using
the scan conversion parameters estimated geometrically from
the original image. This yields the typical ultrasound shadow
appearance in convex probe images, where the shadows
become softer and wider in the far field of the images. This
provides simulated image data with ground truth for evalu-
ating tracking under shadowing. Example images of a signal
intensity map, an original image, and the resulting shadowed
image are shown in Fig. 5.

After generating a 2D US image sequence containing
shadow, we applied the baseline and our method to the new
sequence. For that, we used the same optimal parameters
as for the CLUST-2015 test set, obtained by leave-one-out
cross-validation. The mean errors for TMG and RMTwS
were 2.79 and 2.61mm, with 95%ile errors of 12.11 and
10.29mm. This indicates a 6.5% (15%) improvement in
mean (95%ile) error. Examples of tracking performancewith
and without shadowing for inhale and exhale phases of the
breathing cycle are shown in Fig. 6.

Discussion and conclusions

We have demonstrated an ultrasound tracking method using
supporters, RMTwS, where image locations other than the
target are also tracked in order to exploit motion consis-
tency with such surrounding tissue for improving tracking
robustness. We employed an optic flow- and vessel model-
based tracker, TMG, as our baseline as well as for tracking
the target and supporter locations to then learn and apply
the supporter model using these initial estimations. In this
work, we are particularly interested in reducing 95%ile
errors to ensure effective tracking performance throughout all
frames in order tominimize 95%ile therapymargins formore
focal therapies and reduced collateral damage to healthy
tissue.

Our evaluations using the training and test sets show
that the proposed method, RMTwS, can track targets more
accurately than the conventional object tracker, TMG. The
resulting performance is 1.04mmmean and 2.26mm 95%ile
errors. This 95%ile tracking performance is relevant in liver
motion tracking for radiation and focused therapy appli-
cations, when compared to 1.23mm mean inter-observer
95%tile variability reported for a similar dataset in [17].

The accuracy improvements seem to be small for mean
and 95%ile error when taking all trajectories into account.
This is because themain object tracker alreadyperformsquite
well in most cases and fails only in certain situations such
as under shadowing. All the same, to enable a satisfactory
therapy for every patient, a tracking method should be robust
for all scenarios.

Optimal thresholds for updating the supporter model,
θupdate, and the reliability of the tracking performance, θCC ,
were found to be very close. A supplementary experi-
ment showed that the tracking performance difference using
θupdate = θCC is insignificant. Thus, one can use the same
parameter for θCC and θupdate.

Our proposedmethod applies the learned supporter model
in 12% of the frames, which indicates that the reliability of
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Ground truth
TMG
RMTwS

(a)

Ground truth
TMG
RMTwS

(b)

Ground truth
TMG
RMTwS

(c)

Ground truth
TMG
RMTwS

(d)

Fig. 6 Example of tracking performance a, c without and b, d with shadowing for a, b inhale and c, d exhale breathing phase, showing improved
robustness of the proposed method, RMTwS, in (d)

the tracking performance by TMG is not always high. The
main advantage of using supporters for tracking is the robust-
ness in scene or target appearance changes over time, such as
due to acoustic shadowing. Since there exist no annotations
for such cases in the given dataset and this scenario cannot
be evaluated using the current setting, we devised a simula-
tion framework to imitate acoustic shadowing artifacts on the
images in a 2D sequence. This simulated experiment showed
that without additional optimization for such a scenario, the
proposed method improves the 95%ile tracking performance
of the baseline by 15%.

On each sequence two to three supporters were used,
which is not a large number since there are only a few eas-
ily identifiable landmarks in these images. We aim to study
automatic landmark detection in the future to automatically
identify a (potentially larger) number of supporters, also
yielding a interaction-free framework. Additionally, with
more supporters available, we plan to conduct a sensitivity
analysis regarding their number and locations.

There are several locations in the liver such that themotion
of some can be used to imply the motion of the others. How-

ever, thismethod requires that the target and supportermotion
are coherent, and there exists amodel to infer the former from
the latter. The coherence is already checked for the supporter
model building process. But there could be more complex
models such as finite element (FE) models. If we were to
use a continuummechanics-based approach with our current
position priors, extrapolating points outside the FE supporter
mesh might not have been robust.

This study is the first demonstrating the benefits of
employing supporters for US tracking. Given the target and
supporter position estimations from the main object tracker,
learning and applying the supporter model take less than
20ms, where correlation coefficient calculation takes most
of it. The resulting tracking technique has a near real-time
tracking performance with 22.5 frames per second (fps) on
average. As such, it is the state of the art in the CLUST2015
challenge for real-time tracking of liver motion in 2D ultra-
sound sequences, as the winner of this challenge could only
achieve on average 4.8 fps (469% slower) with its mean
(95%ile) error being 12.5% (2.6%) better. Hence, we based
our method on this real-time liver tracker.

123



Int J CARS (2017) 12:941–950 949

In a practical application of our method for radiation ther-
apy, a 2D convex transducer can be used to image the liver
reaching below the ribs. On an initial (reference) frame, an
operator would thenmark the target (e.g., tumor center) loca-
tion, as well as few other easy to track locations (supporters).
Tracking would then run during the treatment, while the tar-
get location estimates can be used to gate or compensate for
patient motion.
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Appendix: Baseline method: tracking byMakhinya
and Goksel (TMG)

Our previously developed tracker [6], which is runner up of
the Challenge in Liver Ultrasound Tracking (CLUST)-2015
challenge and is based on optic flowand elliptic vesselmodel,
is employed as object tracker for tracking the supporters and
target. The method is summarized below for completeness.
Note that this method can track several landmarks together
real time and works faster than US acquisition.

Overview The method decides in the initial frame, if the tar-
get is vessel-like or not by matching with ellipsoid vessel
templates and integrates then several tracking strategies. It
involves reference tracking (RT) when the local appearance
on the initial, I0, and the current frame, I f , are similar.Mean-
while, it uses model-based iterative tracking (IT) when RT
fails and local appearance of consecutive frames, I f −1 and
I f , are similar. A robust motion tracking is applied in either
case. For vessel-like structures, this is improved further by
model-based tracking.

Motion tracking Lucas–Kanade-based tracking [20] was
applied on a set of regularly spaced grid points around each
target. RT is then used for exploiting the repetitive breath-
ing motion characteristic, while IT is used for tracking the
motion during the rest of the cycle, i.e., when RT fails. Each
tracking strategy yields several motion vectors, which are
then filtered for outliers. Finally, from the remaining motion
vectors, an affine transform is computed to provide a robust
motion estimate for the target.

Model-based tracking For vessel-like structures, model-
based tracking is done using an axis-aligned ellipse repre-
sentation of vessels. For each frame I f , first the center is
transformed by the affine transform determined by motion
tracking; see above, and then the center and radii are re-

estimated as in [21] using the Star Edge detection, dynamic
programming, model fitting, and binary template matching.
The center of the resulting ellipse is then used as the estimated
target position at frame I f .
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