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Abstract
Purpose Computer-aided detection (CAD) systems are
developed to help radiologists detect colonic polyps over CT
scans. It is possible to reduce the detection time and increase
the detection accuracy rates by using CAD systems. In this
paper, we aimed to develop a fully integrated CAD system
for automated detection of polyps that yields a high polyp
detection rate with a reasonable number of false positives.
Methods The proposed CAD system is a multistage imple-
mentation whose main components are: automatic colon
segmentation, candidate detection, feature extraction and
classification. The first element of the algorithm includes a
discrete segmentation for both air andfluid regions.Colon-air
regions were determined based on adaptive thresholding, and
the volume/length measure was used to detect air regions. To
extract the colon-fluid regions, a rule-based connectivity test
was used to detect the regions belong to the colon. Potential
polyp candidates were detected based on the 3D Laplacian of
Gaussian filter. The geometrical features were used to reduce
false-positive detections. A 2D projection image was gener-
ated to extract discriminative features as the inputs of an
artificial neural network classifier.
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Results Our CAD system performs at 100% sensitivity for
polyps larger than 9 mm, 95.83% sensitivity for polyps 6–10
mm and 85.71% sensitivity for polyps smaller than 6 mm
with 5.3 false positives per dataset. Also, clinically relevant
polyps (≥6 mm) were identified with 96.67% sensitivity at
1.12 FP/dataset.
Conclusions To the best of our knowledge, the novel polyp
candidate detection system which determines polyp candi-
dates with LoG filters is one of the main contributions. We
also propose a new 2D projection image calculation scheme
to determine the distinctive features. We believe that our
CAD system is highly effective for assisting radiologist inter-
preting CT.

Keywords Polyp detection · Computer-aided detection ·
Colon segmentation · Computed tomography images

Introduction

Colorectal cancer (CRC) is one of themost common forms of
cancerworldwide and the third leading cause of cancer deaths
in the United States (US) [1]. Colonic polyps are known to
be a precursor to CRC, and in western countries it has been
shown that over 95.0% of CRCs arise from colonic polyps
[2]. Early detection and treatment provide a higher cure rate,
and the timely removal of a precancerous polyp can prevent
up to 90.0% of deaths [3].

To reduce the inspection time and detect the overlooked
lesions in computed tomography (CT) images, computer-
aided detection (CAD) methods have been reported by
several research groups. In most cases, fully automatic
polyp detection is described in terms of three consecutive
steps: Colon lumen segmentation, polyp candidate detection
and false-positive elimination and classification. Previous
algorithms for segmenting the colonic lumen generally
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focused on the level-set methods [4–6], region-growing-
based techniques [7–9], gray-level thresholding [10–12],
knowledge-guided techniques [13,14] and fuzzy clustering
[15]. Since polyp candidate detection is a complex task,
different detection methods and features such as curvature
shape assumptions [16,17], shape index and curvedness
[18,19], thickness of the colonic wall [19,20], surface topol-
ogy [21,22], spherical fitting [23,24] and surface normal
vector via Hough transform [8,10,12,23] were proposed.
Also, the curvature information (orientation and global shape
index) in geodesic-ring neighborhoods that incorporate the
shape of a local neighborhood was determined as a polyp
candidate detection method [25]. For the reduction in FPs,
various methods have been employed to extract the two-
or three-dimensional features considering geometrical dif-
ferences, [21,22,26] and statistical texture information [8,9,
14]. Besides, several mutual information methods for feature
selection were proposed in order to increase specificity while
preserving the sensitivity [27]. Classifiers such as support
vector machines [26,28], neural network (NN) classifiers
[8,13,29,30], nearest-neighbor classifiers [8] and linear and
quadratic discriminant classifiers [31,32] were applied to
obtain the polyp regions.

Polyps larger than 9 mm are very likely to be cancers and
can be identified by radiologists easily. For a CAD system, it
is important to be able to detect polyps in the range of 6–10
mm since theymay develop into cancers. Themain problems
for the detection of the small polyps are the low accuracy of
the segmentation process and the high number of false posi-
tives. The aim of this paper is to present a full implementation
of a CAD system specially focused on the detection of the
smaller polyps. “Materials and methods” section describes
the structure of the developed CAD system and discusses the
automatic segmentation process. Also, the polyp candidate
extraction techniques and false-positive reduction and clas-
sification are described in “Materials and methods” section.
“Experiments and results” section presents the experimental
results. “Discussion” section discusses the performance of
our CAD system. Finally, “Conclusion” section concludes
this paper.

Materials and methods

Overview of the developed CAD system

The overview of our proposed CAD system is illustrated in
Fig. 1. The algorithm involves colon segmentation, polyp
candidate extraction, feature selection and classification.
Depending on the usage of oral-contrast agent, segmentation
converts from two-class problem (air–tissue) to three-class
problem (air–fluid–tissue). Therefore, the first main element
of the algorithm includes an adaptive threshold calculation

and discrete segmentation for both air and possible fluid
regions. Since the polyps are convex and have elliptical peak
curvature, our system is secondly focused on extracting the
3D elliptical structures as potential polyp candidates based
on the Laplacian of Gaussian filter. The final component of
the CAD system is the classification of polyp candidates.
First, 2D projection image for each candidate was generated,
and the shape-based discriminative features were extracted
from projection images. Finally, these features were used as
the inputs of an artificial neural network classifier.

Automatic colon segmentation

Threshold calculation

Despite the well-defined intensity range between air and tis-
sue, CT attenuation of the oral contrastmay vary between 100
and 400 HU [33]. Due to the usage of oral-contrast agents, it
is clear that there is no universal set of fixed threshold values
to be used in colonic segmentations. For this purpose, we
firstly designed a two-level thresholding technique, which is
an extended version of Otsu’s method. The essence of this
procedure is that there are two optimal thresholds {T1, T2},
which divide the dataset into three classes (air–tissue–fluid).
In order to determine the optimal thresholds, we maximized
the inter-class variances by using the discriminant analysis.

Colon-air region segmentation

The first stage of the colon-air region segmentation was the
removal of the air around the body. To eliminate this outer
region, the top left voxel of the first slice was selected as a
seed and a standard region-growing algorithm was applied
to the CT data. Next, the segmentation algorithm labeled
the remaining air regions using a three-dimensional flood-
fill algorithm. One of the significant characteristics of the
CT data the lungs always has the biggest air areas in the first
slice. After the detection of the lungs by area calculation,
labels of these areas were defined as background.

After the complete removal of the outer regions and lung,
the only remaining air-filled regions are the small intestines
and the colon. In order to determine the colonic structures,
the volume and the number of air regions in each label, which
express the length of the label, were calculated as the vol-
ume/length (V /L) ratio. The normalized V /L ratios for eight
cases are given in Fig. 2. It was observed that fully distended
colon (CT2, CT4, CT5 and CT7) has one major segment
at the V /L ratio of 1. Also collapsed colon structures (CT1,
CT3, CT6 and CT8) have multiple segments, and V /L ratio
of one of its segments is 1, while for others ratios are close
to 1. Furthermore, V /L ratios for segments of small bowel
have low values, and there is a high degree of tolerance
between colon and non-colon segments approximately in a
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Fig. 1 Overview of the developed CAD system

range of 0.4 and 0.7 as shown in Fig. 2. For total colon-
air region segmentation, we have experimentally determined
that air regions should have at least a 0.5 normalized V /L
ratio.

Contrast-opacified region segmentation

Following the reconstruction of the colon-air region, the only
missing part of the colon, depending on the usage of contrast
agents, was the fluid pockets. In order to determine these
regions, value of the T2 was selected as a lower threshold for
fluid voxels and 6-connected flood-fill algorithm was con-
structed to label fluid regions. The fluid regions were not
the only related regions for this lower threshold. But also
the voxel intensities of bone structure were above T2. The
bone structure was always present between the first and the
last slice of the CT and has a biggest bounding box. The
algorithm eliminated the corresponding label that met this
condition.

Between the air and fluid regions, due to the thresholds T1
and T2 there was always a thin air–fluid boundary which sep-

arates both regions. This boundary, caused by gravitational
force, may occur only when air-filled regions are located
above the fluid-filled regions. Therefore, the upper adjacent
voxels of the fluid pockets must have a connection with
the lower adjacent voxels of the colon-air-filled regions. In
this stage, the segmentation algorithm determined the upper
boundary voxels of each fluid label and checked the connec-
tivity between air and fluid regions. At least one connection
between air–fluid regions denotes the fluid region as a part
of the colon.

In this stage, the morphological dilation operation was
performed to combine the air and fluid regions of the colon
lumen. Thus, possible missing fragments that may be present
outside of the segmented colon could be defined as a part of
the colon surface in fuzzy clusters.

Fuzzy C-means clustering

In fuzzy C-means (FCM), each voxel of the dilated colon
lumen belongs to one of the three clusters (air–tissue–fluid),
specified by the membership grade of each voxel. For each
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Fig. 2 Normalized V /L ratios for eight different CT cases

voxel value, the membership grades and the cluster centers
were updated iteratively until minimizing the objective func-
tion.

After the clustering process, the ratio of the volumes of
the fluid and the tissue clusters, VF/VT, was assumed as
an important feature for designating the presence of con-
trast agents. We experimentally determined that the CT data,
which include contrast agents, have a VF/VT value of >1.
The colon with a lower ratio according to VF/VT is formed
only from the air region.When the presence of thefluid region
was determined, vertical neighborhoods of each tissue voxels
were considered. For any given tissue voxel, if upper vertical
neighbors were labeled as an air and lower vertical neigh-
bors were labeled as a fluid, the related voxel was kept as a
part of the colon lumen as well as the air and fluid labels.
Figure 3 illustrates the performance of our automated colon
segmentation algorithm for four colons.

Polyp candidate detection

Determination of ROI

Amajority of the polyp candidate detection method is based
on the scale-space representations of the segmented colon
mask. It is a formal approach for handling structures in an
image at different scales. Themain purpose of using the scale
space is to detect suspicious structures at any size. Scale-
space representations of the colon mask were obtained by
applying a Gaussian kernel with a scale parameter sigma

depending on the kernel size. The Laplacian operator as a
polyp candidate detector was defined as the trace (the sum
of its diagonal terms) of the Hessian matrix of each voxel.
By multiplying this trace with a scale parameter, Laplacian
operator was used to detect scale-space maxima.

At a certain scale σ , scale-space representation L
(
x, y,

z|σ
)
was a convolution of the segmented colon C (x, y, z)

with the Gaussian kernel defined as

L (x, y, z|σ ) = G (x, y, z, σ ) ∗ C (x, y, z) (1)

G (x, y, z, σ ) =
(

1

2πσ 2

)3/2

e

(
− x2+y2+z2

2σ2

)

(2)

where σ determines the width of the kernel as a full width at
half maximum. Also, the Laplacian of the scale-space repre-
sentation was computed as

∇2L = ∂2L

dx2
+ ∂2L

dy2
+ ∂2L

dz2
= Lxx + Lyy + Lzz (3)

where Lxx , Lyy and Lzz are the diagonal terms of theHessian
matrix.

Laplacian operator gives strong positive responses to the
elliptical structures. However, the Laplacian response is
dependent on the relation between the Gaussian kernel and
the size of the suspicious structures. In order to detect polyps
of various sizes, four different Gaussian convolution kernels
(5× 5× 5, 7× 7× 7, 9× 9× 9, 11× 11× 11) were applied
to the segmented colon. For each kernel, the standard devi-
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Fig. 3 Automated
segmentation of four colons a
and b are the segmentation
results of the well-distended
colons. c and d are the
segmentation results of the
collapsed colons

ation (scale parameter) was determined as full width at half

maximum as given, σ = sizeof thekernel/
(
4
√
2 log (2)

)
.

For four different kernels, the responses of each scale space
might be comparable across the scales. Thus, the multi-scale
polyp detector was constructed as ∇2

normLk = σk∇2Lk with
the normalizing factor σk , where k is the indices of the four
different scale spaces.

Since the polyps and folds may have irregular shapes,
the response of the scale-normalized space contains mul-
tiple detections with different interest points. To eliminate
the weak interest points, a 3 × 3 non-maxima suppression
operator with eight neighbors was applied to the normalized
polyp detector responses. The final interest points that have
equal or more than four connections through the scanning
direction denoted as center of the polyp candidates. Figure 4
depicts the polyp candidate regions for several slices. Red
circles define the colon boundaries, and the green circles are
the polyp candidate regions.

False-positive reduction

Once we found the polyp candidate regions, we fit line and
circle to each slice of polyp candidates and sphere to the sur-

face of volumetric polyp candidates as detailed in Göktürk et
al. [26]. To calculate the best fit results, least-square solution
of three shapes was obtained from candidate surface voxels.
For a random slice of any candidate, the polyps and the folds
have an ellipsoidal nature and satisfy the circle fit solution
considering the line fit with minimum error (Fig. 5). Also, if
the candidate is formed from the residual materials or part of
the colon wall, line fit solution has a better error rate.

Generally, in 3D volumetric candidate surfaces, folds
appear as elongated and ridge-like structures, while polyps
are bulbous or hemispherical (Fig. 6). In order to distinguish
the polyps from colonic walls and especially from folds, the
spherical nature of each candidate was measured by fitting a
sphere. The surface fit errors and the ratio of the voxels that
intersect within the sphere were calculated to identify the
differences between polyps and FPs. Here, the intersection
ratio was calculated as

Intersection ratio = VC ∩ VS
VC − (VC ∩ VS)

(4)

where VC is the candidate tissue volume and VS denotes the
best-fitting sphere volume.

123



632 Int J CARS (2017) 12:627–644

Fig. 4 Polyp candidate regions
in various slices. Red circles
define the colon boundaries, and
the green circles are the polyp
candidate regions

Fig. 5 Demonstration of the fitting process: a the polyp candidate, b the surface of the region, c line fit and d the circle fit results
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Fig. 6 Surface characteristics of the polyps and the folds

Feature extraction and classification

Generating 2D projections for candidate polyps

In the literature, previous attempts to generate a 2D projec-
tion image of polyp candidates were focused on gathering
the endoluminal projection of the suspicious regions through
the inside of the colon and tried to mimic the radiologists
3D fly-through polyp detection process. Despite the fact
that these approaches are visually realistic, such methods
have several limitations. In order to obtain the 2D projection
image of polyp candidates, these approaches try to optimize
several parameters such as viewpoint of the camera [34,
35], the location and the direction of the projection plane
[36–38].

In order to overcome these limitations, we proposed a
novel approach of generating a 2D projection image of polyp
candidates based on affine transform. The flowchart of the
projection calculation is given in Fig. 7.

As illustrated in Fig. 8, the developed method rotates each
candidate around the principle axes x and y with respect to
its own center, independently from the colon surface. Also,
it generates 2D projection images and calculates the eval-
uation criterion for each rotation. θ and ϕ are the angles
of rotation that orientate each candidate around x and y
axes, respectively, and for these angles, the proposed method
performs 169 rotations with 15 degree intervals between
−π ≤ θ, ϕ ≤ π . The rotation matrix R is obtained from
multiplication of two rotation matrices as given below.

R = RX (θ) RY (ϕ) (5)

RX (θ) =

⎡

⎢⎢
⎣

1 0 0 0
0 cos (θ) −sin (θ) 0
0 sin (θ) cos (θ) 0
0 0 0 1

⎤

⎥⎥
⎦ (6)

RY (ϕ) =

⎡

⎢⎢
⎣

cos (ϕ) 0 sin (ϕ) 0
0 1 0 0
−sin (ϕ) 0 cos (θ) 0
0 0 0 1

⎤

⎥⎥
⎦ (7)

Due to the numerous rotations, the calculation of 2D
projection images and the determination of the optimal
projection image must be simple, effective and time effi-
cient. Therefore, for each rotation we obtained 2D projection
images on x − z plane by summing the samples along
the direction of y-axis. The criterion for optimal projection
image was determined as choosing the widest area among
the projection images.

Various projection images of a sample synthetic polyp are
shown in Fig. 9. In Fig. 9a and b, the projection areas take
up small spaces for unsuitable angles of rotation. Figure 9c
shows the widest area, and therefore, it is decided as an opti-
mal 2D projection image.

Feature extraction

The projection of each 3D candidate surface was obtained
to retrieve 2D features. When the optimal projection of the
polyp candidate was obtained, it was seen that the signifi-
cant information of 3D candidates such as geometrical shape,
height, spread and slope was still preserved in the 2D pro-
jection plane. If the structure is a polyp, a round-shaped
concentric pattern appears in the projection image where the
brighter pixels are near the center (Fig. 10a). If the struc-
ture is fold, an elongated shape pattern is seen in the optimal
projection image. Also, since the folds appear as ridge-like
structures in the 3D volumetric surface, the elongated shape
pattern has continuity between the borders of the projection
image (Fig. 10b). In the colon surface structure, random pat-
tern occurs but the slopes are small in all directions (Fig. 10c).

Instead of extracting features from the 3Dvolume of polyp
candidates, we extracted features from the 2D projection
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Fig. 7 Flowchart of the optimal
projection image calculation
scheme

images to reduce the computational complexity. Besides,
the 2D projection information of candidates also enabled the
extraction of distinctive features of the polyp pattern, which
cannot be easily computed from the 3D data directly.

In order to extract distinctive features from the optimal
projection, hysteresis thresholding was applied to obtain the
region of interest (ROI). For this purpose, the pixel values
higher than 0.9 were selected as seed regions, and values
between 0.9 and 0.7 were selected as growable regions.

After the binarization procedure, we extracted opti-
mal features, namely eccentricity, circularity ratio, solidity,
equivalent radius ratio, distance ratio and the surface pixel
continuity test.

The first feature, eccentricity (E), is the ratio of the dis-
tance between the foci and themajor axis length of the ellipse
that has the same second moments as the ROI. We illustrated
this relationship in Fig. 11a. In order to determine eccentric-
ity, we firstly constructed the co-variance matrix of the ROI
and then did eigen-value decomposition. Here eigen values
were defined as themajor andminor axis length of the ellipse,
and the eigen vectors were defined as the directions of the
minor/major axis. Then, we calculated the eccentricity as
given below

(Df)
2 = (

Lmajor
)2 − (Lminor)

2 (8)
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Fig. 8 Rotation process of the
polyp candidate structure

Fig. 9 Various projection images of a sample synthetic polyp: a and b unsuitable projections, c correct projection angles

E = Df

Lmajor
=

√

1 −
(
Lminor

Lmajor

)2

(9)

where Df is the distance between the foci, Lmajor is the
length of the major axis and Lminor is the length of minor
axis. Eccentricity was extracted to distinguish polyp and fold
structures with respect to their 2-D geometrical behaviors in
their projection images. For this feature, the ROI with eccen-
tricity ratio close to 1 is referred as fold (a line segment) and
the ROI with eccentricity ratio close to 0 is referred as polyp.

Circularity ratio (RC) is the proportion of the area of the
ROI to distance around the boundary of the ROI [39].

RC = 4π A

P2 = 4π
(
πr2A

)

(2πrP)2
(10)

where A is the area and P is the perimeter of ROI, respec-
tively. rA is the radius of a circle with a same area as ROI
and rP is the radius of a circle with a same perimeter as ROI.
For a region whose shape is similar to a circle, the ratio gets
close to 1.

Since the shape of a polyp in optimal projection imagewas
convex (Fig. 10a), we extracted the solidity feature to iden-
tify suspicious convex regions. In this regard, we calculated
convex hull of each region and determined the proportion
between the area of the ROI and the area of the convex hull
as illustrated in Fig. 11b.

The feature called the equivalent radius ratio (ER) is the
ratio between the radius of circle with the same area as the
region and the radius of a circle with the same perimeter as
the region.
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Fig. 10 Optimal 2D projection of different colon structures

ER =
√
4A/π

P
=

√
4r2A

2πrP
(11)

For a circular region, due to the similar values of rA and
rP, ER gets close to 1/π . In Fig. 11c, the circle that has a
same perimeter as the region is illustrated with blue color
and the circle that has a same area as the region is illustrated
with red color.

In the case of a polyp, a round-shaped concentric pat-
tern appeared at the center of the optimal 2-D projection
plane. Therefore, the center coordinates of the projection
plane (xc, yc) and the ROI (xw, yw) should be quite close
to each other. This relation is illustrated in Fig. 11d. In this
regard, we defined the distance ratio (RD), as the Euclidean
distance between the centroid of the projection plane and the
weighted centroid of the ROI is given as

RD =
√

(xc − xw)2 + (yc − yw)2

√
d2x + d2y

(12)

here dx and dy are the dimensions of the projection plane.
In an optimal projection image of a polyp, ROI area

appeared near the center andwas not connected to the borders

of the plane. Therefore, the boundary pixels of the region
were in the form of a closed loop. In this respect, we ran-
domly selected a boundary pixel of a ROI as a seed point
and moved it along the boundary in both directions until the
whole border was completed. If that pixel had a connection
to a border of the plane, the process was stopped in that direc-
tion. Finally, we calculated the Euclidean distance between
the final pixels and defined this feature as the surface pixel
continuity test (SPCT). For SPCT, two different scenarios are
illustrated in Fig. 11e and f, respectively. In Fig.11e, bound-
ary of the region has a connection to border of the plane. So
the process is stopped in both directions. In Fig. 11f, bound-
ary of the region is in the form of a closed loop and Euclidean
distance is 0.

Classification

Even though the feature vectors were quite effective for dis-
tinguishing polyps from FPs, the discrimination offered by
our feature space was not linearly separable. Therefore, we
used a committee of multi-layer perceptron (MLP) neural
network and support vector machine (SVM) as classifiers
to develop a suitable classification scheme. MLP is feedfor-
ward artificial neural network technique, which maps sets of
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Fig. 11 Graphical descriptions
of the features

a feature onto a set of different classes and has the capacity
to distinguish feature data which are not linearly separable.
MLP employs a supervised learning method, backpropaga-
tion, for training. The output of the j th hidden neuron in
MLP is calculated as

Oj = f

(
N∑

i=1

[
wi j

]
[xi ] + b

)

(13)

wherewi j is the weight of connection, xi is the input pattern,
b is the bias weight and f is the activation function.

The reason for utilizing a committee of classifiers was
that it often achieves better performance than a single clas-
sifier due to the diverse configuration of the members of the
committee. The committee was constructed of five mem-
bers, and the configuration of each classifier was determined

experimentally. MLP members had three hidden layers with
different configurations (number of neurons differs for the
first hidden layer between 12 and 14, for the second hid-
den layer 7 and 9 and for the third hidden layers 4 and
6), and Levenberg–Marquardt-based backpropagation algo-
rithmwas used for training [41]. Hyperbolic tangent-sigmoid
function was selected as the activation function.

tanh (x) = 1 − e−2x

1 + e−2x (14)

We used amajority vote rule to reach the committee decision.
In this assumption, the class that receives the largest number
of votes is selected as the consensus decision.

SVM is also supervised learning method, which maps lin-
early non-separable sets of feature in a higher-dimensional
space and designates optimal discriminating hyperplane to
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classify two different classes. So, linearly non-separable fea-
tures become linearly separable in higher dimensions. Given
a set of Mdata points (xi , yi ) , i = 1, . . . , M where xi ∈ Rn

(feature vector), n is the number of attributes of xi and
yi ∈ {−1, 1} (class label), the optimal form of the SVM
classifier is

f (x) =
M∑

i=1

αi yi K (xi , x) + b (15)

where αi is the Lagrange multipliers and b is the constant,
which are optimized as the solution of quadratic program-
ming, f (x) is the decision of the core function and K (xi , x)
is the kernel, which maps linearly non-separable features in a
higher dimension.We constructed SVMclassifierwithGaus-
sian radial basis function kernel with scaling factor, sigma,
of 1

K
(
xi , x j

) = exp
(
−‖xi − x j‖2/2σ 2

)
(16)

When the size of the training dataset is small, cross-
validation is a popular approach to reduce bias and avoid
over-fitting [14].Due to the small sample size of our database,
we evaluated our classification performance with threefold
cross-validation method. We randomly divided the polyp
candidates (37 polyps and 1506 non-polyps) into three uni-
formly distributed sets without any repetitions. In each of
the three experiments, one set was used for validation (12 or
13 polyps and 502 non-polyps) and the remaining sets were
used for the training (25 or 24 polyps and 1004 non-polyps).

Every polyp candidate occurred in the validation set exactly
once and occurred in the training set two times.

Experiments and results

Data specification

For some cases, patient preparation procedure includes the
administration of contrast agent for fecal tagging. Colonic
insufflation was obtained with an automated CO2 insufflator.
Room air with manual insufflation was utilized if adequate
colon distention could not be obtained using the mechan-
ical insufflator. Before examination, unless contraindicated
or rejected by the study participant, one milligram of sub-
cutaneous glucagon was administered for 7–15 min. All
examinations were performed using at least a 16-slice CT
scanner. Images were acquired using 0.5–1.0 mm collima-
tion, pitch of 0.98–1.5, matrix 512 × 512, field-of-view to
fit, tube currents of 100–275 mAwith 140 kVp, and standard
reconstruction algorithm. Images were reconstructed to slice
thicknesses of 0.5–1 mm. Our CAD system was applied to
supine position scans with respect to slice thicknesses of 0.5,
0.625 and 1 mm.

The locations of the polyps were confirmed by two experi-
enced radiologists who were blinded to interpretation of the
CTC and colonoscopy results. Radiologists independently
determined the size and the location of the polyp structures
on CT supine scans based on the colonoscopy reports. If
interpretations of the radiologists (polyp size range or loca-

Fig. 12 FROC curve of the CAD system
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tion of the polyp) did not to match, they viewed the CT data
together and confirmed the size and the location of the polyp
structures with a high degree of agreement. In cases where
a tissue was reported as a polyp on colonoscopy results but
not identified on CT data, it was excluded from the study.
Only two significant polyps (measured as a small polyps on
colonoscopy results, <6 mm) were unable to be determined
in the CT scans. These manually confirmed polyp locations
and sizes were used as a gold standard. In this study, 37
polyps of various sizes (7 polyps<6 mm, 24 polyps between
6 and 10 mm and 6 polyps ≥10 mm) were obtained from 30
patients supine scans.

Overall performance of the CAD system

The FROC curves as given in Fig. 12 show the overall per-
formance of our CAD system in all polyp size range. In Fig.
12, the black line depicts the performance of the MLP, and
the dotted blue line represents the performance of the SVM.
The operating points 1 given on the plot indicate 94.59%
sensitivity with 5.3FP/dataset for MLP and 7.9FP/dataset for
SVM(Table 1). For the operating points 2, the sensitivities for
MLP and SVM classifier were 91.89%with FP per dataset of
1.3 and 4.16, respectively (Table 2). The sensitivities for the
detection of the polyps between 6 and 10 mm were 95.83%
for both MLP and SVM (operating points 1) and 91.67%
for MLP and 95.83% for SVM (operating points 2). The
operating points were selected in a manner that detected low
false-positive rates with high sensitivities.

In order to determine the performance of our CAD system
for polyps in different size ranges, the patient dataset was

Table 1 Performance of the CAD system for operating points 1

Type No. MLP SVM

TP Sens. TP Sens.

≥10mm 6 6 100% 6 100%

6–10 mm 24 23 95.83% 23 95.83%

<6mm 7 6 85.71% 6 85.71%

Total 37 35 94.59% 35 94.59%

FP 5.3 7.9

Table 2 Performance of the CAD system for operating points 2

Type No. MLP SVM

TP Sens. TP Sens.

≥10mm 6 6 100% 6 100%

6–10 mm 24 22 91.67% 23 95.83%

<6mm 7 6 85.71% 5 71.43%

Total 37 34 91.89% 34 91.89%

FP 1.3 4.16

separated into three classes according to polyp sizes (≥10,
6–10 and <6 mm). In Fig. 13, the black line shows the MLP
performance for polyps ≥10 mm, the red line indicates the
MLP performance for polyps between 6 and 10 mm and
the blue line denotes the MLP performance for polyps <6
mm. The dotted lines also show the performance of the SVM
classifier, respectively. From the operating points that were
given on theFROCcurves, the sensitivities and theFP/dataset
are given in Table 3. The sensitivity of 87.5% for polyps
between 6 and 10 mm was achieved at FP rates of 5.57 for
MLP and 7.81 for SVM. For polyps ≥10 mm, sensitivity of
100%was obtained for theMLP and SVM at 1.83 FP/dataset
and at 5 FP/dataset, respectively.

The FROC curves of the CAD system for polyps ≥6 mm
are given in Fig. 14. For these 27 patient datasets featuring 30
polyps, the operating points indicated that the CAD system
yielded 96.67% sensitivity at 1.12 FP/dataset for MLP and
96.67% sensitivity at 5.48 FP/dataset for SVM.

Discussion

Althoughmost of the polyps come in various shapes, they still
have some spherical local surface fragments and may appear
roughly as hemi-spherical, blob-like structures. Therefore,
our polyp candidate detection method extracts polyp can-
didates based on LoG filters. While previous approaches
in polyp candidate recognition were focused on the shape
index and curvedness [18,19] or surface normal vector via
Hough transform [8,10,23], we proposed a novel approach
that serves a different point of view and extracts all true
polypswith 7927 FPs (264.3 FP/dataset). In addition to shape
fitting techniques as given in Göktürk et al. [26], we intro-
duced a new feature called intersection ratio and calculated
the SSE of each least-square solution. The application of
shape fitting technique reduced FPs by 80.6% and approxi-
mately 50.2 FP per dataset was obtained.

Polyps could arise at different locations of the inner
surface of the colon at any size and any orientation. There-
fore, the proposed algorithm identified the locations of
candidates in scale space, invariant to orientation, size
and location. Also, candidate detection algorithm did not
need any preprocessing stages such as Hough transform
[8,10,23], surface normal overlap [12] or intensity adjust-
ment [15]. This reduced the computational complexity of
the detection method. In the literature, previous attempts
either extracted constant sub-masks [10,13,15,26] or exper-
imentally determined constant thresholds or several control
parameters [8,10,15,29,40] to identify polyp candidates.
Due to the various sizes of the polyps, there is no global
sub-volume or sub-image extraction scheme. The sensitiv-
ity of constant sub-masks approaches is depending on the
size of the sub-masks, and there is always a possibility to
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Fig. 13 FROC curves of CAD system for polyps in different size ranges

Table 3 Performance of the CAD system when applied to polyps for
different size ranges

Type No MLP SVM

TP Sens. FP TP Sens. FP

≥10mm 6 6 100% 1.83 6 100% 5

6–10 mm 24 21 87.50% 5.57 21 87.50% 7.81

<6mm 7 4 57.14% 1.8 4 57.14% 32.2

miss polyp structures. On the other hand, determination
of the control parameters or thresholds for the geometri-
cal features [15,29,40] (shape index, curvedness, etc.) limits
the detection boundaries and enable to miss polyp region.
Our polyp detection system investigated the possible polyp
regions without any sub-mask and eliminated the weak inter-
est points, with non-maxima suppression instead of constant
threshold. The only control parameter was scale parameter
σ .

We proposed a novel technique to determine optimal pro-
jection image of the polyp candidates. The developedmethod
rotates each candidate around the principle axes indepen-
dently from the colon surface and generates 2D projection
images. Li et al. [34,35] proposed the endoluminal projec-
tion method using 2D projection image technique based on
taking graphical snapshots of polyp candidates through an
optimized viewpoint which depend on the camera position
and lightning direction. Also, Yao et al. [36–38] proposed a
ray casting technique for generating 2D projection images,
and they computed the distance from the camera to the sur-
face based on height map approach. To generate a height
map, an orthogonal projection plane was defined and placed

over polyp candidates. However, these methods have several
limitations such as camera position, lightning direction and
location of the orthogonal projection planes. If the plane is
too close or too far to the suspicious detection, it may cut
across the polyp or may fall behind the opposite colon wall.
Our novel projection approach overcomes these limitations
and calculates optimal projection by choosing thewidest area
among the projection images. Shape-based features such as
circularity ratio, solidity and the eccentricity were used in
polyp detection for the first time.

In the training process, we evaluated two different classi-
fiers polyp detection performances. The performance ofMLP
classifier is dependent on the choice of the number and the
size of the hidden layers. Similarly, the performance of SVM
is also dependent on the choice of the kernel function [26].
We constructed committee of MLP with five MLPmembers,
and each member has three hidden layers with different con-
figurations (number of neurons differs for the first hidden
layer between 12 and 14, for the second hidden layer 7 and 9
and for the third hidden layer 4 and 6). We also evaluated the
performance of SVM with different kernel functions (linear,
polynomial, quadratic, exponential and Gaussian radial basis
functions) and determined thatGaussian radial basis function
kernel with scaling factor, sigma, of 1 provided better sen-
sitivity with low FP ratios. Although MLP and SVM had
the capacity to distinguish features, which are not linearly
separable, the output performances of classifiers indicated
that MLP provided better FP ratios than SVM at the same
sensitivity values. Thus, we had determined the overall per-
formance of proposed CAD system by selecting the MLP as
a classifier (Table 4).
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Fig. 14 FROC curve of CAD system for the polyps larger than or equal to 6 mm

Table 4 Performance of the CAD system for the polyps larger than or
equal to 6 mm

Type No MLP SVM

TP Sens. TP Sens.

≥10mm 6 6 100% 6 100%

6–10 mm 24 23 95.83% 23 95.83%

Total (≥6 mm) 30 29 96.67% 29 96.67%

FP 1.12 5.48

The performance comparison of the proposed CAD sys-
tem to the related methods reported in the literature is given
in Table 5. It can be observed that the performance of our
CAD system has significant sensitivity ratios at low number
of FPs. The CAD system proposed by Summers et al. [22]
detected convex surfaces as polyp candidates and extracted
shape-based features such as the principle, mean and Gaus-
sian curvatures. In order to reduce the false positives, they
derived shape-based filters and achieved 71% sensitivity for
large polyps (≥10 mm) with 3.4 FP/dataset. Additionally,
Paik et al. [12] used the number of intersection points of the
normal vectors to identify suspicious convex structures and
achieved 100% sensitivity with 7 FP/dataset for polyps ≥10
mm. Our polyp detection algorithm is able to identify large
polyps with sensitivity of 100% at 1.83 FP/dataset, which are
the best ratios among the studies.

Kiss et al. [23] analyzed the surface normal intersec-
tions and determined the center points of convex surfaces
based onHough transformand3D region-growing algorithm.

Their CAD system achieved 60% sensitivity with 3.17 FP
for polyps ≥6 mm. Yoshida and Nappi [40] utilized shape
index and curvedness to determine candidate surfaces, and
their systems showed 95% sensitivity at 3.4 FP for 12 polyps
between 6 and 30 mm. For similar sized polyps, Suzuki
et al. [13] and Xu et al. [14] achieved 95% sensitivity at
3.6 FP/dataset and 96% sensitivity at 4.1 FP/dataset, respec-
tively. With our method, sensitivity of 96.67% with 1.12 FP
per dataset is obtained for polyps ≥6 mm. While our algo-
rithm has comparable sensitivity ratios with [13,14,40], it
has better sensitivity ratio than the one developed by Kiss
et al. [23]. Besides, our FP/dataset is superior to those four
studies.

When performances of the three different projection cal-
culation methods were inspected, Li et al. [35] obtained
71.11% sensitivity with 5.38 FP/dataset and Yao et al.
[38] obtained 76.9% sensitivity with 3.09 FP per dataset
for medium-sized polyps (6–10 mm). In our method, we
achieved 87.5% sensitivity at 5.57 FP/dataset in this size
range. Although the FP ratio of our system is higher for oper-
ating point as given in Fig. 13, we achieved better sensitivity.
For another operating point in FROC curve of the CAD sys-
tem for medium-sized polyps, we achieve 78.3% sensitivity
at 2.58 FP/dataset, which is superior to the two studies. Addi-
tionally, we obtain better sensitivity with respect to Yao et
al. [38] for large polyps.

In our tests, we used only the supine scans of the CT
images. We believe that an improvement for system perfor-
mance is still possible if the prone scans of the CT images
are added to dataset.
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Conclusion

In this paper, we developed a fully integratedCADsystem for
the automated detection of polyps that yields a high polyp
detection rate with a reasonable number of false positives.
The proposed CAD system detects polyp structures with
94.59% sensitivity at 5.3 FP/dataset. Our CAD system also
identifies clinically relevant polyps (≥6 mm) with 96.67%
sensitivity at 1.12 FP/dataset. A novel polyp candidate detec-
tion system with LoG filters is one of the main contributions
of this paper.We also propose a new 2Dprojection image cal-
culation scheme. We believe that our CAD system is highly
effective for assisting radiologist interpreting CT scans.
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