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Abstract
Purpose As gallbladder diseases including gallstone and
cholecystitis aremainlydiagnosedbyusingultra-sonographic
examinations, we propose a novel method to segment the
gallbladder and gallstones in ultrasound images.
Methods The method is divided into five steps. Firstly, a
modified Otsu algorithm is combined with the anisotropic
diffusion to reduce speckle noise and enhance image con-
trast. The Otsu algorithm separates distinctly the weak edge
regions from the central region of the gallbladder. Secondly, a
global morphology filtering algorithm is adopted for acquir-
ing the fine gallbladder region. Thirdly, a parameter-adaptive
pulse-coupled neural network (PA-PCNN) is employed
to obtain the high-intensity regions including gallstones.
Fourthly, a modified region-growing algorithm is used
to eliminate physicians’ labeled regions and avoid over-
segmentation of gallstones. It also has good self-adaptability
within the growth cycle in light of the specified growing and
terminating conditions. Fifthly, the smoothing contours of
the detected gallbladder and gallstones are obtained by the
locally weighted regression smoothing (LOESS).
Results We test the proposed method on the clinical data
from Gansu Provincial Hospital of China and obtain encour-
aging results. For the gallbladder and gallstones, average
similarity percent of contours (EVA) containing metrics
dice’s similarity , overlap fraction and overlap value is 86.01
and 79.81%, respectively; position error is 1.7675 and
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0.5414mm, respectively; runtime is 4.2211 and 0.6603s,
respectively. Our method then achieves competitive perfor-
mance compared with the state-of-the-art methods.
Conclusions The proposed method is potential to assist
physicians for diagnosing the gallbladder disease rapidly and
effectively.

Keywords Automatic segmentation · Ultrasound image ·
Gallbladder · Gallstone · PA-PCNN · Loess

Introduction

Medical image segmentation, such as ultrasound image [1–
3], computed tomography image [4–6], magnetic resonance
image [7–9], has been playing an increasingly significant
role in image processing. Since ultrasound images have some
significant advantages, such as economy, convenience, good
experimental repeatability, non-electromagnetic radiation,
it has become the most commonly used technique for
clinical diagnosis of gallstones. However, if quantifica-
tion of gallbladder and gallstone size is desired, currently
these structures must be manually delineated, which are
labor-intensive and time-consuming. We therefore develop
an automatic gallbladder and gallstone regions segmen-
tation method, which is endowed with a great impor-
tance.

Although the automatic gallbladder and gallstone regions
segmentation in ultrasound images develops slowly, there
are still several approaches published in literatures. Ciec-
holewski et al. presented a modified snake model to search
boundaries of the gallbladder and gallstones [10,11]. Xie et
al. proposed a segmentation and extraction method of gall-
stones by the level set [12]. Based on the automatic scribbling
proposed by Abhishek et al. [13] and the closed formmatting
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proposed by Levin et al. [14], Agnihotri et al. presented an
approach to distinguish gallstones from other tissues [15].
However, aforementioned methods are semi-automatic, and
their parameters setting depends on subjective experience
and human knowledge.

In this paper, we present an automatic segmentation
method to provide an effective segmentation result to assist
physicians’ diagnosis. Presented automatic segmentation
method has high diagnosis accuracy, less time-consuming,
lower diagnosis cost and is the premise for detecting auto-
matically stone types by feature extraction.

We modify the Otsu algorithm [16] and the anisotropic
diffusion algorithm [17] to reduce much speckle noise and
to enhance image contrast. The modified Otsu algorithm is
automatically able to search the gallbladder segmentation
thresholds between the weak edge regions and the central
region. Segmentation results are processed by a morpho-
logical filter to deicide the gallbladder region. In gallstones
segmentation, we adopt a parameter-adaptive pulse-coupled
neural network (PA-PCNN) and present a modified method
to coarsely and finely segment the gallstone region. In the
post-processing, the locally weighted regression smoothing
(LOESS) is employed to obtain accurate boundaries of the
gallbladder and gallstones. We conduct lots of experiments
to demonstrate that the new method has shorter runtime
and higher accuracy rates than the state-of-the-art methods.
Our segmentation results of the gallbladder and gallstones
in ultrasound images are successful in about 75% of the
cases.

The rest of this paper is organized as follows:“Materials”
section introduces materials used for the experiments. “Seg-
mentation of the gallbladder and gallstones” Section des-
cribes coarse-fine segmentation of the gallbladder and gall-
stones. “Experiments and Analysis” Section performs a
large number of experiments to validate robustness of the
new method, discusses the strengths and the weaknesses of
that, and suggests next work. “Conclusion” Section makes
conclusion.

Materials

The ultrasound images from Gansu Provincial Hospital in
Gansu, China, were acquired with a Siemens Acuson X300
ultrasoundmachine. The dataset from 60 patients includes 60
gray-level ultrasound images of the gallbladder with stones,
their clinical presentations and manual drawing results from
two provincial experts in radiology. For the gallbladder, 60
images are divided into two groups: 45 images from the reg-
ular shapes and 15 images from the irregular shapes. For
gallstones, 60 images are divided into five groups: 42 images
containing a large stone, nine images containing a small
stone, three images where the stone covers a large part of the
bottom of the gallbladder, three images containing a large
stone with the acoustic shadow, and three images contain-
ing stones filling a majority of the gallbladder region. Each
image has 256 gray levels and resolution of 512512 pixels.

Segmentation of the gallbladder and gallstones

The framework of the new method

The whole method comprises six key steps as follows:

1. Search image segmentation thresholds in the
pre-processing step according to amodifiedOtsumethod.

2. Reduce noise and enhance contrast for the pre-processing
based on modified anisotropic diffusion.

3. Obtain fine segmentation result of the gallbladder in light
of a morphology filtering algorithm.

4. Record coarse segmentation result of gallstones by the
results of the gallbladder and PA-PCNN.

5. Deduce fine segmentation of gallstones in terms of a pro-
posed region-growing algorithm.

6. Obtain final segmentation results by a Loess algorithm.

Figure1 shows the general flowchart of our method, and
the details are elaborated in the following sections.

Modified anisotropic
diffusion

Pre-processing

Morphology
Coarse and fine segmentation

PA-PCNN
Coarse segmentation

Modified region
growing

Fine segmentation

Loess
Post-processing

Loess
Post-processing

Ultrasound image

Modified Otsu
Pre-processing

Gallstone

Gallbladder

Fig. 1 The general flowchart of the new method
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Fig. 2 The five candidate values of Rmax and the value of MALmin

Fig. 3 The examples of the ultrasound images from Gansu Provincial Hospital in Gansu, China

Morphological structuring element

Morphological operations are essential in following seg-
mentation steps, so disk-shaped structuring elements are
employed in our works and their radius values are deter-
mined by Rmax, Rmid and Rmin. These radii denote differ-
ent distance values among pixels as described in (2)–(4).
Moreover, Dl, Dr, Du, Dd denote the four minimum dis-
tance values between the boundaries of the gallbladder and
four sides of the whole ultrasound image (see Fig. 2a).
MALmax and MALmin denote minor axis lengths of the
gallbladder and gallstone regions, specifying those of the
ellipse regions that have the same normalized second cen-
tral moments as shown in Fig. 2a, b. Finally, Rmax, Rmid and
Rmin for disk-shaped structuring elements are expressed as
follows:

D = {Dl , Dr , Du, Dd , MALmax} (1)

Rmax = Dmin (2)

Rmid = √
MALmax (3)

Rmin = √
MALmin. (4)

The pre-processing

Due to Rayleigh and scattering diffraction of acoustical
waves, ultrasound images are in poor contrast and with much
speckle noise (Fig. 3) [18]. Therefore, before automatic seg-
mentation, a pre-processing method combining a modified

Otsu algorithm and a modified anisotropic diffusion algo-
rithm is used to reduce speckle noise and the flowchart is
shown in Fig. 4.

Calculating segmentation thresholds

According to intensity distribution ranges in ultrasound
images, the gallbladder region is divided into the central
region, weak edge regions and strong edge regions (Fig. 5).
Since the central region is regard to the region of interesting
(ROI) for the full-size image in physicians’ clinical diagno-
sis, it is necessary to calculate the normalized threshold to
distinguish the central region from above two regions. For
the purpose, in contrast to [19,20], we propose a modified
Otsu algorithm to determine the normalized threshold Sde

Sde = Sbg × (1 − A) + S′ × A (5)

According to (5), the normalized Otsu threshold S′ sep-
arates the whole image into the object and the background,
and its intensity range is 1 ≥ S′ ≥ 0. Sbg denotes normalized
Otsu threshold of the background and its intensity range is
1 ≥ Sbg ≥ 0. A and 1 − A are the weight values of S′ and
Sbg, respectively. A is expressed as

A = Snob (6)

where Sob denotes the normalized Otsu threshold of the
object and its intensity range is 1 ≥ Sob ≥ 0. n denotes loop
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Calculate the 
Otsu threshold SʹThe ultrasound image

Calculate 
the threshold Sob

Calculate 
the threshold Sbg

Loop number 
n=1

Obtain n thresholds by 
the weight matrix

No Yes

Loop number 
n=n+1

A<1-e(-Sbg)?

Calculate the 
threshold Sde by (5)

Record  the 
threshold Sde to 

the weight matrix

Reset the pixel 
intensity S

S>Sde?

No

Yes

Obtain n pre-processing 
ultrasound images 

S=Smin S=Snew(i,j)

Fig. 4 The flowchart of the pre-processing step

Fig. 5 The different regions of the gallbladder

number. Obviously, the larger the value of n, the smaller
the value of A becomes. What is more, the element val-
ues in Sde with uncertain intensity ranges of the gallbladder
region include calculating results of n loops and their inten-
sity ranges are S′ ≥ Sde ≥ Sbg (see Fig. 6).

Subsequently, by a large number of experiments, the ter-
mination condition is obtained and described as

A < 1 − e(−Sbg) (7)

According to (7), the variations of the weight value A in
Fig. 3a–d are shown in Fig. 7a, b, respectively. In the example
of Fig. 3a, when given loop number n = 3, the termina-
tion condition is satisfied and we acquire three thresholds in

 Strong edge   
region

Weak
edge

region region
Central

Sbg

Sde

Sob

S=1 S=0.0039

Weak
edge

region

S'

Fig. 6 The relations of different thresholds in ultrasound images

Sde (Fig. 7a–c), and these thresholds are saved in the weight
matrix. As an analogy, n loops before satisfying the termina-
tion condition can acquire n thresholds.

Smoothing ultrasound images

In the pre-processing step, each threshold of Sde in theweight
matrix can segment the original image and generate one pre-
processing ultrasound image. Based on these thresholds, we
reset the pixel intensities of the original image. If the intensity
of the corresponding pixel is less than the threshold in Sde,
the output intensity is set to the minimum intensity of the
whole image. Otherwise, it is set by a modified algorithm
based on the anisotropic diffusion [17] as follows:

Snew(i, j) = S(i, j) + λ(KESE + KWSW + KSSS + KNSN)

(8)

where S(i, j) and Snew(i, j) in the position (i, j) denote the
pixel intensities of the original image and the pre-processing
image, respectively. SE, SW, SS and SN denote partial deriva-
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Fig. 7 The variations of the weight value Awith loops: (a) and (b)
the graphs showing the variations of the weight value A in Fig. 3a–d,
respectively; (c) the graph showing the gray histogram in Fig. 3a (the
line type specifier ’–’ denotes the curves of the weight value A in (a)
and (b), respectively; The line type specifier ’-’ denotes the values of
1 − e(−Sbg) in (a) and (b), respectively; the marker specifier ” denotes

effective loops before dissatisfying the termination condition (7) in a,
b, respectively; the marker specifier ’◦’ denotes ineffective loops after
satisfying the termination condition (7) in a , b; the red line, the green
line and the blue line in Fig. 7c denote the thresholds of Sde in Fig. 7a
in loop number n = 1, 2, 3, respectively)

tives of S(i, j) in four directions as listed in (9). KE, KW,
KS and KN denote the weighing coefficients of SE, SW, SS
and SN, respectively, as described in (10)

SE = |(S(i, j + 1) − S(i, j))|
SW = |(S(i, j − 1) − S(i, j))|
SS = |(S(i + 1, j) − S(i, j))|
SN = |(S(i − 1, j) − S(i, j))| (9)

KE = e

(
− S2E

f 2

)

KW = e

(
− S2W

f 2

)

KS = e

(
− S2S

f 2

)

KN = e

(
− S2N

f 2

)

(10)

According to (10), KE, KW, KS and KN are obtained auto-
matically by the parameter f . This parameter represents the
average gradient value of the original image. In addition, the
control coefficient λ in (8) is set to 1/ f .

Finally, n thresholds in Sde acquire n pre-processing
images as described in Algorithm 1 [21]. These images have
high contrast and little speckle noise (see Fig. 8). This indi-
cates that our method has a good pre-processing effect.

Algorithm 1: Pre-processing
Input:          An original ultrasound image, loop number n=1, the Otsu threshold S' of the whole image
Step 1.          Calculate  the threshold Sob and the threshold Sbg
Step 2 Now,

if (A 1-e(-Sbg)) then
Sde is computed by (5).
if( Sde>S(i,j)) then

S(i,j) = Smin.
else S(i,j)new is computed by (8)

S(i,j) = S(i,j)new

end
Obtain one pre-processing ultrasound image
Set loop number n as n+1 and repeat Step 2

else Abort pre-processing algorithm
end

Output: n pre-processing ultrasound images

Fig. 8 n pre-processing ultrasound images: (a) Fig. 3a; (b)–(d) Pre-
processing images from Fig. 3a in loop number n = 1, 2, 3, respec-
tively; (e) Fig. 3d; (f)–(i) Pre-processing images from Fig. 3d in loop
number n = 1, 2, 3, 4, respectively
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Fig. 9 The segmentation results of the gallbladder: the first column is
the coarse segmentation results of the gallbladder fromFig. 8b, f, respec-
tively; the second column denotes the fine segmentation results of the

gallbladder from the first column; the third column denotes located
binary images from the second column; the fourth column denotes
located ultrasound images from the third column

Coarse-fine segmentation of the gallbladder

After obtaining n pre-processing ultrasound images, we can
perform coarse-fine segmentation of the gallbladder (see
Fig. 9), and the whole algorithm comprises four steps:

1. Process n pre-processing ultrasound images to acquire n
binary images by n aforementioned normalized thresh-
olds in Sde. If the intensity is less than the threshold in
Sde, the output intensity of the corresponding pixel is set
to 1; otherwise, it is set to 0.

2. Remove boundary connecting regions of all binary
images and select a maximum region as coarse segmen-
tation result of the gallbladder (Fig. 9a, e).

3. Adopt the disk-shaped structuring element with a radius
of Rmax to perform morphological closing operation
(Fig. 9b, f).

4. Locate the gallbladder region by the parameter Rmax,
which is also regarded to the distance value between the
gallbladder contour and four sides of the located image
(Fig. 9c, g).

Coarse-fine segmentation of gallstones

For coarse segmentation of gallstones, we firstly make use
of a parameter-adaptive pulse-coupled neural network (PA-
PCNN) to determine high-intensity regions including gall-
stones in the located ultrasound image.And then,we compute
the intersection between these high-intensity regions and the
fine segmentation region of the gallbladder and choose a
maximum region as coarse segmentation result of gallstones.
In addition, we are suggested to a modified region-growing

algorithm for eliminating manual labeled regions and pre-
venting from over-segmentation. Finally, we obtained fine
segmentation result of gallstones.

Coarse segmentation of gallstones

Pulse-coupled neural network (PCNN) derived from
Echorn’s cortical model [22] is a single-layer neural net-
work and does not need any training, which is appropriate for
image segmentation [23]. In contrast to PCNN, Chen et al..’s
SPCNN model [24] derived from Zhan et al..’s SCM model
[25] has low computational complexity and high segmenta-
tion precision. Therefore, the SPCNN model is employed in
this paper and realized as follows:

Fij[n] = Sij (11)

L ij[n] = VL
∑

kl

WijklYkl[n − 1] (12)

Uij[n] = e−α f Uij[n−1]+Sij(1+βVL
∑

kl

WijklYkl[n−1])

(13)

Yij[n] =
{
1, i f Uij[n] > Eij[n − 1]
0, else

(14)

Eij[n] = e−αe Eij[n − 1] + VEYij[n] (15)

where

Wijkl =
⎡

⎣
0.5 1 0.5
1 0 1
0.5 1 0.5

⎤

⎦ (16)
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Fig. 10 The coarse segmentation results of gallstones: the first column
shows segmentation results using SPCNN in the third iteration from
Fig. 9d, h, respectively; the second column shows segmentation results
using PA-PCNN in the third iteration from Fig. 9d, h, respectively; c the

intersection region between (b) and Fig. 9c; g the intersection region
between (f) and Fig. 9(g); the fourth column is gray images from (c)
and (g), respectively

Neuron Nij in position (i, j) receives two inputs: simpli-
fied feeding input Fij[n], which denotes an input stimulus Sij,
and linking input L ij[n], which denotes the products of eight
neighboring outputs, a synaptic weight Wijkl and the ampli-
tude VL. These two inputs are coupled by linking strength
β to generate an internal activity Uij[n] recording previous
internal activity by a decay factor e−αf . αf and αe denote
the decay coefficients of the internal activity Uij[n] and the
dynamic threshold Eij[n], respectively. According to (14),
when Uij[n] ≥ Eij[n − 1], neuron Nij fires (Yij[n] = 1) and
the dynamic threshold Eij[n − 1] can suddenly increase by
the amplitude VE.WhenUij[n] < Eij[n−1], neuron Nij does
not fire (Yij[n] = 0) and the dynamic threshold Eij[n − 1]
would decrease by a factor e−α f . Additionally, Ykl[n − 1]
denotes previous neighboring outputs of neuron Nij.

For the SPCNN model, there are five critical parameters
αf , αe, β, VE, VL, and these parameters are obtained auto-
matically by [24] as follows.

α f = log

(
1
σ

)
(17)

β = (Smax/S′) − 1

6VL
(18)

VE = e−αf + 1 + 6βVL (19)

VL = 1 (20)

αe = ln

(
VE

S′M[3]
)

(21)

M[3] = 1 − e−3α f

1 − e−α f
+ 6βVLe

−αf (22)

where σ represents the standard deviation of the whole
image. S′ and Smax denote the Otsu threshold and the max-

imum intensity of the image, respectively. For the sake of
further improving segmentation precision, the PA-PCNN
model based on SPCNN can be used. In the PA-PCNN
model, we change threshold S′ to S′

ob, which denotes the
Otsu threshold of the object in located ultrasound image, to
generate a larger dynamic threshold. Obviously, all neurons
fire only once and need two iterations for SPCNN or four
iterations for PA-PCNN at most after the second iteration
(see Fig. 11). Iteration times of SPCNN are less than those of
PA-PCNN, which guarantees the segmentation precision of
gallstones. Meanwhile, within the first pulse cycle after the
second iteration, we found that PA-PCNN would generate a
good segmentation result in the third iteration. So, we can
determine segmented regions involving the gallstone region
in the third iteration. Subsequently, coarse segmentation steps
are described as follows:

1. Use the PA-PCNN model to obtain segmented regions
(Fig. 10b, f).

2. Calculate the intersection region between the fine result
of the gallbladder and the above segmented regions and
determine a maximum intersection region as coarse seg-
mentation result of gallstones (see Fig. 10c, g).

Fine segmentation of gallstones

For fine segmentation of gallstones, we propose a modi-
fied region-growing method to remove the regions labeled
by physicians (‘+’ from white or black regions on the left
or the right of the gallstone region) and prohibit over-
segmentation. The flowchart of the method is described in
Fig. 12.
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(a) (b) 
1st 1≥ S ≥0.0039

2nd Null

3rd 1≥ S ≥0.4039

4th 0.4039> S ≥0.1055

5th 0.1055> S ≥0.0234

6th 0.0234> S ≥0.0039

1st 1≥ S ≥ 0.0039

2nd Null

3rd 1 ≥ S ≥ 0.2039

4th 0.2039> S ≥ 0.0039

Fig. 11 The intensity ranges using SPCNN and PA-PCNNwithin the first pulsing cycle for Fig. 9d: a the intensity ranges of SPCNN; b the intensity
ranges of PA-PCNN

Coarse segmentation 
results of the gallstone

Search the centroid as the 
center of the seed region

Set Rmin as the radius of 
the seed region

Determine the rectangle 
region as the seed region

Loop number 
k=k+1

Discard

Save  the growing region 
as new seed region

Merge the pixels 
to the seed region 

Termination 
conditions (25) or 

(28) satisfy?

Copmare all seed points 
with their adjacent pixels 

Growth 
conditions (23) 

and (24) satisfy?

YesNo

The saved seed region as the fine 
segmentation result of the gallstone

Yes

No

Loop number   
k=1

Fig. 12 The flowchart for fine segmentation of gallstones

A Determinants of modified region-growing algorithm
The region-growing method has broad applications in

image segmentation field [26,27]. In this paper, a modi-
fied region-growingmethod is presented and its determinants
depend on the seed region, the growing conditions and the
termination conditions. Here, the selection steps of the seed
region are given as follows:

1. Search the centroid of the rectangle seed region by coarse
segmentation result of gallstones.

2. Set Rmin as the radius value of the rectangle seed region.

According to above steps, the rectangle region is deter-
mined as the initial seed region. However, sometimes the
initial seed region is not a perfect rectangle region because
the seed region exceeds probably the coarse segmentation
region of gallstones. Therefore, we can remove seed points

outside the coarse region and acquire ultimately the initial
seed region. Subsequently, growing conditions are described
as follows:

|S(i, j) − Smean| < k × min((Fx)mean,

(Fy)mean), (i, j) ∈ N8(seed) (23)

S(i, j) > S′
ob (24)

In located ultrasound image,seed denotes the intensity of
the seed point in the seed region. N8(•) and S(i, j) denote
eight neighboring outputs and its corresponding pixel inten-
sity of the seed point. The distribution ranges of parameters
i and j are −1 ≤ i ≤ 1 and −1 ≤ j ≤ 1, respectively. Smean

denotes the average intensity of the seed point and its eight
neighboring outputs. k is loop number. (Fx)mean and (Fy)mean

denote the average gradient value of partial derivatives in the
x (horizontal) direction and the y (vertical) direction. S′

ob
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is the Otsu threshold of the object. In addition, termination
conditions are expressed as follows:

Areags(k) − Areags(k − 1) = 0 (25)

E(k) = PA(k) = Areags(k)

Areacoar
(26)

F(k) = e

(
1

PA(k)

)

= e

(
Areacoar
Areags(k)

)

(27)

E(k) > F(k) (28)

According to (26), Areags(k) denotes the area of the grow-
ing region in the kth loop. Areacoar denotes the area of the
coarse segmentation region of gallstones and is a fixed value.
PA(k) is the area ratio between Areags(k) and Areacoar in
the kth loop. E(k) is the proportional function of PA(k), and
F(k) is the exponential function of PA(k).

In order to better observe the variations of the parameters
E(k) and F(k), sampling intervals are changed to 0.01 rather
than the integer k (see Fig. 13). What is more, area ratio PA
exceeding 10 is set to 10 because it is impossible that the

Fig. 13 The graph showing the variations of E , F with PA

area of the growing region is obviously more than that of
the coarse segmentation region. In Fig. 13, the increase of E
or the decrease of F is gradually with the increase of PA. If
the value of E is more than F , PA can attain about 1.7. This
indicates that the area of the growing region is obviously
larger than that of the coarse region. According to (28), the
region-growing step is terminated.

B The Steps of modified region-growing algorithm

In this paper, the proposed method based on the region-
growing algorithm can be achieved in Algorithm 2. Hereinto,
in the step 3, if eight neighboring outputs of a seed point sat-
isfy growing conditions in (23) and (24), the seed region
then combine these outputs into a new region. Further, if
this new region cannot satisfy termination conditions, it can
be regarded as new seed region and repeat step 3 until this
region satisfy termination conditions. Finally, we obtain fine
segmentation result of gallstones (Fig. 14) and the graphs
showing the variations of E(k) and F(k)with loops (Fig. 15).

A

Save the growing region as new seed region.

growing region

seed

In Fig. 15a, the area of the growing region has the same
value between the twelfth loop and the thirteenth loop. This
means that the region-growing result reaches the termination
condition (25) and we acquires ultimately the fine segmen-
tation result of gallstones in the twelfth loop.

In Fig. 15b, when loop number is more than 4, E can
exceed F . This phenomenon illustrates that the area of the
growing region in the fourth loop is significantly larger than
that of the coarse region. Accordingly, According to (28),
the region-growing step is terminated and acquires the fine
segmentation result of gallstones from the third loop.
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Fig. 14 Initial seed regions and region-growing results: a, c Initial seed region from Fig. 10c, g, respectively; b, d Final growing results from (a)
and (c), respectively

Fig. 15 The graphs showing the variations of E(k) and F(k) with loops: a the graph from Fig. 14b; b the graph from Fig. 14d

Fig. 16 The final segmentation results from Figs. 3a, d (the red lines and the blue ones denote the contours of the final results for the gallbladder
and gallstones, respectively)

The post-processing

For the gallbladder, since the contour of the fine result
is not enough smooth, a Loess algorithm is employed to
improve the smoothness of the contour [28]. In the Loess
algorithm,Equivdiameter specifies the diameter of a cir-
cle with the same area as the gallbladder region and Gall
specifies the length of the gallbladder contour. Equivdi-
ameter divided by Gall is regarded as the span value.
To acquire final segmentation result of the gallbladder,
we firstly combine the gallbladder region and the gall-
stone region into a region. Besides, the Loess algorithm
using the span value is adopted to smooth the gallblad-
der contour. Finally, the disk-shaped structuring element
with a radius of Rmid is used to perform the morphological
operation.

For gallstones, the post-processing approach also adopt
Loess algorithm and use morphological opening operation
with the disk-shaped structuring element of the radius of

Rmin . In the end, the final segmentation results of the gall-
bladder and gallstones are shown in Fig. 16.

Experiments and analysis

In order to compare the performance of our method with
the state-of-the-art methods, Snake-gvf(SG) [29], Snake-
distance(SD) [30] and Snake-balloon(SB) [31] are used in
the tests. Moreover, these methods contrast separately two
references, which are manually drawn by two experts in radi-
ology, to evaluate the final experimental results and validate
the effectiveness and the robustness of ourmethod.All exper-
iments are run on MATLAB 7.11.0 with Intel(R) Core(TM)
i3 M 350 at 2.27GHz from Satellite L600 of Toshiba.

Segmentation evaluation criteria

For the evaluation criteria, four metrics in two measurement
methodologies are employed in our work, containing the
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Table 1 The parameter values
of Snake-gvf (gallbladder and
gallstone)

Region ParaName iter A B γ κ Dmin Dmax μ ITER

Gallbladder ParaValue 300 0.4 0.4 1 1 1pi 6pi 0.2 200

Gallstone ParaValue 200 0.4 0.4 1 1 0.1pi 0.6pi 0.2 100

Table 2 The parameter values
of Snake-distance (gallbladder
and gallstone)

Region ParaName iter α β γ κ Dmin Dmax f

Gallbladder ParaValue 300 0.8 0.8 1 1 1pi 6pi 0.5

Gallstone ParaValue 200 0.8 0.8 1 1 0.1pi 0.6pi 0.5

Table 3 The parameter values
of Snake-balloon (gallbladder
and gallstone)

Region ParaName iter A β γ κ κ 1 Dmin Dmax

Gallbladder ParaValue 500 0.15 0.15 4 2 0.2 1pi 6pi

Gallstone ParaValue 150 0.15 0.15 4 2 0.2 0.1pi 0.6pi

metrics overlap fraction (OF), overlap value (OV), dice’s
similarity (DSI) from the first methodology [32] and the met-
ric position error (PE) from the second methodology [33].
Besides, the metric runtime (T ) is also used to analyze the
experimental results for meeting clinical needs. Hereinto, the
metrics OF, OV and DSI can identify the similarity of two
segmented regions and are defined as follows:

OF = |S ∩ M|
M

(29)

OV = |S ∩ M|
|S ∪ M| (30)

DSI = 2 × |S ∩ M |
|S + M | (31)

where S denotes the set of pixels in the region delineated by
automatic and semi-automatic experimental methods, while
M denotes the set of pixels in the region drawn by the experts;
S ∩ M and S ∪ M denote the intersection and the union,
respectively, between S and M . S + M denotes the sum of
pixels for S and M . Meanwhile, the metric PE denotes the
position error of two contours and is expressed as follows:

PE = 1

2k

k∑

i=1

D(mi, n) + 1

2l

l∑

j=1

D(m, nj) (32)

wherem = {m1,m2, . . .. . .,mk} and n = {n1, n2, . . .. . ., nl}
denote the pixels of two comparative contours. k and l
denote the pixel number of the contour m and the contour n,
respectively. D(mi, n) denotes the minimum distance value
between the pixel mi of the contour m and each pixel of
the contour n. D(m, nj) denotes the minimum distance value
between each pixel of the contour m and the pixel nj of the
contour n. The metric T is the runtime of the program and
does not include the consumed time of the manually setting
initial contour. If the metrics OV,OF,DSI are close to 1, and

metrics PE, T are close to 0, this indicates that the segmenta-
tion result is close to the manual drawing result of physicians
and has a better performance.

Parameter settings of comparative algorithms

Before performing comparative experiments, SG, SD and SB
algorithms need to set manually parameter values of the ini-
tial contours as given in Tables1, 2 and 3. In the three snake
algorithms, iter denotes iteration times of the whole algo-
rithm; α and β denote the weighing factors of the elasticity
force and the rigidity force, respectively. κ represents the
weighting factor from the external force (image force). γ is
a viscosity parameter. Dmin and Dmax denote the minimum
distance and the maximum distance between two successive
points of a contour. In the SG model, μ is the regularization
coefficient; ITER is iteration times of gradient vector flow.
In the SD model, f is the threshold of the distances between
the contour points and the image pixels; In the SB model,
κ1 is the pressure parameter adjusting the amplitude of the
balloon force.

Experimental results and evaluation

To show the performances of our method, we list the experi-
mental results using our method, SG, SD and SB comparing
with two experts’ manual results in Tables4, 5. The experi-
ments are divided into four groups. The previous two groups
and next two groups are the gallbladder and gallstones,
respectively. Hereinto, Table4 shows the gallbladder results
of the first group (physician 1) and the second group (physi-
cian 2), respectively. Table5 shows the gallstone results of
the third group (physician 1) and the fourth group (physi-
cian 2), respectively. At the same time, these tables include
not only five the analyzed metrics OF, OV, DSI, PE and T ,
but also four statistical coefficients the mean value (Mean)
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Table 4 The gallbladder
regions (the physician 1 and the
physician 2)

Algorithm References OF OV DSI PE T

This paper Physician 1

Max 0.9376 0.8792 0.9276 3.0132 7.2354

Min 0.7433 0.7121 0.8316 1.0581 1.8575

Mean 0.8540 0.8114 0.8938 1.8839 4.2117

Sd 0.0438 0.0301 0.0185 0.4596 1.6578

Physician 2

Max 0.9532 0.9452 0.9675 2.9094 7.0797

Min 0.7341 0.7315 0.8448 0.5633 1.9968

Mean 0.8693 0.8279 0.9037 1.6510 4.2304

Sd 0.0463 0.0456 0.0276 0.4538 1.5437

GVF Physician 1

Max 0.8361 0.8276 0.8999 9.0552 49.9379

Min 0.3323 0.3498 0.5181 2.2963 46.7643

Mean 0.6059 0.5932 0.7414 4.9609 48.2935

Sd 0.1347 0.1231 0.0927 1.8334 0.8372

Physician2

Max 0.8569 0.8526 0.9204 8.0914 50.1231

Min 0.3185 0.3185 0.4832 1.8277 47.0129

Mean 0.6468 0.6360 0.7773 4.3310 48.6615

Sd 0.1193 0.1148 0.0927 1.5165 0.8314

Distance Physician 1

Max 0.9271 0.8634 0.9226 5.7616 6.3441

Min 0.3857 0.3853 0.5563 1.7894 4.0127

Mean 0.6650 0.6462 0.7721 3.6827 5.0340

Sd 0.1534 0.1597 0.1147 1.4098 0.7268

Physician 2

Max 0.9441 0.9321 0.9648 5.8026 6.6875

Min 0.4206 0.4204 0.5532 1.1437 4.1991

Mean 0.6834 0.6719 0.7905 3.3275 5.1253

Sd 0.1638 0.1654 0.1231 1.5497 0.7283

Balloon Physician 1

Max 0.8321 0.7137 0.8002 8.0598 1.4782

Min 0.5388 0.3903 0.5625 4.4402 0.9531

Mean 0.7095 0.5398 0.6964 6.3337 1.1362

Sd 0.0951 0.0804 0.0713 0.9698 0.1376

Physician 2

Max 0.8622 0.6662 0.7997 7.8535 1.0864

Min 0.4828 0.4101 0.5817 4.5451 1.0019

Mean 0.7190 0.5587 0.7132 6.0608 1.0501

Sd 0.1085 0.0813 0.0672 1.1566 0.0223

Optimum value of every column is highlighted in bold

and the standard deviation (Sd), the maximum value (Max),
the minimum value (Min), to evaluate experimental results.
Additionally, Fig. 17 shows the experimental results of our
method and the manual results from physician 1 for directly
observing the similarity of two methods. These results
include the irregular shape and the regular shape of the gall-
bladder (Fig. 17).

At the above tables, for the gallbladder segmentation,
the evaluation values of the metrics OF, OV andDSI in our
method are higher and PE are lower in contrast to other algo-
rithms. The metric T also has a good performance than other
methods, except SB. For gallstones segmentation, the results
of our method in the above five metrics are prior to other
three competitive methods.
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Table 5 The gallstone regions
(the physician 1 and the
physician 2)

Algorithm References OF OV DSI PE T

This paper Physician 1

Max 0.9989 0.8793 0.9358 0.7090 1.0168

Min 0.7551 0.6391 0.7633 0.1816 0.3729

Mean 0.8494 0.7575 0.8604 0.4868 0.6758

Sd 0.0664 0.0577 0.0357 0.1004 0.1932

Physician 2

Max 0.8834 0.8532 0.9135 0.9376 1.0153

Min 0.6348 0.6004 0.7328 0.2945 0.4321

Mean 0.7768 0.7133 0.8305 0.5959 0.6447

Sd 0.0521 0.0513 0.0345 0.1646 0.1462

GVF Physician 1

Max 0.9558 0.7525 0.8432 1.2652 27.1402

Min 0.4641 0.4495 0.6202 0.4105 22.1047

Mean 0.7583 0.6485 0.7834 0.7976 25.5452

Sd 0.1171 0.0652 0.0523 0.1842 0.8632

Physician2

Max 0.8128 0.8017 0.8755 1.2188 27.1265

Min 0.3711 0.3681 0.5381 0.3298 23.8016

Mean 0.6701 0.6382 0.7734 0.7762 25.0847

Sd 0.1086 0.0978 0.0769 0.2256 0.8682

Distance Physician 1

Max 0.9969 0.8478 0.9176 1.4485 5.0766

Min 0.3763 0.3686 0.5386 0.3449 2.3115

Mean 0.6959 0.6521 0.7743 0.7402 3.0550

Sd 0.1576 0.1305 0.1062 0.2962 0.6074

Physician 2

Max 0.8102 0.8113 0.8789 1.2436 4.7306

Min 0.3901 0.3855 0.5565 0.4096 2.2989

Mean 0.6471 0.6164 0.6389 0.8362 3.0232

Sd 0.1143 0.1015 0.0836 0.2364 0.6274

Balloon Physician 1

Max 0.9287 0.7332 0.8345 1.8922 1.1057

Min 0.6866 0.3345 0.5013 0.5814 0.5725

Mean 0.8035 0.5581 0.7044 1.1778 0.8980

Sd 0.0712 0.1064 0.0923 0.4061 0.1045

Physician 2

Max 0.9697 0.6935 0.8134 3.0297 0.9914

Min 0.6345 0.3097 0.4729 0.5560 0.5803

Mean 0.8003 0.5311 0.6872 1.3830 0.8813

Sd 0.0912 0.1187 0.1043 0.5732 0.0914

Optimum value of every column is highlighted in bold

In order to achieve the purpose of the ultimate evaluation
for our method, we can merge three similar metrics OF, OV
andDSI into an overallmetric EVAand calculate average val-
ues of all metrics. The final experimental results can be given
in Table 6, and their three-dimensional results are shown in
Fig. 18.

In contrast to other methods, our method has obvious
advantages for the overall metrics EVA and PE in Table6.
The overall metric T combined with the gallbladder and gall-
stones is 4.8814 s, which is evidently less than SG and SD.
Although T is longer than 1.9829s of SB, if the balloon algo-
rithm merges the consumed time of manual setting initial
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Fig. 17 Two cases from comparative results between the new method
and the manual method: the first row is a case of the regular shape from
the gallbladder; the second row is a case of the irregular shape from
the gallbladder (the white lines and the black ones denote the manual

results of the gallbladder and gallstone contours, respectively; the red
lines and the blue ones are the segmentation results of our method from
the gallbladder and the gallstone contours, respectively)

Table 6 The final evaluation results (gallbladder and gallstone)

Algorithm Region EVA PE T

THIS PAPER Gallbladder 0.8601 1.7675 4.2211

Gallstone 0.7981 0.5414 0.6603

GVF Gallbladder 0.6668 4.6461 48.4775

Gallstone 0.7121 0.7869 25.3151

DISTANCE Gallbladder 0.7049 3.5051 5.0797

Gallstone 0.6708 0.7882 3.0391

BALLOON Gallbladder 0.6561 6.1973 1.0932

Gallstone 0.6808 1.2804 0.8897

Optimum value of every column is highlighted in bold

contours into the whole runtime, it is distinctly longer than
our method. Therefore, these experimental results indicate
that our method has a good performance than other prevalent
methods.

Special cases

In this part, Fig. 19a–d introduces main unsuitable cases for
the gallbladder. Figure19a shows an example in which it
is very difficult to calculate automatically the segmenta-
tion threshold between the right edge region and the central
region of the gallbladder. Figure19b shows that the gallblad-

(a) (b) (c)

Fig. 18 Three-dimensional evaluation results: a–c the evaluation results from the overall metrics EVA, PE and T , respectively ((g) and (s) denote
the gallbladder and gallstones, respectively. G, D, B and TP denote SG, SD, SB and our method, respectively)

Fig. 19 The special cases: a–d the special gallbladder cases; e–f the special gallstone cases
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der region filling stones is divided into two parts. In Fig. 19c,
the right region in whole image is wrongly regarded as the
gallbladder region due to the similar intensity range. Fig-
ure19d shows a situation inwhich the acoustic shadow region
is too large to search weak edge regions of the gallbladder.
Figure19e, f introduces main inappropriate gallstone cases.
Figure19e presents that there is a complex situation and it is
hard to determine automatically the number of stones. Fig-
ure19(f) shows that a stone covers almost at the bottom of
the gallbladder region and is unable to be included into the
gallbladder region.

Discussion

This paper proposes an automatic segmentation method
for the gallbladder and gallstones. Hereinto, a modified
Otsu algorithm, which adjusts weight value A to deter-
mine automatically segmentation thresholds between the
weak regions and the central region of the gallbladder in
ultrasound images, is presented. Based on a parameter-
adaptive pulse-coupled neural network (PA-PCNN), the
high-intensity regions including the gallstones are acquired
by the resetting parameter S′ in (18). The growing conditions
and the termination conditions are designed by a modi-
fied region-growing algorithm to control reasonably growth
speed of the seed region, eliminate effectivelymanual labeled
regions of physicians and avoid over-segmentation of gall-
stones.

The experimental results demonstrate high accuracy rates
and short runtime of our method, presenting EVA of 86.01
and 79.81%, PE of 1.7675 and 0.5414mm, T of 4.2211 and
0.6603s from the gallbladder and gallstones, respectively.

In summary, the new method has three significant stre-
ngths: (1) It automatically achieves parameters setting for
reducing the workloads from physicians. (2) It assists accu-
rately physicians to judge the relative position between the
gallbladder region and the gallstone region. (3) It provides the
contour information of the gallbladder and gallstones to per-
form feature extraction and determine stone types. Whereas,
this method still has several weaknesses: The ultrasound
images in the dataset have a small quantity, especially spe-
cial cases in “Special cases” section, and the method is still
unable to process several special cases such as the stoneswith
acoustic shadow. Due to these weaknesses, in the next step
of the development, we firstly continue to collect practical
cases in our dataset. Secondly, we will try to solve more spe-
cial cases in clinical cases. For examples, a modified shadow
removal algorithmwill be employed to try to eliminate acous-
tic shadow of stones [34]. At the same time, an ellipse fitting
algorithm will be used in the case where stones cover at a
larger part of the bottom of the gallbladder [35]. Thirdly,
based on the new method, we will further deduce image fea-
tures extraction, including shape features (Perimeter, Area,

Solidity, Eccentricity, Circularity, Extent, etc.) and texture
features (Mean,Variance, Contrast, Entropy, Skewness, etc.),
to determine automatically stone types. Fourthly, accord-
ing to the above mentioned plans, we will build a complete
segmentation framework to assist physicians to establish a
treatment plan for the gallbladder disease.

Conclusion

This paper shows that automatic gallbladder and gallstone
regions segmentation has better testing results than semi-
automatic competitive algorithms because all the parameters
in each step is obtained by self-adaptive ways. The method
has a great potential to satisfy future demands of the cases
detection and characteristic diagnosis for the gallbladder dis-
ease.Although the solutions of several special cases are being
discussed, the new framework is still a promising method in
clinic.
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